The Influence of Dietary Supplements on Exercise-Induced Gut Damage and Gastrointestinal Symptoms: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design and Search Strategy
2.2. Data Selection and Collection
2.3. Study Selection
2.4. Risk of Bias/Data Extraction
2.5. Certainty of Evidence
2.6. Statistical Analysis
3. Results
3.1. Study Selection
3.2. Study Characteristics
3.3. Participant Characteristics
3.4. Environmental Characteristics
3.5. Exercise Characteristics
Study | Study Design | Participant Characteristics | Gut Measures | Exercise Intervention | Supplement/Diet | ||||
---|---|---|---|---|---|---|---|---|---|
i-FAPB | GISs (Mean (SD)) | Mode | Duration | Intensity | Environment | ||||
(Mean (SD) Pre-Post) | |||||||||
Rowe et al. [55] | Randomised, crossover, double-blind design | Trained males (n = 11) 29 ± 6 y | - | Experimental −3 (1) Control −2 (1) | Run | 120 min and 5 km | O2peak SS and TT | Thermoneutral | Glucose and fructose hydrogel (180 g, 2:1 ratio) |
McCubbin et al. [56] | Randomised, crossover design | Trained male endurance runners (n = 9) 36 ± 5 y | - | Experimental −15 (9.5) Control −18 (8.75) | Run | 3 h and TTE | O2peak SS and 2 km/h increase every 3 min | Thermoneutral | Hydrogel CHO–electrolyte beverage (53 g/h maltodextrin, 37 g/h fructose) |
Miall et al. [16] | Randomised, single-blinded design | Recreational runners (n = 18) 35 ± 8 y | - | Experimental −6.23 (0.70) Control −4.5 (0.6) | Run | 120 min and 60 min | O2peak SS and TT | 23 ± 1 °C, 50 ± 8%RH | CHO gel disc (30 g; 2:1 glucose–fructose) |
Costa et al. [15] | Randomised, placebo, controlled design | Runners (n = 15 M and n = 10 F) 35 (32–38) y | Gel disc: 434 (158.3) –981 (362.5) Carbohydrate food: 450 (151)–1236 (618) | Experimental −50.3 (43.1) Control −43 (14) | Run | 120 min and 60 min | O2max and TT | Thermoneutral 50%RH | CHO (gel disc/food) (30 g; 2:1 glucose–fructose) |
Oosthuyse et al. [57] | Randomised, double-blind, three-way crossover design | Trained male cyclists (n = 9) 38 ± 7 y | - | Experimental −2.65 (3.3) Control −0.32 (0.1) | Cycle | 120 min | 60%Wmax | Thermoneutral | CHO (63 g∙h−1 isomaltulose; 7% CHO, fructose:maltodextrin; 0.8:1 ratio, 7% CHO)) |
Pettersson et al. [53] | Double-blind, randomised, crossover design | Elite cross-country ski athletes (n = 6 F, 24.8 ± 5.3 y; n = 6 M, 25.6 ± 4.7) | - | Experimental −3.5 (3.3) Control −2.5 (2.7) | Cross-country skiing | 120 min | O2peak | −5 °C | Hydrogel CHO (132 g·h− 1, 1:0.8 maltodextrin:fructose) |
Pugh et al. [46] | Randomised, double-blind, matched-pairs design | Runners (n = 20 M, 4 F) | 448 (183)–1834 (1692) | - | Run | 42.2 km (234 ± 38 min) | 90.2 ± 9.1%LT | Thermoneutral | Probiotics (active strains *) and CHO |
Pugh et al. [45] | Randomised, double-blind, placebo-controlled crossover design | Trained cyclists (n = 7) 23 ± 4 y | 540 (144.4)–335 (189) | - | Cycle | 120 min | 55% Wmax | Thermoneutral | Probiotics (active strains *) and CHO |
Shing et al. [54] | Randomised, double-blind, placebo-controlled crossover design | Trained runners (n = 10) Age 27 ± 2 y | - | Experimental −1.4 (0.2) Control −1.6 (0.3) | Run | TTE ~50 min | TTE | 35 °C, 40% RH | Probiotics (active strains *) |
Kekkonen et al. [50] | Randomised, double-blind design | Marathon runners (Con; n = 71, 40 (23–69) y, LGG; n = 70, 40 (22–58 y) | - | Experimental −0.4 (0.8) Control −0.6 (1.1) | Run | Habitual marathon training | - | Thermoneutral | Probiotics (LGG) |
Schreiber et al. [51] | Randomised, double-blind, two-arm, placebo-controlled design | 27 elite and category 1-level cyclists (28.3 ± 5.6 y) | - | Experimental −6.18 (15.37) Control −3.82 (14.02) | Cycle | TTF | 85% of Wmax | Thermoneutral | Probiotics (active strains *) |
Pugh et al. [30] | Randomised, double-blind, placebo-controlled crossover design | Recreationally active healthy males (n = 10) 24 ± 4 y | 0.25 g: 314.9 (146.2)–595.7 (306.3) 0.5 g: 329.3 (187.8)–481.6 (282.8) 0.9 g: 266.6 (183.8)–488.1 (227.3) | - | Run | 60 min | O2peak | 30 °C | Glutamine (0.25 g, 0.5 g, 0.9 g per FFM) |
Osbourne et al. [29] | Randomised, double-blind, placebo-controlled crossover design | Male cyclists (n = 12) 32 ± 6 y | 0.61 (0.15)–0.8 (0.16) | Experimental –15.2 (4.8) Control –13.2 (7.9) | Cycle | 20 km TT | TT | 35 °C, 50% | L-glutamine (0.9 g·kg−1 FFM) |
Tataka et al. [48] | Randomised, double-blind, placebo-controlled crossover design | Healthy males (n = 16) 23 ± 3 y | 1458 (1288)–1602 (1381) | - | Run | 60 min | O2peak | 25 °C, 60% | L-cystine (0.23 g) and L-glutamine (1 g) |
Ogden et al. [44] | Randomised, double-blind, placebo-controlled crossover design | Healthy males (n = 10) 29 ± 7 y | 1.21 (0.67)–2.46 (1.17) | - | Run | 30 min | @LT | 40 °C, 40% RH | L-glutamine (0.3 g·kg−1 FFM) |
Ogden et al. [31] | Randomised, double-blind, placebo-controlled crossover design | Healthy males (n = 12) 32 ± 6 y | 2.16 (0.98)–4.7 (1.31) | - | Walk | 80 min (2 × 40 min) | Fixed-intensity (6 km h−1 ,7% gradient) | 35 °C, 30% RH | L-glutamine (0.3 g·kg−1) |
March et al. [22] | Randomised, double-blind, placebo-controlled crossover design | Healthy males (n = 18) Age 26 ± 5 y | 672 (394)–684 (481) | - | Run | 20 min | O2peak | Thermoneutral | Bovine colostrum (20 g·day−1) |
March et al. [23] | Randomised, double-blind, placebo-controlled crossover design | Healthy males (n = 12) 26 ± 6 y | 821.3 (147.1)–1312 (205.9) | - | Run | 60 min | O2peak | 30.0 °C, 60% RH | Bovine colostrum (20 g·day−1) |
McKenna et al. [43] | Randomised, placebo-controlled counterbalanced, crossover design | Healthy males (n = 10) 20 ± 2 y | 851.35 (450.71)–1267 (521.51) | - | Run | 46 min | 95% VT | 40 °C, 50% RH | Bovine colostrum (20 g·day−1) |
Morrison et al. [41] | Randomised, placebo-controlled, crossover design | Trained (n = 7) and untrained (n = 7) males 22 ± 3 y | 138.8 (450.7)–1267.1 (521.5) | Experimental –3.07 (4.51) Control –3.47 (3.56) | Cycle and Run | 90 min total (15 min cycle, 2 × 30 min run, 15 min cycle) | Cycle – 50% HRR, 80% HRR (run 1), TT (run 2) | 30 °C, 50% RH | Bovine colostrum (1.7 g·kg−1·day−1) |
Szymanski et al. [26] | Randomised, double-blind, placebo-controlled crossover design | Healthy males (n = 6) and women (n = 2) 19 ± 1 y | 821.3 (147.2)–1312.4 (205.9) | - | Run | 60 min | O2peak | 37 °C, 25% RH | Meriva curcumin (500·day−1) |
Jonvik et al. [40] | Randomised, placebo-controlled, crossover design | Well-trained males (n = 16) 28 ± 7 y | Sodium nitrate: 1037 (309)–2754.7 (11613) Sucrose: 1213 (385)–2059.4 (1096.8) | - | Cycle | 60 min | 70% Wmax | Thermoneutral | Sodium nitrate (800 mg), sucrose (40 g) |
Kung et al. [47] | Randomised, placebo-controlled, crossover design | Cyclists (n = 12) 37 ± 11 y | 859.4 (150.01)–1155 (213.61) | - | Cycle | 45 min and TT | O2peak and TT | Thermoneutral | Dairy-based, high flavonoids (490 mg) |
Taylor et al. [49] | Randomised, placebo-controlled, crossover design | Moderately trained (n = 16 M, 4 F 29 ± 4 y | 1807 (1924)–2222.24 (3685.2) | Experimental −32.5 (38.1) Control −27.7 (33.0) | Run | 70 min | O2 peak O2peak O2peak | Thermoneutral | Collagen peptides (10 g·day−1) |
Opheim et al. [28] | Randomised, placebo-controlled, crossover design | Healthy males (n = 19) 23 ± 3 y | - | Experimental −5.8 ± 4.5 Control −1.2 ± 1.7 | Run | 15 × 30 m, 35 s intervals | Self-paced (max effort) | Thermoneutral | Capsaicin (cayenne supplement) |
Lassen et al. [52] | Randomised, placebo-controlled, crossover design | Healthy males (n = 13) and females (8) 25 ± 4 y | - | Experimental −3.5 ± 0.6 Control −3.8 ± 0.6 | 3.5 km TT | Self-paced (max effort) | Thermoneutral (outdoor) | Sodium bicarbonate (0.3 g/kg BM) |
3.6. Risk of Bias
3.7. Meta-Analysis
3.8. Subgroup Analysis
3.9. Meta-Regression
3.10. Publication Bias
3.11. Grading of Evidence
4. Discussion
4.1. Probiotics
4.2. Glutamine and Cysteine
4.3. Bovine Colostrum
4.4. Carbohydrates
4.5. Other Dietary Supplements
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Robinson, K.; Deng, Z.; Hou, Y.; Zhang, G. Regulation of the intestinal barrier function by host defense peptides. Front. Vet. Sci. 2015, 2, 57. [Google Scholar] [CrossRef] [PubMed]
- Inczefi, O.; Bacsur, P.; Resál, T.; Keresztes, C.; Molnár, T. The Influence of Nutrition on Intestinal Permeability and the Microbiome in Health and Disease. Front. Nutr. 2022, 9, 718710. [Google Scholar] [CrossRef] [PubMed]
- Ribichini, E.; Scalese, G.; Cesarini, A.; Mocci, C.; Pallotta, N.; Severi, C.; Corazziari, E.S. Exercise-Induced Gastrointestinal Symptoms in Endurance Sports: A Review of Pathophysiology, Symptoms, and Nutritional Management. Dietetics 2023, 2, 289–307. [Google Scholar] [CrossRef]
- Ribeiro, F.M.; Petriz, B.; Marques, G.; Kamilla, L.H.; Franco, O.L. Is There an Exercise-Intensity Threshold Capable of Avoiding the Leaky Gut? Front. Nutr. 2021, 8, 627289. [Google Scholar] [CrossRef] [PubMed]
- Costa, R.J.S.; Snipe, R.M.J.; Kitic, C.M.; Gibson, P.R. Systematic review: Exercise-induced gastrointestinal syndrome—Implications for health and intestinal disease. Aliment. Pharmacol. Ther. 2017, 46, 246–265. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, T. Regulation of the intestinal barrier by nutrients: The role of tight junctions. Anim. Sci. J. 2020, 91, e13357. [Google Scholar] [CrossRef] [PubMed]
- Camilleri, M.; Lyle, B.J.; Madsen, K.L.; Sonnenburg, J.; Wu, G.D. Role for Diet in Normal Gut Barrier Function: Developing Guidance within the 10 Framework of Food Labeling Regulations. Am. J. Physiol.-Gastrointest. Liver Physiol. 2019, 317, G17–G39. [Google Scholar] [CrossRef] [PubMed]
- van Wijck, K.; Pennings, B.; van Bijnen, A.A.; Senden, J.M.G.; Buurman, W.A.; Dejong, C.H.C.; van Loon, L.J.C.; Lenaerts, K. Dietary protein digestion and absorption are impaired during acute postexercise recovery in young men. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2013, 304, R356–R361. [Google Scholar] [CrossRef]
- Costa, R.J.S.; Snipe, R.; Camões-Costa, V.; Scheer, V.; Murray, A. The Impact of Gastrointestinal Symptoms and Dermatological Injuries on Nutritional Intake and Hydration Status During Ultramarathon Events. Sports Med. Open 2016, 2, 16. [Google Scholar] [CrossRef]
- Pfeiffer, B.; Coterill, A.; Grathwohl, D.; Stellingwerff, T.; Jeukendrup, A.E. The Effect of Carbohydrate Gels on Gastrointestinal Tolerance During a 16-km Run. Int. J. Sport. Nutr. Exerc. Metab. 2009, 19, 485–503. [Google Scholar] [CrossRef]
- Ter Steege, R.W.F.; Kolkman, J.J. Review article: The pathophysiology and management of gastrointestinal symptoms during physical exercise, and the role of splanchnic blood flow. Aliment. Pharmacol. Ther. 2012, 35, 516–528. [Google Scholar] [CrossRef]
- Stuempfle, K.J.; Hoffman, M.D. Gastrointestinal distress is common during a 161-km ultramarathon. J. Sports Sci. 2015, 33, 1814–1821. [Google Scholar] [CrossRef]
- Hoffman, M.D.; Fogard, K. Factors related to successful completion of a 161-km ultramarathon. Int. J. Sports Physiol. Perform. 2011, 6, 25–37. [Google Scholar] [CrossRef]
- Pugh, J.N.; Impey, S.G.; Doran, D.A.; Fleming, S.C.; Morton, J.P.; Close, G.L. Acute high-intensity interval running increases markers of gastrointestinal damage and permeability but not gastrointestinal symptoms. Appl. Physiol. Nutr. Metab. 2017, 42, 941–947. [Google Scholar] [CrossRef]
- Costa, R.J.; Miall, A.; Khoo, A.; Rauch, C.; Snipe, R.; Camões-Costa, V.; Gibson, P. Gut-training: The impact of two weeks repetitive gut-challenge during exercise on gastrointestinal status, glucose availability, fuel kinetics, and running performance. Appl. Physiol. Nutr. Metab. 2017, 42, 547–557. [Google Scholar] [CrossRef] [PubMed]
- Miall, A.; Khoo, A.; Rauch, C.; Snipe, R.M.J.; Camões-Costa, V.L.; Gibson, P.R.; Costa, R.J. Two weeks of repetitive gut-challenge reduce exercise-associated gastrointestinal symptoms and malabsorption. Scand. J. Med. Sci. Sports 2018, 28, 630–640. [Google Scholar] [CrossRef] [PubMed]
- Chantler, S.; Griffiths, A.; Matu, J.; Davison, G.; Jones, B.; Deighton, K. The Effects of Exercise on Indirect Markers of Gut Damage and Permeability: A Systematic Review and Meta-analysis. Sports Med. 2021, 51, 113–124. [Google Scholar] [CrossRef]
- Karhu, E.; Forsgård, R.A.; Alanko, L.; Alfthan, H.; Pussinen, P.; Hämäläinen, E.; Korpela, R. Exercise and gastrointestinal symptoms: Running-induced changes in intestinal permeability and markers of gastrointestinal function in asymptomatic and symptomatic runners. Eur. J. Appl. Physiol. 2017, 117, 2519–2526. [Google Scholar] [CrossRef] [PubMed]
- Costa, R.J.; Young, P.; Gill, S.K.; Snipe, R.M.; Gaskell, S.; Russo, I.; Burke, L.M. Assessment of Exercise-Associated Gastrointestinal Perturbations in Research and Practical Settings: Methodological Concerns and Recommendations for Best Practice. Int. J. Sport. Nutr. Exerc. Metab. 2022, 32, 387–418. [Google Scholar] [CrossRef] [PubMed]
- Massironi, S.; Sileri, P.; Danese, S. Get fit: Muscle health for Crohn’s Disease Surgical Outcome optimization. Inflamm. Bowel Dis. 2024, 30, 1629–1632. [Google Scholar] [CrossRef] [PubMed]
- Khoshbin, K.; Camilleri, M. Effects of dietary components on intestinal permeability in health and disease. Am. J. Physiol. Gastrointest. Liver Physiol. 2020, 319, G589–G608. [Google Scholar] [CrossRef]
- March, D.S.; Marchbank, T.; Playford, R.J.; Jones, A.W.; Thatcher, R.; Davison, G. Intestinal fatty acid-binding protein and gut permeability responses to exercise. Eur. J. Appl. Physiol. 2017, 117, 931–941. [Google Scholar] [CrossRef] [PubMed]
- March, D.S.; Jones, A.W.; Thatcher, R.; Davison, G. The effect of bovine colostrum supplementation on intestinal injury and circulating intestinal bacterial DNA following exercise in the heat. Eur. J. Nutr. 2019, 58, 1441–1451. [Google Scholar] [CrossRef]
- Axelrod, C.L.; Brennan, C.J.; Cresci, G.; Paul, D.; Hull, M.; Fealy, C.E.; Kirwan, J.P. UCC118 supplementation reduces exercise-induced gastrointestinal permeability and remodels the gut microbiome in healthy humans. Physiol. Rep. 2019, 7, e14276. [Google Scholar] [CrossRef] [PubMed]
- Mooren, F.C.; Maleki, B.H.; Pilat, C.; Ringseis, R.; Eder, K.; Teschler, M.; Krüger, K. Effects of Escherichia coli strain Nissle 1917 on exercise-induced disruption of gastrointestinal integrity. Eur. J. Appl. Physiol. 2020, 120, 1591–1599. [Google Scholar] [CrossRef] [PubMed]
- Szymanski, M.C.; Gillum, T.L.; Gould, L.M.; Morin, D.S.; Kuennen, M. Short term dietary curcumin supplementation reduces gastrointestinal barrier damage and physiological strain responses during exertional heat stress. J. Appl. Physiol. 2018, 124, 330–340. [Google Scholar] [CrossRef]
- Snipe, R.M.; Khoo, A.; Kitic, C.M.; Gibson, P.R.; Costa, R.J. Carbohydrate and protein intake during exertional heat stress ameliorates intestinal epithelial injury and small intestine permeability. Appl. Physiol. Nutr. Metab. 2017, 42, 1283–1292. [Google Scholar] [CrossRef] [PubMed]
- Opheim, M.N.; Rankin, J.W. Effect of Capsaicin supplementation on repeated sprinting performance. J. Strength. Cond. Res. 2012, 26, 319–326. [Google Scholar] [CrossRef] [PubMed]
- Osborne, J.O.; Stewart, I.B.; Beagley, K.W.; Borg, D.N.; Minett, G.M. Acute glutamine supplementation does not improve 20-km self-paced cycling performance in the heat. Eur. J. Appl. Physiol. 2019, 119, 2567–2578. [Google Scholar] [CrossRef] [PubMed]
- Pugh, J.N.; Sage, S.; Hutson, M.; Doran, D.A.; Fleming, S.C.; Highton, J.; Morton, J.P.; Close, G.L. Glutamine supplementation reduces markers of intestinal permeability during running in the heat in a dose-dependent manner. Eur. J. Appl. Physiol. 2017, 117, 2569–2577. [Google Scholar] [CrossRef] [PubMed]
- Ogden, H.B.; Fallowfield, J.L.; Child, R.B.; Davison, G.; Fleming, S.C.; Delves, S.K.; Millyard, A.; Westwood, C.S.; Layden, J.D. No protective benefits of low dose acute L-glutamine supplementation on small intestinal permeability, epithelial injury and bacterial translocation biomarkers in response to subclinical exertional-heat stress: A randomized cross-over trial. Temperature 2022, 9, 196–210. [Google Scholar] [CrossRef] [PubMed]
- Chantler, S.; Griffiths, A.; Matu, J.; Davison, G.; Jones, B.; Holliday, A. A systematic review: Role of dietary supplements on markers of exercise-associated gut damage and permeability. PLoS ONE 2022, 17, e0266379. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Int. J. Surg. 2021, 88, 105906. [Google Scholar] [CrossRef]
- Maughan, R.J.; Burke, L.M.; Dvorak, J.; Larson-Meyer, D.E.; Peeling, P.; Phillips, S.M.; Rawson, E.S.; Walsh, N.P.; Garthe, I.; Geyer, H.; et al. IOC consensus statement: Dietary supplements and the high-performance athlete. Br. J. Sports Med. 2018, 28, 104–125. [Google Scholar] [CrossRef]
- Higgins, J.P.T.; Thomas, J.; Chandler, J.; Cumpston, M.; Li, T.; Page, M.J.; Welch, V.A. (Eds.) Cochrane Handbook for Systematic Reviews of Interventions; John Wiley & Sons: Hoboken, NJ, USA, 2019. [Google Scholar]
- Guyatt, G.H.; Oxman, A.D.; Vist, G.E.; Kunz, R.; Falck-Ytter, Y.; Alonso-Coello, P.; Schünemann, H.J. GRADE: An emerging consensus on rating quality of evidence and strength of recommendations. BMJ 2008, 336, 924–926. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Machado, G.C.; Eyles, J.P.; Ravi, V.; Hunter, D.J. Dietary supplements for treating osteoarthritis: A systematic review and meta-analysis. Br. J. Sports Med. 2018, 52, 167–175. [Google Scholar] [CrossRef]
- Peel, J.S.; McNarry, M.A.; Heffernan, S.M.; Nevola, V.R.; Kilduff, L.P.; Waldron, M. The effect of dietary supplements on endurance exercise performance and core temperature in hot environments: A meta-analysis and meta-regression. Sports Med. 2021, 51, 2351–2371. [Google Scholar] [CrossRef]
- Rosenthal, R.; Rosnow, R.L. Essentials of Behavioral Research: Methods and Data Analysis; McGraw-Hill: New York, NY, USA, 2008. [Google Scholar]
- Jonvik, K.L.; Lenaerts, K.; Smeets, J.S.J.; Kolkman, J.J.; Van Loon, L.J.C.; Verdijk, L.B. Sucrose but Not Nitrate Ingestion Reduces Strenuous Cycling-induced Intestinal Injury. Med. Sci. Sports Exerc. 2019, 51, 436–444. [Google Scholar] [CrossRef]
- Morrison, S.A.; Cheung, S.S.; Cotter, J.D. Bovine colostrum, training status, and gastrointestinal permeability during exercise in the heat: A placebo-controlled double-blind study. Appl. Physiol. Nutr. Metab. 2014, 39, 1070–1082. [Google Scholar] [CrossRef] [PubMed]
- Sessions, J.; Bourbeau, K.; Rosinski, M.; Szczygiel, T.; Nelson, R.; Sharma, N.; Zuhl, M. Carbohydrate gel ingestion during running in the heat on markers of gastrointestinal distress. Eur. J. Sport. Sci. 2016, 16, 1064–1072. [Google Scholar] [CrossRef]
- McKenna, Z.; Berkemeier, Q.; Naylor, A.; Kleint, A.; Gorini, F.; Ng, J.; Kim, J.K.; Sullivan, S.; Gillum, T. Bovine colostrum supplementation does not affect plasma I-FABP concentrations following exercise in a hot and humid environment. Eur. J. Appl. Physiol. 2017, 117, 2561–2567. [Google Scholar] [CrossRef] [PubMed]
- Ogden, H.B.; Fallowfield, J.L.; Child, R.B.; Davison, G.; Fleming, S.C.; Delves, S.K.; Millyard, A.; Westwood, C.S.; Layden, J.D. Acute L-glutamine supplementation does not improve gastrointestinal permeability, injury or microbial translocation in response to exhaustive high intensity exertional-heat stress. Eur. J. Sport. Sci. 2022, 22, 1865–1876. [Google Scholar] [CrossRef] [PubMed]
- Pugh, J.N.; Wagenmakers, A.J.; Doran, D.A.; Fleming, S.C.; Fielding, B.A.; Morton, J.P.; Close, G.L. Probiotic supplementation increases carbohydrate metabolism in trained male cyclists: A randomized, double-blind, placebo-controlled crossover trial. Am. J. Physiol.-Endocrinol. Metab. 2020, 318, E504–E513. [Google Scholar] [CrossRef]
- Pugh, J.N.; Sparks, A.S.; Doran, D.A.; Fleming, S.C.; Langan-Evans, C.; Kirk, B.; Fearn, R.; Morton, J.P.; Close, G.L. Four weeks of probiotic supplementation reduces GI symptoms during a marathon race. Eur. J. Appl. Physiol. 2019, 119, 1491–1501. [Google Scholar] [CrossRef] [PubMed]
- Kung, S.; Vakula, M.N.; Kim, Y.; England, D.L.; Bergeson, J.; Bressel, E.; Lefevre, M.; Ward, R. No effect of a dairy-based, high flavonoid pre-workout beverage on exercise-induced intestinal injury, permeability, and inflammation in recreational cyclists: A randomized controlled crossover trial. PLoS ONE 2022, 17, e0277453. [Google Scholar] [CrossRef]
- Tataka, Y.; Haramura, M.; Hamada, Y.; Ono, M.; Toyoda, S.; Yamada, T.; Hiratsu, A.; Suzuki, K.; Miyashita, M. Effects of oral cystine and glutamine on exercise-induced changes in gastrointestinal permeability and damage markers in young men. Eur. J. Nutr. 2022, 61, 2331–2339. [Google Scholar] [CrossRef] [PubMed]
- Taylor, G.; Leonard, A.; Tang, J.C.; Dunn, R.; Fraser, W.D.; Virgilio, N.; Prawitt, J.; Stevenson, E.; Clifford, T. The effects of collagen peptides on exercise-induced gastrointestinal stress: A randomized, controlled trial. Eur. J. Nutr. 2023, 62, 1027–1039. [Google Scholar] [CrossRef]
- Kekkonen, R.A.; Vasankari, T.J.; Vuorimaa, T.; Haahtela, T.; Julkunen, I.; Korpela, R. The Effect of Probiotics on Respiratory Infections and Gastrointestinal Symptoms During Training in Marathon Runners. Int. J. Sport. Nutr. Exerc. Metab. 2007, 17, 352–363. [Google Scholar] [CrossRef]
- Schreiber, C.; Tamir, S.; Golan, R.; Weinstein, A.; Weinstein, Y. The effect of probiotic supplementation on performance, inflammatory markers and gastro-intestinal symptoms in elite road cyclists. J. Int. Soc. Sports Nutr. 2021, 18, 36. [Google Scholar] [CrossRef]
- Lassen, T.A.H.; Lindstrøm, L.; Lønbro, S.; Madsen, K. Increased performance in elite runners following individualized timing of sodium bicarbonate supplementation. Int. J. Sport. Nutr. Exerc. Metab. 2021, 31, 453–459. [Google Scholar] [CrossRef] [PubMed]
- Pettersson, S.; Edin, F.; Bakkman, L.; McGawley, K. Effects of supplementing with an 18% carbohydrate-hydrogel drink versus a placebo during whole-body exercise in-5 °C with elite cross-country ski athletes: A crossover study. J. Int. Soc. Sports Nutr. 2019, 16, 46. [Google Scholar] [CrossRef] [PubMed]
- Shing, C.M.; Peake, J.M.; Lim, C.L.; Briskey, D.; Walsh, N.P.; Fortes, M.B.; Ahuja, K.D.K.; Vitetta, L. Effects of probiotics supplementation on gastrointestinal permeability, inflammation and exercise performance in the heat. Eur. J. Appl. Physiol. 2014, 114, 93–103. [Google Scholar] [CrossRef]
- Rowe, J.T.; King, R.F.G.J.; King, A.J.; Morrison, D.J.; Preston, T.; Wilson, O.J.; O’hara, J.P. Glucose and Fructose Hydrogel Enhances Running Performance, Exogenous Carbohydrate Oxidation, and Gastrointestinal Tolerance. Med. Sci. Sports Exerc. 2022, 54, 129–140. [Google Scholar] [CrossRef]
- McCubbin, A.J.; Zhu, A.; Gaskell, S.K.; Costa, R.J.S. Hydrogel carbohydrate-electrolyte beverage does not improve glucose availability, substrate oxidation, gastrointestinal symptoms or exercise performance, compared with a concentration and nutrient-matched placebo. Int. J. Sport. Nutr. Exerc. Metab. 2020, 30, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Oosthuyse, T.; Carstens, M.; Millen, A.M.E. Ingesting isomaltulose versus fructose-maltodextrin during prolonged moderate-heavy exercise increases fat oxidation but impairs gastrointestinal comfort and cycling performance. Int. J. Sport. Nutr. Exerc. Metab. 2015, 25, 427–438. [Google Scholar] [CrossRef] [PubMed]
- King, A.J.; Etxebarria, N.; Ross, M.L.; Garvican-Lewis, L.; Heikura, I.A.; McKay, A.K.A.; Tee, N.; Forbes, S.F.; Beard, N.A.; Saunders, P.U.; et al. Short-Term Very High Carbohydrate Diet and Gut-Training Have Minor Effects on Gastrointestinal Status and Performance in Highly Trained Endurance Athletes. Nutrients 2022, 14, 1929. [Google Scholar] [CrossRef] [PubMed]
- Jäger, R.; Mohr, A.E.; Carpenter, K.C.; Kerksick, C.M.; Purpura, M.; Moussa, A.; Townsend, J.R.; Lamprecht, M.; West, N.P.; Black, K.; et al. International Society of Sports Nutrition Position Stand: Probiotics. J. Int. Soc. Sports Nutr. 2019, 16, 62. [Google Scholar] [CrossRef]
- Clark, A.; Mach, N. Exercise-induced stress behavior, gut-microbiota-brain axis and diet: A systematic review for athletes. J. Int. Soc. Sports Nutr. 2016, 13, 43. [Google Scholar] [CrossRef]
- Young, P.; Russo, I.; Gill, P.; Muir, J.; Henry, R.; Davidson, Z.; Costa, R.J. Reliability of pathophysiological markers reflective of exercise-induced gastrointestinal syndrome (EIGS) in response to 2-h high-intensity interval exercise: A comprehensive methodological efficacy exploration. Front. Physiol. 2023, 14, 1063335. [Google Scholar] [CrossRef]
- Gaskell, S.K.; Rauch, C.E.; Costa, R.J.S. Gastrointestinal Assessment and Therapeutic Intervention for the Management of Exercise-Associated Gastrointestinal Symptoms: A Case Series Translational and Professional Practice Approach. Front. Physiol. 2021, 12, 719142. [Google Scholar] [CrossRef] [PubMed]
- Lambert, G.P. Stress-induced gastrointestinal barrier dysfunction and its inflammatory effects. J. Anim. Sci. 2009, 87 (Suppl. S14), E101–E108. [Google Scholar] [CrossRef] [PubMed]
- De Oliveira, E.P.; Burini, R.C.; Jeukendrup, A. Gastrointestinal complaints during exercise: Prevalence, etiology, and nutritional recommendations. Sports Med. 2014, 44, 79–85. [Google Scholar] [CrossRef] [PubMed]
- Newsholme, P.; Procopio, J.; Ramos Lima, M.M.; Pithon-Curi, T.C.; Curi, R. Glutamine and glutamate—Their central role in cell metabolism and function. Cell Biochem. Funct. 2003, 21, 1–9. [Google Scholar] [CrossRef]
- Hasegawa, T.; Mizugaki, A.; Inoue, Y.; Kato, H.; Murakami, H. Cystine reduces tight junction permeability and intestinal inflammation induced by oxidative stress in Caco-2 cells. Amino Acids 2021, 53, 1021–1032. [Google Scholar] [CrossRef] [PubMed]
- Carrillo, A.E.; Koutedakis, Y.; Flouris, A.D. Exercise and exposure to heat following bovine colostrum supplementation: A review of gastrointestinal and immune function. Cell Mol. Biol. 2013, 59, 84–88. Available online: http://cellmolbiol.org/index.php/CMB/article/view/485 (accessed on 22 June 2023).
- Snipe, R.M.; Khoo, A.; Kitic, C.M.; Gibson, P.R.; Costa, R.J. The impact of exertional-heat stress on gastrointestinal integrity, gastrointestinal symptoms, systemic endotoxin and cytokine profile. Eur. J. Appl. Physiol. 2018, 118, 389–400. [Google Scholar] [CrossRef] [PubMed]
- Matomäki, P.; Kainulainen, H.; Kyröläinen, H. Corrected whole blood biomarkers—The equation of Dill and Costill revisited. Physiol. Rep. 2018, 6, e13749. [Google Scholar] [CrossRef] [PubMed]
- Bird, S.R.; Linden, M.; Hawley, J.A. Acute changes to biomarkers as a consequence of prolonged strenuous running. Ann. Clin. Biochem. 2014, 51, 137–150. [Google Scholar] [CrossRef]
- Schubert, M.M.; Astorino, T.A. A systematic review of the efficacy of ergogenic aids for improving running performance. J. Strength Cond. Res. 2013, 27, 1699–1707. [Google Scholar] [CrossRef] [PubMed]
- Bischoff, S.C.; Kaden-Volynets, V.; Filipe Rosa, L.; Guseva, D.; Seethaler, B. Regulation of the gut barrier by carbohydrates from diet—Underlying mechanisms and possible clinical implications. Int. J. Med. Microbiol. 2021, 311, 151499. [Google Scholar] [CrossRef]
- De Oliveira, E.P.; Burini, R.C. Food-dependent, exercise-induced gastrointestinal distress. J. Int. Soc. Sports Nutr. 2011, 8, 12. [Google Scholar] [CrossRef] [PubMed]
- Jeukendrup, A.E. Carbohydrate feeding during exercise. Eur. J. Sport. Sci. 2008, 8, 77–86. [Google Scholar] [CrossRef]
- King, A.J.; Rowe, J.T.; Burke, L.M. Carbohydrate hydrogel products do not improve performance or gastrointestinal distress during moderate-intensity endurance exercise. Int. J. Sport. Nutr. Exerc. Metab. 2020, 30, 305–314. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Ghosh, S.S.; Ghosh, S. Curcumin improves intestinal barrier function: Modulation of intracellular signaling, and organization of tight junctions. Am. J. Physiol. Cell Physiol. 2017, 30, 305–314. [Google Scholar] [CrossRef]
- Gonzales, A.M.; Orlando, R.A. Curcumin and resveratrol inhibit nuclear factor-kappaB-mediated cytokine expression in adipocytes. Nutr. Metab. 2008, 5, 17. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Bibi, S.; Du, M.; Suzuki, T.; Zhu, M.J. Regulation of the intestinal tight junction by natural polyphenols: A mechanistic perspective. Crit. Rev. Food Sci. Nutr. 2017, 57, 3830–3839. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Chen, O.; Martins, I.M.; Hou, H.; Zhao, X.; Blumberg, J.B.; Li, B. Collagen peptides ameliorate intestinal epithelial barrier dysfunction in immunostimulatory Caco-2 cell monolayers via enhancing tight junctions. Food Funct. 2017, 8, 1144–1151. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Gao, X.; Zhang, H.; Li, B.; Yu, G.; Li, B. Collagen peptides administration in early enteral nutrition intervention attenuates burn-induced intestinal barrier disruption: Effects on tight junction structure. J. Funct. Foods 2019, 55, 167–174. [Google Scholar] [CrossRef]
- Demirbilek, S.; Ersoy, M.O.; Demirbilek, S.; Karaman, A.; Gürbüz, N.; Bayraktar, N.; Bayraktar, M. Small-dose capsaicin reduces systemic inflammatory responses in septic rats. Anesth. Analg. 2004, 99, 1501–1507. [Google Scholar] [CrossRef]
- Park, J.-Y.; Kawada, T.; Han, I.-S.; Kim, B.-S.; Goto, T.; Takahashi, N.; Fushiki, T.; Kurata, T.; Yu, R. Capsaicin inhibits the production of tumor necrosis factor α by LPS-stimulated murine macrophages, RAW 264.7: A PPARγ ligand-like action as a novel mechanism. FEBS Lett. 2004, 572, 266–270. [Google Scholar] [CrossRef] [PubMed]
- Xiang, Y.; Xu, X.; Zhang, T.; Wu, X.; Fan, D.; Hu, Y.; Ding, J.; Yang, X.; Lou, J.; Du, Q.; et al. Beneficial effects of dietary capsaicin in gastrointestinal health and disease. Exp. Cell Res. 2022, 417, 113227. [Google Scholar] [CrossRef]
- Sahlin, K. Muscle energetics during explosive activities and potential effects of nutrition and training. Sports Med. 2014, 44, 167–173. [Google Scholar] [CrossRef]
- Kahle, L.E.; Kelly, P.V.; Eliot, K.A.; Weiss, E.P. Acute sodium bicarbonate loading has negligible effects on resting and exercise blood pressure but causes gastrointestinal distress. Nutr. Res. 2013, 33, 479–486. [Google Scholar] [CrossRef] [PubMed]
- Walter, E.; Gibson, O.R.; Stacey, M.; Hill, N.; Parsons, I.T.; Woods, D. Changes in gastrointestinal cell integrity after marathon running and exercise-associated collapse. Eur. J. Appl. Physiol. 2021, 121, 1179–1187. [Google Scholar] [CrossRef]
- Mulinacci, G.; Pirola, L.; Gandola, D.; Ippolito, D.; Viganò, C.; Laffusa, A.; Gallo, C.; Invernizzi, P.; Danese, S.; Massironi, S. Ultrasound muscle assessment for sarcopenia detection in inflammatory bowel disease: A prospective study. United Eur. Gastroenterol. J. 2024, 12, 562–573. [Google Scholar] [CrossRef] [PubMed]
Moderator | Pre-Post Circulating i-FAPB Response | GIS Response |
---|---|---|
Duration of exercise | β = 0.022, p = 0.448 (n = 21) | β = −0.02, p = 0.582 (n = 13) |
Environmental temperature | β = −0.447, p = 0.755 (n = 21) | β = 1.977, p = 0.154 (n = 13) |
Exercise mode | β = 0.144, p = 0.889 (n = 21) | β = 1.041, p = 0.390 (n = 13) |
Exercise mode × Environmental temperature | β = 0.164, p = 0.819 (n = 21) | β = 1.366, p = 0.901 (n = 13) |
Exercise duration × Environmental temperature | β = −0.009, p = 0.564 (n = 21) | β = 0.011, p = 0.751 (n = 13) |
Outcomes | No. of Studies | Risk of Bias | Inconsistency | Indirectness | Imprecision | Publication Bias | Quality of Evidence |
---|---|---|---|---|---|---|---|
Gastrointestinal Symptom Outcomes | |||||||
Carbohydrates | 7 | Not serious a | Very serious b | Not serious d | Very serious e | Serious g | ⊕OOO Very low |
Capsaicin | 1 | Not serious a | Not serious c | Not serious c | Very serious e | Not assessed f | ⊕⊕OO Low |
Probiotics | 2 | Not serious a | Not serious d | Not serious d | Very serious e | Very serious h | ⊕⊕OO Low |
Collagen peptides | 1 | Not serious a | Not serious c | Not serious c | Very serious e | Not assessed f | ⊕⊕OO Low |
Glutamine | 1 | Not serious a | Not serious c | Not serious c | Very serious e | Not assessed f | ⊕⊕OO Low |
Pre-to-Post i-FABP Outcomes | |||||||
Carbohydrates | 4 | Not serious a | Very serious b | Not serious d | Very serious e | Serious g | ⊕OOO Very low |
Probiotics | 2 | Not serious a | Not serious d | Not serious d | Very serious e | Very Serious h | ⊕⊕OO Low |
Glutamine | 4 | Not serious a | Not serious d | Not serious d | Very serious e | Serious g | ⊕⊕OO Low |
Cystine + Glutamine | 1 | Not serious a | Not serious c | Not serious c | Very serious e | Not assessed f | ⊕⊕OO Low |
Bovine colostrum | 3 | Not serious a | Not serious d | Not serious d | Very serious e | Serious g | ⊕⊕OO Low |
Curcumin | 1 | Not serious a | Not serious c | Not serious c | Very serious e | Not assessed f | ⊕⊕OO Low |
Sodium nitrate | 1 | Not serious a | Not serious c | Not serious c | Very serious e | Not assessed f | ⊕⊕OO Low |
High flavonoids | 1 | Not serious a | Not serious c | Not serious c | Very serious e | Not assessed f | ⊕⊕OO Low |
Collagen peptides | 1 | Not serious a | Not serious c | Not serious c | Very serious e | Not assessed f | ⊕⊕OO Low |
Exercise Outcomes | |||||||
Time to exhaustion | 4 | Not serious a | Very serious b | Not serious d | Very serious e | Serious g | ⊕OOO Very low |
Time trial | 3 | Not serious a | Serious a | Not serious d | Very serious e | Serious g | ⊕⊕OO Low |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aitkenhead, R.; Waldron, M.; Conway, G.E.; Horner, K.; Heffernan, S.M. The Influence of Dietary Supplements on Exercise-Induced Gut Damage and Gastrointestinal Symptoms: A Systematic Review and Meta-Analysis. Nutrients 2025, 17, 443. https://doi.org/10.3390/nu17030443
Aitkenhead R, Waldron M, Conway GE, Horner K, Heffernan SM. The Influence of Dietary Supplements on Exercise-Induced Gut Damage and Gastrointestinal Symptoms: A Systematic Review and Meta-Analysis. Nutrients. 2025; 17(3):443. https://doi.org/10.3390/nu17030443
Chicago/Turabian StyleAitkenhead, Robyn, Mark Waldron, Gillian E. Conway, Katy Horner, and Shane M. Heffernan. 2025. "The Influence of Dietary Supplements on Exercise-Induced Gut Damage and Gastrointestinal Symptoms: A Systematic Review and Meta-Analysis" Nutrients 17, no. 3: 443. https://doi.org/10.3390/nu17030443
APA StyleAitkenhead, R., Waldron, M., Conway, G. E., Horner, K., & Heffernan, S. M. (2025). The Influence of Dietary Supplements on Exercise-Induced Gut Damage and Gastrointestinal Symptoms: A Systematic Review and Meta-Analysis. Nutrients, 17(3), 443. https://doi.org/10.3390/nu17030443