The Efficacy of Cheonggukjang in Alleviating Menopausal Syndrome and Its Effects on the Gut Microbiome: A Randomized, Double-Blind Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Production of Experimental Cheonggukjang Tablets
2.2. Study Design
2.3. Participants
2.4. Assessment of Improvement in Menopausal Syndrome
2.5. Safety Evaluation
2.6. Metabolic Parameter Assessment
2.7. Gut Microbiome Analysis
2.8. Statistical Analysis
3. Results
3.1. Baseline Participant Information
3.2. Anthropometric Parameters
3.3. Safety Evaluation
3.4. Effect on Metabolic Parameters
3.5. Efficacy Evaluation of Kupperman Index Scores Across the Three Groups
3.6. Analysis of the Fecal Gut Microbiome
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Affinito, P.; Palomba, S.; Bonifacio, M.; Fontana, D.; Izzo, R.; Trimarco, B.; Nappi, C. Effects of hormonal replacement therapy in postmenopausal hypertensive patients. Maturitas 2001, 40, 75–83. [Google Scholar] [CrossRef]
- Crawford, S.L.; Crandall, C.J.; Derby, C.A.; El Khoudary, S.R.; Waetjen, L.E.; Fischer, M.; Joffe, H. Menopausal hormone therapy trends before versus after 2002: Impact of the Women’s Health Initiative Study Results. Menopause 2018, 26, 588–597. [Google Scholar] [CrossRef] [PubMed]
- Stevenson, J.C. HRT and cardiovascular disease. Best Pract. Res. Clin. Obstet. Gynaecol. 2009, 23, 109–120. [Google Scholar] [CrossRef]
- Panay, N.; Rees, M. Alternatives to hormone replacement therapy for management of menopause symptoms. Curr. Obstet. Gynaecol. 2005, 15, 259–266. [Google Scholar] [CrossRef]
- Beaglehole, R. International trends in coronary heart disease mortality, morbidity, and risk factors. Epidemiol. Rev. 1990, 12, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Kumar, N.B.; Cantor, A.; Allen, K.; Riccardi, D.; Cox, C.E. The specific role of isoflavones on estrogen metabolism in premenopausal women. Cancer 2002, 94, 1166–1174. [Google Scholar] [CrossRef] [PubMed]
- Anderson, J.W.; Johnstone, B.M.; Cook-Newell, M.E. Meta-analysis of the effects of soy protein intake on serum lipids. N. Engl. J. Med. 1995, 333, 276–282. [Google Scholar] [CrossRef]
- Llaneza, P.; González, C.; Fernández-Iñarrea, J.; Alonso, A.; Díaz, F.; Pérez-López, F.R. Soy isoflavones improve insulin sensitivity without changing serum leptin among postmenopausal women. Climacteric 2012, 15, 611–620. [Google Scholar] [CrossRef] [PubMed]
- Rondanelli, M.; Opizzi, A.; Faliva, M.; Sala, P.; Perna, S.; Riva, A.; Morazzoni, P.; Bombardelli, E.; Giacosa, A. Metabolic management in overweight subjects with naive impaired fasting glycaemia by means of a highly standardized extract from Cynara scolymus: A double-blind, placebo-controlled, randomized clinical trial. Phytother. Res. 2014, 28, 33–41. [Google Scholar] [CrossRef]
- Leeuwendaal, N.K.; Stanton, C.; O’Toole, P.W.; Beresford, T.P. Fermented foods, health and the gut microbiome. Nutrients 2022, 14, 1527. [Google Scholar] [CrossRef] [PubMed]
- Taylor, B.C.; Lejzerowicz, F.; Poirel, M.; Shaffer, J.P.; Jiang, L.; Aksenov, A.; Litwin, N.; Humphrey, G.; Martino, C.; Miller-Montgomery, S.; et al. Consumption of fermented foods is associated with systematic differences in the gut microbiome and metabolome. mSystems 2020, 5, e00901-19. [Google Scholar] [CrossRef]
- Lee, B.-Y.; Dong-Man, K.; Kil-Hwan, K. Studies on the change in rheological properties of Chungkook-jang. Korean J. Food Sci. Technol. 1991, 23, 478–484. [Google Scholar]
- Jeong, S.J.; Ryu, M.S.; Yang, H.J.; Wu, X.H.; Jeong, D.Y.; Park, S.M. Bacterial distribution, biogenic amine contents, and functionalities of traditionally made doenjang, a long-term fermented soybean food, from different areas of Korea. Microorganisms 2021, 9, 1348. [Google Scholar] [CrossRef]
- Armstrong, T.; Bull, F. Development of the World Health Organization Global Physical Activity Questionnaire (GPAQ). J. Public Health 2006, 14, 66–70. [Google Scholar] [CrossRef]
- Tao, M.F.; Shao, H.; Li, C.; Teng, Y. Correlation between the modified Kupperman index and the menopause rating scale in Chinese women. Patient Prefer. Adherence 2013, 7, 223–229. [Google Scholar] [CrossRef]
- Tamang, J.P.; Das, S.; Kharnaior, P.; Pariyar, P.; Thapa, N.; Jo, S.-W.; Yim, E.-J.; Shin, D.-H. Shotgun metagenomics of Cheonggukjang, a fermented soybean food of Korea: Community structure, predictive functionalities and amino acids profile. Food Res. Int. 2022, 151, 110904. [Google Scholar] [CrossRef] [PubMed]
- Jung, D.Y. Traditional Jang manufacturing method. In Overview of Korean Jang (Fermented Soybean Product) Manufacturing; Korea Jang Association: Seoul, Republic of Korea, 2022; pp. 202–245. [Google Scholar]
- Rossouw, J.E.; Anderson, G.L.; Prentice, R.L.; LaCroix, A.Z.; Kooperberg, C.; Stefanick, M.L.; Jackson, R.D.; Beresford, S.A.A.; Howard, B.V.; Johnson, K.C.; et al. Risks and benefits of estrogen plus progestin in healthy postmenopausal women: Principal results from the Women’s Health Initiative randomized controlled trial. JAMA 2002, 288, 321–333. [Google Scholar] [CrossRef] [PubMed]
- Rolnick, S.J.; Kopher, R.A.; DeFor, T.A.; Kelley, M.E. Hormone use and patient concerns after the findings of the Women’s Health Initiative. Menopause 2005, 12, 399–404. [Google Scholar] [CrossRef] [PubMed]
- Kupferer, E.M.; Dormire, S.L.; Becker, H. Complementary and alternative medicine use for vasomotor symptoms among women who have discontinued hormone therapy. J. Obstet. Gynecol. Neonatal Nurs. 2009, 38, 50–59. [Google Scholar] [CrossRef] [PubMed]
- Velasquez, M.T.; Bhathena, S.J. Role of dietary soy protein in obesity. Int. J. Med. Sci. 2007, 4, 72–82. [Google Scholar] [CrossRef] [PubMed]
- Jang, C.H.; Park, C.S.; Lim, J.K.; Kim, J.H.; Kwon, D.Y.; Kim, Y.S. Metabolism of isoflavone derivatives during manufacturing of traditional meju and doenjang. Food Sci. Biotechnol. 2008, 17, 442–445. [Google Scholar]
- Choi, Y.H. Modified Jang manufacturing method. In Overview of Korean Jang (Fermented Soybean Product) Manufacturing; Korean Jang Association: Seoul, Republic of Korea, 2022; pp. 246–270. [Google Scholar]
- Hidalgo, L.A.; Chedraui, P.A.; Morocho, N.; Ross, S.; San Miguel, G. The effect of red clover isoflavones on menopausal symptoms, lipids and vaginal cytology in menopausal women: A randomized, double-blind, placebo-controlled study. Gynecol. Endocrinol. 2005, 21, 257–264. [Google Scholar] [CrossRef]
- Taku, K.; Melby, M.K.; Kronenberg, F.; Kurzer, M.S.; Messina, M. Extracted or synthesized soybean isoflavones reduce menopausal hot flash frequency and severity: Systematic review and meta-analysis of randomized controlled trials. Menopause 2012, 19, 776–790. [Google Scholar] [CrossRef]
- Khaodhiar, L.; Ricciotti, H.A.; Li, L.; Pan, W.; Schickel, M.; Zhou, J.; Blackburn, G.L. Daidzein-rich isoflavone aglycones are potentially effective in reducing hot flashes in menopausal women. Menopause 2008, 15, 125–132. [Google Scholar] [CrossRef]
- Vincent, A.; Fitzpatrick, L.A. Soy isoflavones: Are they useful in menopause? Mayo Clin. Proc. 2000, 75, 1174–1184. [Google Scholar] [CrossRef]
- D’Anna, R.; Cannata, M.L.; Atteritano, M.; Cancellieri, F.; Corrado, F.; Baviera, G.; Triolo, O.; Antico, F.; Gaudio, A.; Frisina, N.; et al. Effects of the phytoestrogen genistein on hot flushes, endometrium, and vaginal epithelium in postmenopausal women: A 1-year randomized, double-blind, placebo-controlled study. Menopause 2007, 14, 648–655. [Google Scholar] [CrossRef]
- Nagata, C.; Takatsuka, N.; Kawakami, N.; Shimizu, H. Soy product intake and hot flashes in Japanese women: Results from a community-based prospective study. Am. J. Epidemiol. 2001, 153, 790–793. [Google Scholar] [CrossRef] [PubMed]
- Hachul, H.; Brandão, L.C.; D’Almeida, V.; Bittencourt, L.R.; Baracat, E.C.; Tufik, S. Isoflavones decrease insomnia in postmenopause. Menopause 2011, 18, 178–184. [Google Scholar] [CrossRef] [PubMed]
- Drews, K.; Seremak-Mrozikiewicz, A.; Puk, E.; Kaluba-Skotarczak, A.; Malec, M.; Kazikowska, A. Efficacy of standardized isoflavones extract (Soyfem) (52–104 mg/24h) in moderate and medium-severe climacteric syndrome. Ginekol. Pol. 2007, 78, 307–311. [Google Scholar] [PubMed]
- Crisafulli, A.; Altavilla, D.; Marini, H.; Bitto, A.; Cucinotta, D.; Frisina, N.; Corrado, F.; D’Anna, R.; Squadrito, G.; Adamo, E.B.; et al. Effects of the phytoestrogen genistein on cardiovascular risk factors in postmenopausal women. Menopause 2005, 12, 186–192. [Google Scholar] [CrossRef]
- Ho, S.C.; Chen, Y.M.; Ho, S.S.; Woo, J.L. Soy isoflavone supplementation and fasting serum glucose and lipid profile among postmenopausal Chinese women: A double-blind, randomized, placebo-controlled trial. Menopause 2007, 14, 905–912. [Google Scholar] [CrossRef]
- Kim, J.E.; Choi, K.H. A meta analysis for anti-hyperlipidemia effect of soybeans. J. Korean Data Inf. Sci. Soc. 2010, 21, 651–667. [Google Scholar]
- Schwiertz, A.; Reiss, A.; Jacobi, M.; Andreas, S. Association of dietary type with fecal microbiota and short chain fatty acids in vegans and omnivores. J. Int. Soc. Microbiota 2016, 2, 1–9. [Google Scholar] [CrossRef]
- Turnbaugh, P.J.; Ley, R.E.; Mahowald, M.A.; Magrini, V.; Mardis, E.R.; Gordon, J.I. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 2006, 444, 1027–1031. [Google Scholar] [CrossRef]
- Zhang, X.; Shen, D.; Fang, Z.; Jie, Z.; Qiu, X.; Zhang, C.; Chen, Y.; Ji, L. Human gut microbiota changes reveal the progression of glucose intolerance. PLoS ONE 2013, 8, e71108. [Google Scholar] [CrossRef]
- Larsen, N.; Vogensen, F.K.; van den Berg, F.W.; Nielsen, D.S.; Andreasen, A.S.; Pedersen, B.K.; Al-Soud, W.A.; Sørensen, S.J.; Hansen, L.H.; Jakobsen, M. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS ONE 2010, 5, e9085. [Google Scholar] [CrossRef] [PubMed]
- Han, K.; Bose, S.; Wang, J.H.; Kim, B.S.; Kim, M.J.; Kim, E.J.; Kim, H. Contrasting effects of fresh and fermented kimchi consumption on gut microbiota composition and gene expression related to metabolic syndrome in obese Korean women. Mol. Nutr. Food Res. 2015, 59, 1004–1008. [Google Scholar] [CrossRef]
- Tamang, J.P.; Shin, D.H.; Jung, S.J.; Chae, S.W. Functional properties of microorganisms in fermented foods. Front. Microbiol. 2016, 7, 578. [Google Scholar] [CrossRef] [PubMed]
HTC | LTC | CC | ||||
---|---|---|---|---|---|---|
Content (g) | Ratio (%) | Content (g) | Ratio (%) | Content (g) | Ratio (%) | |
Freeze-dried Cheonggukjang powder | 2.97 | 90 | 2.97 | 90 | 2.97 | 90 |
Glutinous rice flour | 0.33 | 10 | 0.33 | 10 | 0.33 | 10 |
Total | 3.3 | 100 | 3.3 | 100 | 3.3 | 100 |
Value | Group | |||
---|---|---|---|---|
HTC (n = 20) | LTC (n = 20) | CC (n = 20) | p-Value | |
Drinking (n) | 20 (100) | 20 (100) | 20 (100) | - |
Smoking (n) | 20 (100) | 20(100) | 20 (100) | - |
Age (years) | 58.20 ± 3.98 | 57.70 ± 4.95 | 59.05 ± 5.02 | 0.655 |
Weight (kg) | 66.59 ± 6.89 | 65.80 ± 7.46 | 65.36 ± 7.92 | 0.870 |
BMI (kg m⁻2) | 26.78 ± 2.53 | 26.48 ± 2.99 | 26.70 ± 2.55 | 0.936 |
Value | Group | |||
---|---|---|---|---|
HTC (n = 20) | LTC (n = 20) | CC (n = 20) | p-Value | |
Menarche age (years) | 14.80 ± 1.28 | 14.95 ± 1.47 | 15.55 ± 1.43 | 0.208 |
Menopause age (years) | 51.85 ± 2.01 | 51.20 ± 3.78 | 52.00 ± 3.13 | 0.681 |
Menopause period (years) | 77.80 ± 51.68 | 79.40 ± 74.24 | 85.60 ± 62.87 | 0.920 |
Number of births | 2.25 ± 0.85 | 2.25 ± 0.64 | 2.20 ± 0.70 | 0.970 |
Value | Group | ||||||||
---|---|---|---|---|---|---|---|---|---|
HTC (n = 20) | LTC (n = 20) | CC (n = 20) | |||||||
Before | After | p-Value | Before | After | p-Value | Before | After | p-Value | |
WBC (103/µL) | 5.93 ± 1.16 | 5.89 ± 1.19 | 0.802 | 6 ± 1.82 | 5.88 ± 1.28 | 0.745 | 6.84 ± 1.59 | 6.89 ± 2.09 | 0.892 |
RBC (106/µL) | 4.51 ± 0.22 | 4.44 ± 0.25 | 0.044 | 4.43 ± 0.2 | 4.38 ± 0.29 | 0.283 | 4.43 ± 0.25 | 4.4 ± 0.34 | 0.428 |
Hemoglobin (g/dL) | 13.84 ± 0.74 | 13.69 ± 0.75 | 0.153 | 13.49 ± 0.62 | 13.48 ± 0.87 | 0.971 | 13.41 ± 0.64 | 13.42 ± 0.88 | 0.967 |
Hematocrit (%) | 40.96 ± 2.34 | 39.93 ± 2 | 0.010 | 40.29 ± 1.55 | 39.7 ± 2.54 | 0.141 | 40.04 ± 1.84 | 39.55 ± 2.38 | 0.170 |
GGT (IU/L) | 30.6 ± 20.91 | 26.85 ± 14.06 | 0.056 | 29.5 ± 22.21 | 33.65 ± 19.91 | 0.141 | 29.45 ± 23.02 | 26.95 ± 14.85 | 0.245 |
AST (IU/L) | 30.5 ± 10.44 | 26.35 ± 8.32 | 0.011 | 24.35 ± 5.5 | 25 ± 7.28 | 0.557 | 24.6 ± 5.28 | 24.95 ± 5.91 | 0.760 |
ALT (IU/L) | 30.05 ± 14.73 | 25 ± 9.86 | 0.003 | 26.2 ± 6.9 | 26.7 ± 11.85 | 0.755 | 25.5 ± 8.43 | 24.15 ± 8.29 | 0.207 |
BUN (mg/dL) | 14.32 ± 2.82 | 13.5 ± 2.65 | 0.238 | 14.25 ± 3.03 | 14.72 ± 2.85 | 0.580 | 15.45 ± 3.29 | 15.8 ± 3.98 | 0.731 |
Creatinine (mg/dL) | 0.67 ± 0.08 | 0.65 ± 0.11 | 0.297 | 0.7 ± 0.14 | 0.66 ± 0.14 | 0.088 | 0.65 ± 0.11 | 0.63 ± 0.15 | 0.494 |
Uric acid (mg/dL) | 4.63 ± 1.26 | 4.67 ± 1.05 | 0.804 | 4.64 ± 1.07 | 4.75 ± 1.22 | 0.370 | 4.59 ± 0.93 | 5.01 ± 1.28 | 0.032 |
T-protein (g/dL) | 6.85 ± 0.35 | 6.9 ± 0.37 | 0.419 | 6.96 ± 0.43 | 7.03 ± 0.45 | 0.213 | 6.78 ± 0.36 | 6.93 ± 0.44 | 0.102 |
Albumin (g/dL) | 4.26 ± 0.18 | 4.27 ± 0.15 | 0.871 | 4.3 ± 0.23 | 4.33 ± 0.23 | 0.481 | 4.2 ± 0.2 | 4.28 ± 0.18 | 0.065 |
T-bilirubin (mg/dL) | 0.75 ± 0.19 | 0.75 ± 0.24 | 0.916 | 0.86 ± 0.23 | 0.85 ± 0.22 | 0.862 | 0.72 ± 0.18 | 0.73 ± 0.21 | 0.950 |
LD (IU/L) | 187.8 ± 37.18 | 188.3 ± 33.79 | 0.955 | 175.35 ± 29.96 | 179.9 ± 29.13 | 0.298 | 174.1 ± 26.8 | 190.75 ± 31.93 | 0.001 |
ALP (IU/L) | 60.15 ± 15.66 | 59.45 ± 12.39 | 0.673 | 59.5 ± 11.02 | 61.3 ± 9.6 | 0.328 | 55.75 ± 14.82 | 58.7 ± 15.24 | 0.061 |
CK (IU/L) | 93.95 ± 31.32 | 99.45 ± 38.22 | 0.496 | 113.85 ± 54.14 | 105.95 ± 42.79 | 0.433 | 108.2 ± 63.26 | 138.15 ± 116.88 | 0.176 |
Value | Group | ||||||||
---|---|---|---|---|---|---|---|---|---|
HTC (n = 20) | LTC (n = 20) | CC (n = 20) | |||||||
Before | After | p-Value | Before | After | p-Value | Before | After | p-Value | |
SBP (mmHG) | 129.95 ± 8.51 | 132.05 ± 11.2 | 0.430 | 131.55 ± 10.75 | 128.15 ± 10.66 | 0.072 | 131.35 ± 12.35 | 131.75 ± 13.15 | 0.857 |
DBP (mmHG) | 78.15 ± 7.35 | 77.7 ± 7.95 | 0.810 | 79.25 ± 8.28 | 78 ± 7.31 | 0.310 | 78.1 ± 9.24 | 77 ± 8.28 | 0.546 |
Pulse (bpm) | 73.6 ± 9.72 | 78.1 ± 11.38 | 0.073 | 72.9 ± 7.7 | 73.2 ± 6.44 | 0.810 | 76.1 ± 8.94 | 78 ± 8.11 | 0.191 |
WC (cm) | 88.57 ± 5.51 | 88.64 ± 5.4 | 0.312 | 89.16 ± 7.52 | 89.12 ± 7.56 | 0.653 | 88.01 ± 5.03 | 87.9 ± 5.07 | 0.302 |
HC (cm) | 98.34 ± 5.64 | 98.36 ± 5.58 | 0.713 | 98.52 ± 5.48 | 98.45 ± 5.52 | 0.368 | 97.42 ± 4.88 | 97.48 ± 4.99 | 0.491 |
WHR | 0.9 ± 0.04 | 0.9 ± 0.04 | 0.577 | 0.91 ± 0.04 | 0.91 ± 0.04 | 1.000 | 0.9 ± 0.04 | 0.9 ± 0.04 | 0.258 |
Weight (kg) | 66.59 ± 6.89 | 66.43 ± 6.64 | 0.359 | 65.8 ± 7.46 | 65.32 ± 8.19 | 0.246 | 65.36 ± 7.92 | 65.17 ± 8.55 | 0.600 |
BMI (kg/m2) | 26.78 ± 2.53 | 26.72 ± 2.41 | 0.411 | 26.48 ± 2.99 | 26.28 ± 3.31 | 0.210 | 26.7 ± 2.55 | 26.53 ± 2.67 | 0.209 |
BFM (kg) | 25.06 ± 3.77 | 24.75 ± 3.85 | 0.246 | 24.56 ± 4.28 | 24.21 ± 4.84 | 0.233 | 24.83 ± 4.31 | 24.41 ± 4.51 | 0.032 |
PBF (%) | 37.57 ± 3.41 | 37.17 ± 3.58 | 0.271 | 37.24 ± 3.75 | 36.88 ± 4.22 | 0.276 | 37.85 ± 3.3 | 37.39 ± 3.45 | 0.030 |
FFM (kg) | 41.53 ± 4.39 | 41.68 ± 4.26 | 0.519 | 41.24 ± 4.78 | 41.12 ± 4.97 | 0.593 | 40.58 ± 4.55 | 40.62 ± 4.88 | 0.846 |
AFR, abdominal fat rate (%) | 0.92 ± 0.04 | 0.92 ± 0.05 | 0.644 | 0.91 ± 0.04 | 0.91 ± 0.04 | 0.782 | 0.92 ± 0.04 | 0.92 ± 0.04 | 0.700 |
BMR (kcal/day) | 1267 ± 94.69 | 1270.3 ± 91.88 | 0.505 | 1260.8 ± 103.11 | 1258.1 ± 107.23 | 0.574 | 1246.4 ± 98.63 | 1247.5 ± 105.27 | 0.827 |
CRP (mg/L) | 2.73 ± 4.92 | 2.42 ± 3.92 | 0.475 | 3.73 ± 6.4 | 3.33 ± 5.51 | 0.516 | 1.73 ± 1.84 | 2.23 ± 2.23 | 0.106 |
ESR (mm/h) | 7.12 ± 5.8 | 5.76 ± 5.58 | 0.333 | 6.41 ± 5.93 | 6.8 ± 7.24 | 0.653 | 9.33 ± 8.34 | 8.73 ± 7.92 | 0.513 |
HDL (mg/dL) | 51.55 ± 10.37 | 56.6 ± 15.68 | 0.068 | 59.2 ± 15.02 | 59.2 ± 14.46 | 1.000 | 53.7 ± 13.02 | 55.6 ± 13.57 | 0.216 |
LDL (mg/dL) | 107.9 ± 36.53 | 105.15 ± 35.83 | 0.608 | 135 ± 54.11 | 130.8 ± 50 | 0.531 | 116.6 ± 27.28 | 113 ± 33.42 | 0.408 |
TC (mg/dL) | 193.3 ± 39.28 | 192.8 ± 36.91 | 0.939 | 228.55 ± 53.58 | 223.15 ± 48.16 | 0.490 | 201.45 ± 30.88 | 200 ± 41.89 | 0.843 |
Glucose (mg/dL) | 110.4 ± 10.22 | 104.9 ± 9.29 | 0.004 | 110.6 ± 15.45 | 110.05 ± 18.18 | 0.826 | 111.55 ± 16.15 | 107.8 ± 14.17 | 0.149 |
Insulin (µU/mL) | 7.1 ± 3.94 | 7.29 ± 3.58 | 0.807 | 6.94 ± 7.1 | 8.25 ± 6.32 | 0.386 | 11.85 ± 13.68 | 8.45 ± 3.63 | 0.262 |
HOMA-IR | 1.99 ± 1.2 | 1.93 ± 1.04 | 0.764 | 1.99 ± 2.32 | 2.35 ± 2.03 | 0.452 | 3.55 ± 4.94 | 2.28 ± 1.07 | 0.247 |
HOMA-β (%) | 52.58 ± 24.99 | 62.3 ± 28.36 | 0.120 | 50.45 ± 38.32 | 62.69 ± 37.29 | 0.186 | 80.75 ± 62.97 | 71.61 ± 37.5 | 0.522 |
QUICKI | 0.36 ± 0.04 | 0.36 ± 0.03 | 0.917 | 0.37 ± 0.05 | 0.35 ± 0.03 | 0.104 | 0.34 ± 0.04 | 0.35 ± 0.03 | 0.487 |
Value | Group | ||||||||
---|---|---|---|---|---|---|---|---|---|
HTC (n = 20) | LTC (n = 20) | CC (n = 20) | |||||||
Before | After | p-Value | Before | After | p-Value | Before | After | p-Value | |
Vasomotor | 8 ± 2.9 | 6.2 ± 2.04 | 0.004 | 8.4 ± 3.65 | 7 ± 2.2 | 0.015 | 8 ± 2.9 | 7.2 ± 2.78 | 0.104 |
Paresthesia | 2.8 ± 1.77 | 2.1 ± 1.37 | 0.005 | 2.5 ± 1.57 | 2 ± 1.3 | 0.135 | 3 ± 1.03 | 2.1 ± 0.45 | 0.001 |
Insomnia | 4.6 ± 1.47 | 4.6 ± 1.6 | 1.000 | 4 ± 1.45 | 4.2 ± 1.58 | 0.494 | 4.5 ± 1.28 | 4.6 ± 1.31 | 0.577 |
Nervousness | 1.3 ± 1.98 | 0.5 ± 1.1 | 0.017 | 1.05 ± 1.36 | 1 ± 1.21 | 0.789 | 1.8 ± 1.82 | 1 ± 1.21 | 0.002 |
Melancholia | 0.15 ± 0.49 | 0 ± 0 | 0.186 | 0.2 ± 0.41 | 0.05 ± 0.22 | 0.186 | 0.25 ± 0.55 | 0 ± 0 | 0.056 |
Vertigo | 1.95 ± 4.8 | 0.9 ± 0.85 | 0.337 | 1.1 ± 0.97 | 0.85 ± 0.59 | 0.135 | 1.05 ± 0.83 | 0.75 ± 0.64 | 0.137 |
Fatigue | 2.7 ± 0.57 | 2.9 ± 0.31 | 0.214 | 2.45 ± 0.89 | 2.7 ± 0.57 | 0.204 | 2.45 ± 0.83 | 2.75 ± 0.44 | 0.110 |
Headache | 1.05 ± 0.89 | 0.85 ± 0.75 | 0.297 | 0.9 ± 0.79 | 0.6 ± 0.6 | 0.137 | 0.75 ± 0.64 | 0.55 ± 0.69 | 0.104 |
Arthralgia and myalgia | 1.95 ± 1.05 | 1.85 ± 0.99 | 0.649 | 2.15 ± 0.99 | 1.7 ± 0.86 | 0.058 | 2 ± 0.56 | 2.1 ± 0.79 | 0.577 |
Palpitation | 0.25 ± 0.64 | 0.15 ± 0.37 | 0.330 | 0.35 ± 0.75 | 0.15 ± 0.49 | 0.330 | 0.1 ± 0.31 | 0.15 ± 0.37 | 0.330 |
Formication | 0.05 ± 0.22 | 0.05 ± 0.22 | 1.000 | 0.15 ± 0.49 | 0.05 ± 0.22 | 0.428 | 0.15 ± 0.67 | 0.05 ± 0.22 | 0.330 |
Total | 23.8 ± 4.62 | 20.1 ± 3.24 | <0.0001 | 23.25 ± 4.84 | 20.25 ± 3.82 | 0.001 | 24.15 ± 4.11 | 21.25 ± 3.18 | 0.001 |
Vaginal dryness | 1.1 ± 1.02 | 1.2 ± 0.77 | 0.494 | 1.25 ± 1.02 | 1.2 ± 0.62 | 0.804 | 0.85 ± 0.67 | 1.15 ± 0.67 | 0.010 |
Value | HTC | LTC | CC | ||||||
---|---|---|---|---|---|---|---|---|---|
Before | After | p-Value | Before | After | p-Value | Before | After | p-Value | |
Firmicutes (%) | 71.97 ± 8.03 | 66.94 ± 10.99 | 0.106 | 69.13 ± 10.86 | 71.66 ± 12.66 | 0.390 | 72.75 ± 9.6 | 70.2 ± 9.69 | 0.396 |
Bacteroidetes (%) | 15.65 ± 10.44 | 17.84 ± 10.23 | 0.491 | 17.66 ± 10.11 | 15.76 ± 13.12 | 0.448 | 12.88 ± 8.46 | 16.03 ± 9.1 | 0.206 |
F/B | 13.01 ± 26.79 | 10.5 ± 18.83 | 0.743 | 12.82 ± 24.05 | 22.22 ± 34.22 | 0.232 | 47.52 ± 127.62 | 9.07 ± 14.18 | 0.154 |
Beneficial bacteria | 24.41 ± 7.51 | 28.41 ± 7.49 | 0.036 | 22.82 ± 7.71 | 23.84 ± 8.96 | 0.661 | 27.14 ± 12.37 | 27.91 ± 11.55 | 0.725 |
Harmful bacteria | 3.3 ± 3.82 | 3.9 ± 6.17 | 0.728 | 3.1 ± 5.49 | 2.55 ± 2.39 | 0.640 | 4.65 ± 5.72 | 4.2 ± 4.95 | 0.544 |
Others | 72.29 ± 7.54 | 67.69 ± 9.21 | 0.017 | 74.08 ± 8.96 | 73.61 ± 9.06 | 0.850 | 68.21 ± 11.51 | 67.89 ± 11.16 | 0.892 |
Beneficial Microorganism | Beneficial Microorganism | Harmful Microorganism |
---|---|---|
Lactobacillus paracasei | Lactobacillus delbrueckii | Clostridium perfringens |
Lactobacillus helveticus | Bifidobacterium angulatum | Bacteroides eggerthii |
Lactobacillus gasseri | Peptostreptococcus anaerobius | Sutterella stercoricanis |
Lactobacillus fermentum | Bifidobacterium dentium | Ruminococcus torques |
Lactobacillus plantarum | Ruminococcus gnavus | Parabacteroides merdae |
Lactobacillus reuteri | flavonifractor plautii | Parabacteroides distasonis |
Lactobacillus salivarius | Roseburia inulinivorans | Desulfovibrio piger |
Lactobacillus sakei | akkermansia muciniphila | Butyrivibrio crossotus |
Bifidobacterium bifidum | Ruminococcus bromil | Bacteroides thetaiotaomicron |
Bifidobacterium breve | Closteridium leptum | Staphylococcus aureus |
Bifidobacterium longum | Bacillus coagulans | Escherichia coli |
Bifidobacterium animalis | Bacillus subtilis | Blautia obeum |
Bifidobacterium adolescentis | Bifidobacterium pseudolongum | Hafnia alvei |
Lactococcus lactis | Clostridium butyricum | Morganella morganii |
Enterococcus faecium | Lactobacillus brevis | Bacillus cereus |
Enterococcus faecalis | Lactobacillus delbrueckii | Campylobacter jejuni |
Bacteroides massiliensis | Lactococcus lactis subsp. cremoris | Streptococcus agalactiae |
Bacteroides vulgatus | Leuconostoc kimchii | streptococcus pneumoniae |
Bacteroides dorei | Leuconostoc citreum | Acinetobacter lwoffii |
Alistipes putredinis | Leuconostoc mesenteroides | Pseudomonas aeruginosa |
Collinsella intestinalis | Pediococcus acidilactici | Acinetobacter baumannii |
Blautia hansenii | Streptococcus salivarius | Clostridium perfringens |
Faecalibacterium prausnitzii | Weissella confusa | Bacteroides eggerthii |
Odoribacter splanchnicus | Bifidobacterium dentium | Sutterella stercoricanis |
Roseburia intestinalis | Bacteroides plebeius | Ruminococcus torques |
Collinsella aerofaciens | Bacteroides uniformis | Parabacteroides merdae |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, A.-L.; Ryu, M.-S.; Yang, H.-J.; Jeong, D.-Y.; Choi, K.-H. The Efficacy of Cheonggukjang in Alleviating Menopausal Syndrome and Its Effects on the Gut Microbiome: A Randomized, Double-Blind Trial. Nutrients 2025, 17, 505. https://doi.org/10.3390/nu17030505
Han A-L, Ryu M-S, Yang H-J, Jeong D-Y, Choi K-H. The Efficacy of Cheonggukjang in Alleviating Menopausal Syndrome and Its Effects on the Gut Microbiome: A Randomized, Double-Blind Trial. Nutrients. 2025; 17(3):505. https://doi.org/10.3390/nu17030505
Chicago/Turabian StyleHan, A-Lum, Myeong-Seon Ryu, Hee-Jong Yang, Do-Youn Jeong, and Keum-Ha Choi. 2025. "The Efficacy of Cheonggukjang in Alleviating Menopausal Syndrome and Its Effects on the Gut Microbiome: A Randomized, Double-Blind Trial" Nutrients 17, no. 3: 505. https://doi.org/10.3390/nu17030505
APA StyleHan, A.-L., Ryu, M.-S., Yang, H.-J., Jeong, D.-Y., & Choi, K.-H. (2025). The Efficacy of Cheonggukjang in Alleviating Menopausal Syndrome and Its Effects on the Gut Microbiome: A Randomized, Double-Blind Trial. Nutrients, 17(3), 505. https://doi.org/10.3390/nu17030505