Lifestyle-Related Factors for Improving Diet Quality
Abstract
:1. Introduction
2. Methods
3. The Impact of Lifestyle-Related Factors on Diet
3.1. Exercise
3.2. Sleep
3.3. Mindfulness Practices
3.4. Meal Socialization
3.5. Social Media Use
3.6. Tobacco and Alcohol Use
4. Limitations
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
NHANES | National Health and Nutrition Examination Survey |
DASH | Dietary Approaches to Stop Hypertension |
MIND | Mediterranean-DASH Intervention for Neurodegenerative Delay |
WFPB | Whole-food, plant-based |
USDA | United States Department of Agriculture |
NCD | Non-communicable diseases |
PYY | Peptide YY |
HEI | Healthy Eating Index |
RCT | Randomized controlled trial |
ALD | Alcoholic Liver Disease |
References
- Wickramasinghe, K.; Mathers, J.C.; Wopereis, S.; Marsman, D.S.; Griffiths, J.C. From lifespan to healthspan: The role of nutrition in healthy ageing. J. Nutr. Sci. 2020, 9, e33. [Google Scholar] [CrossRef]
- Drewnowski, A.; Rehm, C.D. Energy intakes of US children and adults by food purchase location and by specific food source. Nutr. J. 2013, 12, 59. [Google Scholar] [CrossRef] [PubMed]
- Hall, K.D. Did the food environment cause the obesity epidemic? Obesity 2018, 26, 11–13. [Google Scholar] [CrossRef] [PubMed]
- Poti, J.M.; Braga, B.; Qin, B. Ultra-processed food intake and obesity: What really matters for health-processing or nutrient content? Curr. Obes. Rep. 2017, 6, 420–431. [Google Scholar] [CrossRef] [PubMed]
- Gropper, S.S. The role of nutrition in chronic disease. Nutrients 2023, 15, 664. [Google Scholar] [CrossRef] [PubMed]
- Żarnowski, A.; Jankowski, M.; Gujski, M. Public awareness of diet-related diseases and dietary risk factors: A 2022 nationwide cross-sectional survey among adults in Poland. Nutrients 2022, 14, 3285. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention. FASTSTATS—Leading Causes of Death. 2 May 2024. Available online: https://www.cdc.gov/nchs/fastats/leading-causes-of-death.htm (accessed on 15 August 2024).
- Miller, V.; Webb, P.; Cudhea, F.; Shi, P.L.; Zhang, J.Y.; Reedy, J.; Erndt-Marino, J.; Coates, J.; Mozaffarian, D.; Global Dietary Database. Global dietary quality in 185 countries from 1990 to 2018 show wide differences by nation, age, education, and urbanicity. Nat. Food 2022, 3, 694–702. [Google Scholar] [CrossRef]
- Chen, H.; Dhana, K.; Huang, Y.; Huang, L.; Tao, Y.; Liu, X.; Melo van Lent, D.; Zheng, Y.; Ascherio, A.; Willett, W.; et al. Association of the Mediterranean dietary approaches to stop hypertension intervention for neurodegenerative delay (MIND) diet with the risk of dementia. JAMA Psychiatry 2023, 80, 630–638. [Google Scholar] [CrossRef] [PubMed]
- Tertsunen, H.M.; Hantunen, S.; Tuomainen, T.P.; Virtanen, J.K. Healthy Nordic diet and risk of disease death among men: The Kuopio Ischaemic Heart Disease Risk Factor Study. Eur. J. Nutr. 2020, 59, 3545–3553. [Google Scholar] [CrossRef] [PubMed]
- Bansal, S.; Connolly, M.; Harder, T. Impact of a whole-foods, plant-based nutrition intervention on patients living with chronic disease in an underserved community. Am. J. Lifestyle Med. 2022, 16, 382–389. [Google Scholar] [CrossRef]
- Lunghar, J.; Banu, A.T. Dietary approaches in management of noncommunicable diseases: A review. J. Noncommunicable Dis. 2021, 6, 159–165. [Google Scholar] [CrossRef]
- Mitchell, L.J.; Ball, L.E.; Ross, L.J.; Barnes, K.A.; Williams, L.T. Effectiveness of dietetic consultations in primary health care: A systematic review of randomized controlled trials. J. Acad. Nutr. Diet. 2017, 117, 1941–1962. [Google Scholar] [CrossRef] [PubMed]
- Dobrow, L.; Estrada, I.; Burkholder-Cooley, N.; Miklavcic, J. Potential effectiveness of registered dietitian nutritionists in healthy behavior interventions for managing type 2 diabetes in older adults: A systematic review. Front. Nutr. 2022, 8, 737410. [Google Scholar] [CrossRef]
- Mirmiran, P.; Bahadoran, Z.; Gaeini, Z. Common limitations and challenges of dietary clinical trials for translation into clinical practices. Int. J. Endocrinol. Metab. 2021, 19, e108170. [Google Scholar] [CrossRef] [PubMed]
- Cavallo, M.; Morgana, G.; Dozzani, I.; Gatti, A.; Vandoni, M.; Pippi, R.; Pucci, G.; Vaudo, G.; Fanelli, C.G. Unraveling barriers to a healthy lifestyle: Understanding barriers to diet and physical activity in patients with chronic non-communicable diseases. Nutrients 2023, 15, 3473. [Google Scholar] [CrossRef] [PubMed]
- Blundell, J.E.; Beaulieu, K. The complex pattern of the effects of prolonged frequent exercise on appetite control, and implications for obesity. Appetite 2023, 183, 106482. [Google Scholar] [CrossRef]
- Beaulieu, K.; Hopkins, M.; Blundell, J.; Finlayson, G. Homeostatic and non-homeostatic appetite control along the spectrum of physical activity levels: An updated perspective. Physiol. Behav. 2018, 192, 23–29. [Google Scholar] [CrossRef]
- Beaulieu, K.; Oustric, P.; Finlayson, G. The impact of physical activity on food reward: Review and conceptual synthesis of evidence from observational, acute, and chronic exercise training studies. Curr. Obes. Rep. 2020, 9, 63–80. [Google Scholar] [CrossRef] [PubMed]
- Joo, J.; Williamson, S.A.; Vazquez, A.I.; Fernandez, J.R.; Bray, M.S. The influence of 15-week exercise training on dietary patterns among young adults. Int. J. Obes. 2019, 43, 1681–1690. [Google Scholar] [CrossRef] [PubMed]
- Manz, K.; Mensink, G.B.M.; Finger, J.D.; Haftenberger, M.; Brettschneider, A.K.; Lage Barbosa, C.; Krug, S.; Schienkiewitz, A. Associations between physical activity and food intake among children and adolescents: Results of KiGGS wave 2. Nutrients 2019, 11, 1060. [Google Scholar] [CrossRef] [PubMed]
- Evero, N.; Hackett, L.C.; Clark, R.D.; Phelan, S.; Hagobian, T.A. Aerobic exercise reduces neuronal responses in food reward brain regions. J. Appl. Physiol. 2012, 112, 1612–1619. [Google Scholar] [CrossRef] [PubMed]
- Julian, V.; Haschke, F.; Fearnbach, N.; Gomahr, J.; Pixner, T.; Furthner, D.; Weghuber, D.; Thivel, D. Effects of movement behaviors on overall health and appetite control: Current evidence and perspectives in children and adolescents. Curr. Obes. Rep. 2022, 11, 10–22. [Google Scholar] [CrossRef] [PubMed]
- Thivel, D.; Finlayson, G.; Blundell, J.E. Homeostatic and neurocognitive control of energy intake in response to exercise in pediatric obesity: A psychobiological framework. Obes. Rev. 2019, 20, 316–324. [Google Scholar] [CrossRef] [PubMed]
- Beaulieu, K.; Hopkins, M.; Long, C.; Blundell, J.; Finlayson, G. High habitual physical activity improves acute energy compensation in nonobese adults. Med. Sci. Sports Exerc. 2017, 49, 2268–2275. [Google Scholar] [CrossRef]
- Quist, J.S.; Blond, M.B.; Gram, A.S.; Steenholt, C.B.; Janus, C.; Holst, J.J.; Rehfeld, J.F.; Sjödin, A.; Stallknecht, B.; Rosenkilde, M. Effects of active commuting and leisure-time exercise on appetite in individuals with overweight and obesity. J. Appl. Physiol. 2019, 126, 941–951. [Google Scholar] [CrossRef]
- Vidanage, D.; Wasalathanthri, S.; Hettiarachchi, P. Long-term aerobic and combined exercises enhance the satiety response and modulate the energy intake in patients with type 2 diabetes mellitus (T2DM): A randomized controlled trial. BMC Sports Sci. Med. Rehabil. 2023, 15, 48. [Google Scholar] [CrossRef] [PubMed]
- Fillon, A.; Mathieu, M.E.; Masurier, J.; Roche, J.; Miguet, M.; Khammassi, M.; Finlayson, G.; Beaulieu, K.; Pereira, B.; Duclos, M.; et al. Effect of exercise-meal timing on energy intake, appetite and food reward in adolescents with obesity: The TIMEX study. Appetite 2020, 146, 104506. [Google Scholar] [CrossRef]
- Bird, S.R.; Hawley, J.A. Update on the effects of physical activity on insulin sensitivity in humans. BMJ Open Sport Exerc. Med. 2017, 2, e000143. [Google Scholar] [CrossRef] [PubMed]
- Pot, G.K. Sleep and dietary habits in the urban environment: The role of chrono-nutrition. Proc. Nutr. Soc. 2018, 77, 189–198. [Google Scholar] [CrossRef]
- Al Khatib, H.K.; Harding, S.V.; Darzi, J.; Pot, G.K. The effects of partial sleep deprivation on energy balance: A systematic review and meta-analysis. Eur. J. Clin. Nutr. 2017, 71, 614–624. [Google Scholar] [CrossRef]
- Grandner, M.A.; Jackson, N.; Gerstner, J.R.; Knutson, K.L. Dietary nutrients associated with short and long sleep duration. Data from a nationally representative sample. Appetite 2013, 64, 71–80. [Google Scholar] [CrossRef] [PubMed]
- Mondin, T.C.; Stuart, A.L.; Williams, L.J.; Jacka, F.N.; Pasco, J.A.; Ruusunen, A. Diet quality, dietary patterns and short sleep duration: A cross-sectional population-based study. Eur. J. Nutr. 2019, 58, 641–651. [Google Scholar] [CrossRef]
- Chaput, J.P. Sleep patterns, diet quality and energy balance. Physiol. Behav. 2014, 134, 86–91. [Google Scholar] [CrossRef] [PubMed]
- Almoosawi, S.; Palla, L.; Walshe, I.; Vingeliene, S.; Ellis, J.G. Long sleep duration and social jetlag are associated inversely with a healthy dietary pattern in adults: Results from the UK National Diet and Nutrition Survey Rolling Programme Y1-4. Nutrients 2018, 10, 1131. [Google Scholar] [CrossRef] [PubMed]
- Broussard, J.L.; Kilkus, J.M.; Delebecque, F.; Abraham, V.; Day, A.; Whitmore, H.R.; Tasali, E. Elevated ghrelin predicts food intake during experimental sleep restriction. Obesity 2016, 24, 132–138. [Google Scholar] [CrossRef] [PubMed]
- Spiegel, K.; Tasali, E.; Penev, P.; Van Cauter, E. Brief communication: Sleep curtailment in healthy young men is associated with decreased leptin levels, elevated ghrelin levels, and increased hunger and appetite. Ann. Intern. Med. 2004, 141, 846–850. [Google Scholar] [CrossRef]
- McHill, A.W.; Hull, J.T.; Klerman, E.B. Chronic circadian disruption and sleep restriction influence subjective hunger, appetite, and food preference. Nutrients 2022, 14, 1800. [Google Scholar] [CrossRef]
- Callovini, L.C.; Rojo-Wissar, D.M.; Mayer, C.; Glickenstein, D.A.; Karamchandani, A.J.; Lin, K.K.; Thomson, C.A.; Quan, S.F.; Silva, G.E.; Haynes, P.L. Effects of sleep on breakfast behaviors in recently unemployed adults. Sleep Health 2024, 10, 114–121. [Google Scholar] [CrossRef] [PubMed]
- Vujović, N.; Piron, M.J.; Qian, J.; Chellappa, S.L.; Nedeltcheva, A.; Barr, D.; Heng, S.W.; Kerlin, K.; Srivastav, S.; Wang, W.; et al. Late isocaloric eating increases hunger, decreases energy expenditure, and modifies metabolic pathways in adults with overweight and obesity. Cell Metab. 2022, 34, 1486–1498.e7. [Google Scholar] [CrossRef]
- Griffith, C.A.; Leidy, H.J.; Gwin, J.A. Indices of sleep health are associated with timing and duration of eating in young adults. J. Acad. Nutr. Diet. 2024, 124, 1051–1057. [Google Scholar] [CrossRef]
- Iao, S.I.; Jansen, E.; Shedden, K.; Louise, M.; O’Brien, L.M.; Chervin, R.D.; Knutson, K.L.; Dunietz, G.L. Associations between bedtime eating or drinking, sleep duration and wake after sleep onset: Findings from the American time use survey. Br. J. Nutr. 2022, 127, 1888–1897. [Google Scholar] [CrossRef] [PubMed]
- Gonnissen, H.K.J.; Hursel, R.; Rutters, F.; Martens, E.A.P.; Westerterp-Plantenga, M.S. Effects of sleep fragmentation on appetite and related hormone concentrations over 24 h in healthy men. Br. J. Nutr. 2013, 109, 748–756. [Google Scholar] [CrossRef] [PubMed]
- Al Balushi, R.; Carciofo, R. Chronotype, binge-eating, and depression: The mediating effect of skipping breakfast. Biol. Rhythm Res. 2023, 54, 707–721. [Google Scholar] [CrossRef]
- Linnaranta, O.; Bourguignon, C.; Crescenzi, O.; Sibthorpe, D.; Buyukkurt, A.; Steiger, H.; Storch, K.F. Late and instable sleep phasing is associated with irregular eating patterns in eating disorders. Ann. Behav. Med. 2020, 54, 680–690. [Google Scholar] [CrossRef] [PubMed]
- Papatriantafyllou, E.; Efthymiou, D.; Zoumbaneas, E.; Popescu, C.A.; Vassilopoulou, E. Sleep deprivation: Effects on weight loss and weight loss maintenance. Nutrients 2022, 14, 1549. [Google Scholar] [CrossRef] [PubMed]
- Fenton, S.; Burrows, T.L.; Collins, C.E.; Rayward, A.T.; Murawski, B.; Duncan, M.J. Efficacy of a multi-component m-health diet, physical activity, and sleep intervention on dietary intake in adults with overweight and obesity: A randomised controlled trial. Nutrients 2021, 13, 2468. [Google Scholar] [CrossRef]
- Salvo, V.; Curado, D.F.; Sanudo, A.; Kristeller, J.; Schveitzer, M.C.; Favarato, M.L.; Isidoro, W.; Demarzo, M. Comparative effectiveness of mindfulness and mindful eating programmes among low-income overweight women in primary health care: A randomised controlled pragmatic study with psychological, biochemical, and anthropometric outcomes. Appetite 2022, 177, 106131. [Google Scholar] [CrossRef]
- Barraclough, E.L.; Hay-Smith, E.J.C.; Boucher, S.E.; Tylka, T.L.; Horwath, C.C. Learning to eat intuitively: A qualitative exploration of the experience of mid-age women. Health Psychol. Open 2019, 6, 2055102918824064. [Google Scholar] [CrossRef] [PubMed]
- Torske, A.; Bremer, B.; Hölzel, B.K.; Maczka, A.; Koch, K. Mindfulness meditation modulates stress-eating and its neural correlates. Sci. Rep. 2024, 14, 7294. [Google Scholar] [CrossRef] [PubMed]
- Asadollahi, T.; Khakpour, S.; Ahmadi, F.; Seyedeh, L.; Matoo, S.; Bermas, H. Effectiveness of mindfulness training and dietary regime on weight loss in obese people. J. Med. Life 2015, 8, 114–124. [Google Scholar]
- Mason, A.E.; Epel, E.S.; Kristeller, J.; Moran, P.J.; Dallman, M.; Lustig, R.H.; Acree, M.; Bacchetti, P.; Laraia, B.A.; Hecht, F.M.; et al. Effects of a mindfulness-based intervention on mindful eating, sweets consumption, and fasting glucose levels in obese adults: Data from the SHINE randomized controlled trial. J. Behav. Med. 2016, 39, 201–213. [Google Scholar] [CrossRef]
- Tapper, K. Mindful eating: What we know so far. Nutr. Bull. 2022, 47, 168–185. [Google Scholar] [CrossRef] [PubMed]
- Hazzard, V.M.; Telke, S.E.; Simone, M.; Anderson, L.M.; Larson, N.I.; Neumark-Sztainer, D. Intuitive eating longitudinally predicts better psychological health and lower use of disordered eating behaviors: Findings from EAT 2010–2018. Eat. Weight Disord. 2021, 26, 287–294. [Google Scholar] [CrossRef] [PubMed]
- Giacone, L.; Sob, C.; Siegrist, M.; Hartmann, C. Intuitive eating and its influence on self-reported weight and eating behaviors. Eat. Behav. 2024, 52, 101844. [Google Scholar] [CrossRef]
- Ayton, A.; Ibrahim, A.; Dugan, J.; Galvin, E.; Wright, O.W. Ultra-processed foods and binge eating: A retrospective observational study. Nutrition 2021, 84, 111023. [Google Scholar] [CrossRef]
- Hensley-Hackett, K.; Bosker, J.; Keefe, A.; Reidlinger, D.; Warner, M.; D’Arcy, A.; Utter, J. Intuitive eating intervention and diet quality in adults: A systematic literature review. J. Nutr. Educ. Behav. 2022, 54, 1099–1115. [Google Scholar] [CrossRef]
- Levy, D.E.; Pachucki, M.C.; O’Malley, A.J.; Porneala, B.; Yaqubi, A.; Thorndike, A.N. Social connections and the healthfulness of food choices in an employee population. Nat. Hum. Behav. 2021, 5, 1349–1357. [Google Scholar] [CrossRef]
- Suwalska, J.; Bogdański, P. Social modeling and eating behavior-a narrative review. Nutrients 2021, 13, 1209. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Ravichandran, S.; Gee, G.C.; Dong, T.S.; Beltrán-Sánchez, H.; Wang, M.C.; Kilpatrick, L.A.; Labus, J.S.; Vaughan, A.; Gupta, A. Social isolation, brain food cue processing, eating behaviors, and mental health symptoms. JAMA Netw. Open 2024, 7, e244855. [Google Scholar] [CrossRef]
- Henriksen, R.E.; Torsheim, T.; Thuen, F. Loneliness, social integration and consumption of sugar-containing beverages: Testing the social baseline theory. PLoS ONE 2014, 9, e104421. [Google Scholar] [CrossRef] [PubMed]
- Conklin, A.I.; Forouhi, N.G.; Surtees, P.; Khaw, K.T.; Wareham, N.J.; Monsivais, P. Social relationships and healthful dietary behaviour: Evidence from over-50s in the EPIC cohort, UK. Soc. Sci. Med. 2014, 100, 167–175. [Google Scholar] [CrossRef] [PubMed]
- Higgs, S.; Thomas, J. Social influences on eating. Curr. Opin. Behav. Sci. 2016, 9, 1–6. [Google Scholar] [CrossRef]
- de Castro, J.M. Social, circadian, nutritional, and subjective correlates of the spontaneous pattern of moderate alcohol intake of normal humans. Pharmacol. Biochem. Behav. 1990, 35, 923–931. [Google Scholar] [CrossRef]
- Rehm, J.; Room, R.; Graham, K.; Monteiro, M.; Gmel, G.; Sempos, C.T. The relationship of average volume of alcohol consumption and patterns of drinking to burden of disease: An overview. Addiction 2003, 98, 1209–1228. [Google Scholar] [CrossRef] [PubMed]
- Lynn, T.; Rosati, P.; Leoni Santos, G.; Endo, P.T. Sorting the healthy diet signal from the social media expert noise: Preliminary evidence from the healthy diet discourse on Twitter. Int. J. Environ. Res. Public Health 2020, 17, 8557. [Google Scholar] [CrossRef]
- Goerke, K.; Ng, A.H.; Trakman, G.L.; Forsyth, A. The influence of social media on the dietary behaviours of young Australian adults: A mixed methods exploration. Ment. Health Sci. 2024, 2, 21–26. [Google Scholar] [CrossRef]
- Wu, Y.; Kemps, E.; Prichard, I. Digging into digital buffets: A systematic review of eating-related social media content and its relationship with body image and eating behaviours. Body Image 2024, 48, 101650. [Google Scholar] [CrossRef]
- Rounsefell, K.; Gibson, S.; McLean, S.; Blair, M.; Molenaar, A.; Brennan, L.; Truby, H.; McCaffrey, T.A. Social media, body image and food choices in healthy young adults: A mixed methods systematic review. Nutr. Diet. J. Dietit. Assoc. Aust. 2020, 77, 19–40. [Google Scholar] [CrossRef]
- Dane, A.; Bhatia, K. The social media diet: A scoping review to investigate the association between social media, body image and eating disorders amongst young people. PLoS Glob. Public Health 2023, 3, e0001091. [Google Scholar] [CrossRef]
- Auger, N.; Potter, B.J.; Ukah, U.V.; Low, N.; Israël, M.; Steiger, H.; Healy-Profitós, J.; Paradis, G. Anorexia nervosa and the long-term risk of mortality in women. World Psychiatry 2021, 20, 448–449. [Google Scholar] [CrossRef]
- Mumena, W.A.; Alnezari, A.I.; Safar, H.I.; Alharbi, N.S.; Alahmadi, R.B.; Qadhi, R.I.; Faqeeh, S.F.; Kutbi, H.A. Media use, dietary intake, and diet quality of adolescents in Saudi Arabia. Pediatr. Res. 2023, 94, 789–795. [Google Scholar] [CrossRef] [PubMed]
- Kucharczuk, A.J.; Oliver, T.L.; Dowdell, E.B. Social media’s influence on adolescents’ food choices: A mixed studies systematic literature review. Appetite 2022, 168, 105765. [Google Scholar] [CrossRef] [PubMed]
- Potvin Kent, M.; Bagnato, M.; Amson, A.; Remedios, L.; Pritchard, M.; Sabir, S.; Gillis, G.; Pauzé, E.; Vanderlee, L.; White, C.; et al. #junkfluenced: The marketing of unhealthy food and beverages by social media influencers popular with Canadian children on YouTube, Instagram and TikTok. Int. J. Behav. Nutr. Phys. Act. 2024, 21, 37. [Google Scholar] [CrossRef]
- Luo, T.; Tseng, T.S. Diet quality as assessed by the Healthy Eating Index-2020 among different smoking status: An analysis of National Health and Nutrition Examination Survey (NHANES) data from 2005 to 2018. BMC Public Health 2024, 24, 1212. [Google Scholar] [CrossRef]
- Suh, S.Y.; Lee, J.H.; Park, S.S.; Seo, A.R.; Ahn, H.Y.; Bae, W.K.; Lee, Y.J.; Yim, E. Less healthy dietary pattern is associated with smoking in Korean men according to nationally representative data. J. Korean Med. Sci. 2013, 28, 869–875. [Google Scholar] [CrossRef] [PubMed]
- Marques-Vidal, P.; Waeber, G.; Vollenweider, P.; Guessous, I. Socio-demographic and lifestyle determinants of dietary patterns in French-speaking Switzerland, 2009–2012. BMC Public Health 2018, 18, 131. [Google Scholar] [CrossRef] [PubMed]
- Norouzzadeh, M.; Teymoori, F.; Farhadnejad, H.; Moslehi, N.; Rahideh, S.T.; Mirmiran, P.; Azizi, F. The interaction between diet quality and cigarette smoking on the incidence of hypertension, stroke, cardiovascular diseases, and all-cause mortality. Sci. Rep. 2024, 14, 12371. [Google Scholar] [CrossRef] [PubMed]
- Berube, L.; Duffy, V.B.; Hayes, J.E.; Hoffman, H.J.; Rawal, S. Associations between chronic cigarette smoking and taste function: Results from the 2013–2014 National Health and Nutrition Examination Survey. Physiol. Behav. 2021, 240, 113554. [Google Scholar] [CrossRef] [PubMed]
- Fontán-Vela, J.; Ortiz, C.; López-Cuadrado, T.; Téllez-Plaza, M.; García-Esquinas, E.; Galán, I. Alcohol consumption patterns and adherence to the Mediterranean diet in the adult population of Spain. Eur. J. Nutr. 2024, 63, 881–891. [Google Scholar] [CrossRef] [PubMed]
- Cummings, J.R.; Gearhardt, A.N.; Ray, L.A.; Choi, A.K.; Tomiyama, A.J. Experimental and observational studies on alcohol use and dietary intake: A systematic review. Obes. Rev. 2020, 21, e12950. [Google Scholar] [CrossRef] [PubMed]
- Brenes, J.C.; Gómez, G.; Quesada, D.; Kovalskys, I.; Rigotti, A.; Cortés, L.Y.; Yépez García, M.C.; Liria-Domínguez, R.; Herrera-Cuenca, M.; Guajardo, V.; et al. Alcohol contribution to total energy intake and its association with nutritional status and diet quality in eight Latina American countries. Int. J. Environ. Res. Public Health 2021, 18, 13130. [Google Scholar] [CrossRef]
- Schrieks, I.C.; Stafleu, A.; Griffioen-Roose, S.; de Graaf, C.; Witkamp, R.F.; Boerrigter-Rijneveld, R.; Hendriks, H.F. Moderate alcohol consumption stimulates food intake and food reward of savoury foods. Appetite 2015, 89, 77–83. [Google Scholar] [CrossRef]
- Joseph, P.V.; Zhou, Y.; Brooks, B.; McDuffie, C.; Agarwal, K.; Chao, A.M. Relationships among alcohol drinking patterns, macronutrient composition, and caloric intake: National Health and Nutrition Examination Survey 2017–2018. Alcohol Alcohol. 2022, 57, 559–565. [Google Scholar] [CrossRef] [PubMed]
- Butts, M.; Sundaram, V.L.; Murughiyan, U.; Borthakur, A.; Singh, S. The Influence of Alcohol Consumption on Intestinal Nutrient Absorption: A Comprehensive Review. Nutrients 2023, 15, 1571. [Google Scholar] [CrossRef] [PubMed]
- Dukić, M.; Radonjić, T.; Jovanović, I.; Zdravković, M.; Todorović, Z.; Kraišnik, N.; Aranđelović, B.; Mandić, O.; Popadić, V.; Nikolić, N.; et al. Alcohol, Inflammation, and Microbiota in Alcoholic Liver Disease. Int. J. Mol. Sci. 2023, 24, 3735. [Google Scholar] [CrossRef] [PubMed]
- Stickel, F.; Datz, C.; Hampe, J.; Bataller, R. Pathophysiology and Management of Alcoholic Liver Disease: Update 2016. Gut Liver 2017, 11, 173–188. [Google Scholar] [CrossRef] [PubMed]
Factors | Impact on Diet Quality | Impact on Energy Intake | Reference(s) | |
---|---|---|---|---|
Adequate Exercise | + | − | [19,20,21] | [20,23,24,25,26,27] |
Good Sleep Quality | + | − | [32,33,34,35,42] | [31,32,34,35,39,43,44] |
Practicing Mindfulness | + | − | [47,48,49,52,53,54] | [45,47,48,52,53] |
Social Connection | + | +/− | [59,60] | |
Excessive Social Media Use | − | + | [62,63,64,65,67,69] | [68] |
Tabaco Use | − | + | [70,71,72] | [70] |
Alcohol Consumption | − | + | [75,76,77] | [76,77] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fischer, D.; Ouyang, P. Lifestyle-Related Factors for Improving Diet Quality. Nutrients 2025, 17, 448. https://doi.org/10.3390/nu17030448
Fischer D, Ouyang P. Lifestyle-Related Factors for Improving Diet Quality. Nutrients. 2025; 17(3):448. https://doi.org/10.3390/nu17030448
Chicago/Turabian StyleFischer, Derek, and Ping Ouyang. 2025. "Lifestyle-Related Factors for Improving Diet Quality" Nutrients 17, no. 3: 448. https://doi.org/10.3390/nu17030448
APA StyleFischer, D., & Ouyang, P. (2025). Lifestyle-Related Factors for Improving Diet Quality. Nutrients, 17(3), 448. https://doi.org/10.3390/nu17030448