Chrebp Deletion and Mild Protein Restriction Additively Decrease Muscle and Bone Mass and Function
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Animals
2.3. Experiments
2.4. Blood Glucose, Insulin, Calcium, Inorganic Phosphate, TRACP, and Alkaline Phosphatase Concentrations Were Measured
2.5. Muscle Weight Measurement and Limb Grip Analysis
2.6. Bone Mineral Density Measurement
2.7. Three-Point Bending Tests
2.8. Microcomputed Tomography Analysis
2.9. Bone Histomorphometric Analysis
2.10. RNA Isolation and Quantitative Reverse-Transcription PCR
2.11. Statistical Analysis
3. Results
3.1. Chrebp Is Expressed in Skeletal Muscle and Bone
3.2. Low-Protein Diet-Fed Chrebp KO Mice Presented Lower Body Weights and Muscle Masses
3.3. Chrebp Deletion and Mild Protein Restriction Increased Plasma Alanine and Glutamine Levels
3.4. Chrebp Deletion and a Low-Protein Diet Positively and Negatively Affect BMD and Stiffness, Respectively
3.5. Chrebp Depletion and Low-Protein Diet Feeding Have Opposite Effects on Bone Structure
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
MDPI | Multidisciplinary Digital Publishing Institute |
DOAJ | Directory of open access journals |
TLA | Three letter acronym |
LD | Linear dichroism |
References
- Yokoyama, Y.; Kitamura, A.; Yoshizaki, T.; Nishi, M.; Seino, S.; Taniguchi, Y.; Amano, H.; Narita, M.; Shinkai, S. Score-Based and Nutrient-Derived Dietary Patterns Are Associated with Depressive Symptoms in Community-Dwelling Older Japanese: A Cross-Sectional Study. J. Nutr. Health Aging 2019, 23, 896–903. [Google Scholar] [CrossRef] [PubMed]
- Dahl, W.J.; Rivero Mendoza, D.; Lambert, J.M. Diet, nutrients and the microbiome. Prog. Mol. Biol. Transl. Sci. 2020, 171, 237–263. [Google Scholar] [CrossRef] [PubMed]
- Morris, A.L.; Mohiuddin, S.S. Biochemistry, Nutrients. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Nunes, E.A.; Colenso-Semple, L.; McKellar, S.R.; Yau, T.; Ali, M.U.; Fitzpatrick-Lewis, D.; Sherifali, D.; Gaudichon, C.; Tomé, D.; Atherton, P.J.; et al. Systematic review and meta-analysis of protein intake to support muscle mass and function in healthy adults. J. Cachexia Sarcopenia Muscle 2022, 13, 795–810. [Google Scholar] [CrossRef] [PubMed]
- Wolfe, R.R. The role of dietary protein in optimizing muscle mass, function and health outcomes in older individuals. Br. J. Nutr. 2012, 108, 88–93. [Google Scholar] [CrossRef]
- Baum, J.I.; Wolfe, R.R. The link between dietary protein intake, skeletal muscle function and health in older adults. Healthcare 2015, 3, 529–543. [Google Scholar] [CrossRef]
- Bonaldo, P.; Sandri, M. Cellular and molecular mechanisms of muscle atrophy. Dis. Model. Mech. 2013, 6, 25–39. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sartori, R.; Romanello, V.; Sandri, M. Mechanisms of muscle atrophy and hypertrophy: Implications in health and disease. Nat. Commun. 2021, 12, 330. [Google Scholar] [CrossRef]
- Hahn, D.; Hodson, E.M.; Fouque, D. Low protein diets for nondiabetic adults with chronic kidney disease. Cochrane Database Syst. Rev. 2020, 10, CD001892. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Li, Q.; Wen, F.; Wang, Y.; Li, S.; Lin, S.; Qi, C.; Chen, Z.; Qiu, X.; Zhang, Y.; Zhang, S.; et al. Diabetic Kidney Disease Benefits from Intensive Low-Protein Diet: Updated Systematic Review and Meta-analysis. Diabetes Ther. 2021, 12, 21–36. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tamura, Y.; Omura, T.; Toyoshima, K.; Araki, A. Nutrition Management in Older Adults with Diabetes: A Review on the Importance of Shifting Prevention Strategies from Metabolic Syndrome to Frailty. Nutrients 2020, 12, 3367. [Google Scholar] [CrossRef]
- Yamauchi, T.; Kamiya, H.; Utsunomiya, K.; Watada, H.; Kawanami, D.; Sato, J.; Kitada, M.; Koya, D.; Harada, N.; Shide, K.; et al. Medical nutrition therapy and dietary counseling for patients with diabetes-energy, carbohydrates, protein intake and dietary counseling. Diabetol. Int. 2020, 11, 224–239. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Iizuka, K.; Yabe, D. Dietary and Nutritional Guidelines for People with Diabetes. Nutrients 2023, 15, 4314. [Google Scholar] [CrossRef] [PubMed]
- Kerstetter, J.E.; O’Brien, K.O.; Insogna, K.L. Low protein intake: The impact on calcium and bone homeostasis in humans. J. Nutr. 2003, 133, 855S–861S. [Google Scholar] [CrossRef]
- Kerstetter, J.E.; O’Brien, K.O.; Caseria, D.M.; Wall, D.E.; Insogna, K.L. The impact of dietary protein on calcium absorption and kinetic measures of bone turnover in women. J. Clin. Endocrinol. Metab. 2005, 90, 26–31. [Google Scholar] [CrossRef] [PubMed]
- Ersoy, U.; Kanakis, I.; Alameddine, M.; Pedraza-Vazquez, G.; Ozanne, S.E.; Peffers, M.J.; Jackson, M.J.; Goljanek-Whysall, K.; Vasilaki, A. Lifelong dietary protein restriction accelerates skeletal muscle loss and reduces muscle fiber size by impairing proteostasis and mitochondrial homeostasis. Redox Biol. 2024, 69, 102980. [Google Scholar] [CrossRef] [PubMed]
- Lathe, G.H.; Peters, R.A. The protein-sparing effect of carbohydrate in normal and burned rats. Q. J. Exp. Physiol. 1949, 35, 157–172. [Google Scholar] [CrossRef]
- Garofalo, V.; Barbagallo, F.; Cannarella, R.; Calogero, A.E.; La Vignera, S.; Condorelli, R.A. Effects of the ketogenic diet on bone health: A systematic review. Front. Endocrinol 2023, 14, 1042744. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Uyeda, K. Short- and Long-Term Adaptation to Altered Levels of Glucose: Fifty Years of Scientific Adventure. Annu. Rev. Biochem. 2021, 90, 31–55. [Google Scholar] [CrossRef]
- Iizuka, K. The Roles of Carbohydrate Response Element Binding Protein in the Relationship between Carbohydrate Intake and Diseases. Int. J. Mol. Sci. 2021, 22, 12058. [Google Scholar] [CrossRef]
- Régnier, M.; Carbinatti, T.; Parlati, L.; Benhamed, F.; Postic, C. The role of ChREBP in carbohydrate sensing and NAFLD development. Nat. Rev. Endocrinol. 2023, 19, 336–349. [Google Scholar] [CrossRef]
- Iizuka, K.; Bruick, R.K.; Liang, G.; Horton, J.D.; Uyeda, K. Deficiency of carbohydrate response element-binding protein (ChREBP) reduces lipogenesis as well as glycolysis. Proc. Natl. Acad. Sci. USA 2004, 101, 7281–7286. [Google Scholar] [CrossRef] [PubMed]
- Takao, K.; Iizuka, K.; Liu, Y.; Sakurai, T.; Kubota, S.; Kubota-Okamoto, S.; Imaizumi, T.; Takahashi, Y.; Rakhat, Y.; Komori, S.; et al. Effects of ChREBP deficiency on adrenal lipogenesis and steroidogenesis. J. Endocrinol. 2021, 248, 317–324. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Astapova, I.I.; Flier, S.N.; Hannou, S.A.; Doridot, L.; Sargsyan, A.; Kou, H.H.; Fowler, A.J.; Liang, G.; Herman, M.A. Intestinal, but not hepatic, ChREBP is required for fructose tolerance. JCI Insight. 2017, 2, e96703. [Google Scholar] [CrossRef] [PubMed]
- Kato, T.; Iizuka, K.; Takao, K.; Horikawa, Y.; Kitamura, T.; Takeda, J. ChREBP-Knockout Mice Show Sucrose Intolerance and Fructose Malabsorption. Nutrients 2018, 10, 340. [Google Scholar] [CrossRef]
- Yamashita, H.; Takenoshita, M.; Sakurai, M.; Bruick, R.K.; Henzel, W.J.; Shillinglaw, W.; Arnot, D.; Uyeda, K. A glucose-responsive transcription factor that regulates carbohydrate metabolism in the liver. Proc. Natl. Acad. Sci. USA 2001, 98, 9116–9121. [Google Scholar] [CrossRef] [PubMed]
- Iizuka, K.; Wu, W.; Horikawa, Y.; Saito, M.; Takeda, J. Feedback looping between ChREBP and PPARα in the regulation of lipid metabolism in brown adipose tissues. Endocr. J. 2013, 60, 1145–1153. [Google Scholar] [CrossRef]
- Katz, L.S.; Brill, G.; Wang, P.; Lambertini, L.; Zhang, P.; Haldeman, J.M.; Liu, H.; Newgard, C.B.; Stewart, A.F.; Garcia-Ocaña, A.; et al. Transcriptional activation of the Myc gene by glucose in β-cells requires a ChREBP-dependent 3-D chromatin interaction between the Myc and Pvt1 genes. Mol. Metab. 2024, 79, 101848. [Google Scholar] [CrossRef]
- Vijayakumar, A.; Aryal, P.; Wen, J.; Syed, I.; Vazirani, R.P.; Moraes-Vieira, P.M.; Camporez, J.P.; Gallop, M.R.; Perry, R.J.; Peroni, O.D.; et al. Absence of Carbohydrate Response Element Binding Protein in Adipocytes Causes Systemic Insulin Resistance and Impairs Glucose Transport. Cell Rep. 2017, 21, 1021–1035. [Google Scholar] [CrossRef]
- Polak, G.L.; Pasqualino, A.; Docherty, J.E.; Beck, S.J.; DiAngelo, J.R. The Regulation of Muscle Structure and Metabolism by Mio/dChREBP in Drosophila. PLoS ONE 2015, 10, e0136504. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hanke, N.; Scheibe, R.J.; Manukjan, G.; Ewers, D.; Umeda, P.K.; Chang, K.C.; Kubis, H.P.; Gros, G.; Meissner, J.D. Gene regulation mediating fiber-type transformation in skeletal muscle cells is partly glucose- and ChREBP dependent. Biochim. Biophys. Acta. 2011, 1813, 377–389. [Google Scholar] [CrossRef]
- Han, H.; Chen, S.; Wang, X.; Jin, J.; Li, X.; Li, Z. Association between muscle strength and mass and bone mineral density in the US general population: Data from NHANES 1999–2002. J. Orthop. Surg. Res. 2023, 18, 397. [Google Scholar] [CrossRef] [PubMed]
- Ueno, S.; Seino, Y.; Hidaka, S.; Nakatani, M.; Hitachi, K.; Murao, N.; Maeda, Y.; Fujisawa, H.; Shibata, M.; Takayanagi, T.; et al. Blockade of glucagon increases muscle mass and alters fiber type composition in mice deficient in proglucagon-derived peptides. J. Diabetes Investig. 2023, 14, 1045–1055. [Google Scholar] [CrossRef] [PubMed]
- Muramatsu, H.; Kuramochi, T.; Katada, H.; Ueyama, A.; Ruike, Y.; Ohmine, K.; Shida-Kawazoe, M.; Miyano-Nishizawa, R.; Shimizu, Y.; Okuda, M.; et al. Novel myostatin-specific antibody enhances muscle strength in muscle disease models. Sci. Rep. 2021, 11, 2160. [Google Scholar] [CrossRef] [PubMed]
- Kaneko, H.; Komori, T. Runx2 is essential for the transdifferentiation of chondrocytes into osteoblasts. PLoS Genet. 2020, 16, e1009169. [Google Scholar] [CrossRef]
- Sarrazy, V.; Sore, S.; Viaud, M.; Rignol, G.; Westerterp, M.; Ceppo, F.; Tanti, J.F.; Guinamard, R.; Gautier, E.L.; Yvan-Charvet, L. Maintenance of Macrophage Redox Status by ChREBP Limits Inflammation and Apoptosis and Protects against Advanced Atherosclerotic Lesion Formation. Cell Rep. 2015, 13, 132–144. [Google Scholar] [CrossRef]
- Thevkar-Nagesh, P.; Habault, J.; Voisin, M.; Ruff, S.E.; Ha, S.; Ruoff, R.; Chen, X.; Rawal, S.; Zahr, T.; Szabo, G.; et al. Transcriptional regulation of Acsl1 by CHREBP and NF-kappa B in macrophages during hyperglycemia and inflammation. PLoS ONE 2022, 17, e0272986. [Google Scholar] [CrossRef]
- Balamurugan, K.; Medishetti, R.; Kotha, J.; Behera, P.; Chandra, K.; Mavuduru, V.A.; Joshi, M.B.; Samineni, R.; Katika, M.R.; Ball, W.B.; et al. PHLPP1 promotes neutral lipid accumulation through AMPK/ChREBP-dependent lipid uptake and fatty acid synthesis pathways. iScience 2022, 25, 103766. [Google Scholar] [CrossRef]
- Hennebry, A.; Oldham, J.; Shavlakadze, T.; Grounds, M.D.; Sheard, P.; Fiorotto, M.L.; Falconer, S.; Smith, H.K.; Berry, C.; Jeanplong, F.; et al. IGF1 stimulates greater muscle hypertrophy in the absence of myostatin in male mice. J. Endocrinol. 2017, 234, 187–200. [Google Scholar] [CrossRef]
- Yoshida, T.; Delafontaine, P. Mechanisms of IGF-1-Mediated Regulation of Skeletal Muscle Hypertrophy and Atrophy. Cells 2020, 9, 1970. [Google Scholar] [CrossRef]
- Retamales, A.; Zuloaga, R.; Valenzuela, C.A.; Gallardo-Escarate, C.; Molina, A.; Valdés, J.A. Insulin-like growth factor-1 suppresses the Myostatin signaling pathway during myogenic differentiation. Biochem. Biophys. Res. Commun. 2015, 464, 596–602. [Google Scholar] [CrossRef]
- Lin, J.; Arnold, H.B.; Della-Fera, M.A.; Azain, M.J.; Hartzell, D.L.; Baile, C.A. Myostatin knockout in mice increases myogenesis and decreases adipogenesis. Biochem. Biophys. Res. Commun. 2002, 291, 701–706. [Google Scholar] [CrossRef] [PubMed]
- Bataille, S.; Chauveau, P.; Fouque, D.; Aparicio, M.; Koppe, L. Myostatin and muscle atrophy during chronic kidney disease. Nephrol. Dial. Transplant. 2021, 36, 1986–1993. [Google Scholar] [CrossRef] [PubMed]
- McPherron, A.C.; Lawler, A.M.; Lee, S.J. Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature 1997, 387, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Huh, Y.; Son, K.Y. Association between total protein intake and low muscle mass in Korean adults. BMC Geriatr. 2022, 22, 319. [Google Scholar] [CrossRef]
- Ren, Q.; Zhou, Y.; Luo, H.; Chen, G.; Han, Y.; Zheng, K.; Qin, Y.; Li, X. Associations of low-carbohydrate with mortality in chronic kidney disease. Ren. Fail. 2023, 45, 2202284. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gamble, J.L. The Harvey Lectures, Series XLIII, 1946–1947: Physiological information gained from studies on the life raft ration. Nutr. Rev. 1989, 47, 199–201. [Google Scholar] [CrossRef]
- Brody, T. 8—PROTEIN. In Nutritional Biochemistry, 2nd ed.; Academic Press: Cambridge, MA, USA, 1999; pp. 421–489. ISBN 9780121348366. [Google Scholar] [CrossRef]
- Fuller, M.F.; Crofts, R.M. The protein-sparing effect of carbohydrate. 1. Nitrogen retention of growing pigs in relation to diet. Br. J. Nutr. 1977, 38, 479–488. [Google Scholar] [CrossRef]
- Qin, X.; Jiang, Q.; Nagano, K.; Moriishi, T.; Miyazaki, T.; Komori, H.; Ito, K.; Mark, K.V.; Sakane, C.; Nouri, M.; et al. How do carbohydrate quality indices influence on bone mass density in postmenopausal women? A case–control study. BMC Women’s Health 2023, 23, 42. [Google Scholar] [CrossRef]
- Lara-Castillo, N.; Johnson, M.L. Bone-Muscle Mutual Interactions. Curr. Osteoporos. Rep. 2020, 18, 408–421. [Google Scholar] [CrossRef]
- Palmisano, B.; Riminucci, M.; Karsenty, G. Interleukin-6 signaling in osteoblasts regulates bone remodeling during exercise. Bone 2023, 176, 116870. [Google Scholar] [CrossRef]
- Jain, R.K.; Vokes, T. Visceral Adipose Tissue is Negatively Associated with Bone Mineral Density in NHANES 2011–2018. J. Endocr. Soc. 2023, 7, bvad008. [Google Scholar] [CrossRef] [PubMed]
- Reid, I.R. Fat and bone. Arch. Biochem. Biophys. 2010, 503, 20–27. [Google Scholar] [CrossRef] [PubMed]
- Gomes, M.M.; da Silva, M.M.R.; de Araújo, I.M.; de Paula, F.J.A. Bone, fat, and muscle interactions in health and disease. Arch. Endocrinol. Metab. 2022, 66, 611–620. [Google Scholar] [CrossRef] [PubMed]
- Kirk, B.; Zanker, J.; Duque, G. Osteosarcopenia: Epidemiology, diagnosis, and treatment-facts and numbers. J. Cachexia Sarcopenia Muscle 2020, 11, 609–618. [Google Scholar] [CrossRef]
Gene Name | Sequence | |
---|---|---|
IGF1 | F | CTGGACCAGAGACCCTTTGC |
R | GGACGGGGACTTCTGAGTCTT | |
Myostatin | F | CTGTAACCTTCCCAGGACCA |
R | TCTTTTGGGTGCGATAATCC | |
Glucokinase | F | CCGTGATCCGGGAAGAGAA |
R | GGGAAACCTGACAGGGATGAG | |
G6pc | F | TGGGCAAAATGGCAAGGA |
R | TCTGCCCCAGGAATCAAAAAT | |
Albumin | F | TGCTTTTTCCAGGGGTGTGTT |
R | TTACTTCCTGCACTAATTTGGCA | |
Prealbumin | F | TTGCCTCGCTGGACTGGTA |
R | TTACAGCCACGTCTACAGCAG | |
Col1a | F | CTTGCCAGCTTCCCCATCATCT |
R | CATGGGTCCTTCTGGTCCTCGT | |
BMP2 | F | GTCGAAGCTCTCCCACTGAC |
R | CAGGAAGCTTTGGGAAACAG | |
Osx | F | AACTTCTTCTCCCGGGTGTG |
R | TGAGGAAGAAGCCCATTCAC | |
Sost | F | GTGTGATGTTGGGCTACGTG |
R | CCACCACAATCTCTCCCCTA | |
Rankl | F | AGGCTGGGCCAAGATCTCTA |
R | GTCTGTAGGTACGCTTCCCG | |
Opg | F | AGCAGGAGTGCAACCGCACC |
R | TTCCAGCTTGCACCACGCCG |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deguchi, K.; Ushiroda, C.; Hidaka, S.; Tsuchida, H.; Yamamoto-Wada, R.; Seino, Y.; Suzuki, A.; Yabe, D.; Iizuka, K. Chrebp Deletion and Mild Protein Restriction Additively Decrease Muscle and Bone Mass and Function. Nutrients 2025, 17, 488. https://doi.org/10.3390/nu17030488
Deguchi K, Ushiroda C, Hidaka S, Tsuchida H, Yamamoto-Wada R, Seino Y, Suzuki A, Yabe D, Iizuka K. Chrebp Deletion and Mild Protein Restriction Additively Decrease Muscle and Bone Mass and Function. Nutrients. 2025; 17(3):488. https://doi.org/10.3390/nu17030488
Chicago/Turabian StyleDeguchi, Kanako, Chihiro Ushiroda, Shihomi Hidaka, Hiromi Tsuchida, Risako Yamamoto-Wada, Yusuke Seino, Atsushi Suzuki, Daisuke Yabe, and Katsumi Iizuka. 2025. "Chrebp Deletion and Mild Protein Restriction Additively Decrease Muscle and Bone Mass and Function" Nutrients 17, no. 3: 488. https://doi.org/10.3390/nu17030488
APA StyleDeguchi, K., Ushiroda, C., Hidaka, S., Tsuchida, H., Yamamoto-Wada, R., Seino, Y., Suzuki, A., Yabe, D., & Iizuka, K. (2025). Chrebp Deletion and Mild Protein Restriction Additively Decrease Muscle and Bone Mass and Function. Nutrients, 17(3), 488. https://doi.org/10.3390/nu17030488