Breastfeeding and Non-Communicable Diseases: A Narrative Review
Abstract
:1. Introduction
2. Methods
3. Breastfeeding (BF) and Allergy
3.1. Breastfeeding (BF) and Asthma
3.2. Breastfeeding (BF) and Atopic Dermatitis and Allergic Rhinitis
3.3. Breastfeeding (BF) and Food Allergies
4. Breastfeeding (BF) and Autoimmune Diseases
4.1. Breastfeeding (BF) and Type 1 Diabetes Mellitus
4.2. Breastfeeding (BF) and Other Autoimmune Diseases
5. Breastfeeding (BF) and Cardiovascular Diseases
5.1. Weight Excess
5.2. Blood Hypertension
5.3. Hypercholesterolemia
5.4. Glucose Metabolism
5.5. Cardiac Morphology
6. Breastfeeding and Microbiota
7. Breastfeeding (BF) and Gastrointestinal Diseases
7.1. Celiac Disease
7.2. Inflammatory Bowel Diseases
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Abbreviations
AD | Atopic dermatitis |
BF | Breastfeeding |
BM | Breast milk |
CD | Coeliac disease |
CF | Complementary feeding |
CVD | Cardiovascular disease |
HDL | High-density lipoprotein |
HMGCoA | Hydroxymethylglutaryl coenzyme A |
HMO | Human milk oligosaccharides |
HT | Hashimoto thyroiditis |
IBDs | Inflammatory bowel diseases |
Ig | Immunoglobulin |
JIA | Juvenile idiopathic arthritis |
LDL | Low-density lipoprotein |
MS | Multiple sclerosis |
RA | Rheumatoid arthritis |
TC | Total cholesterol |
T1DM | Type 1 diabetes mellitus |
T2DM | Type 2 diabetes mellitus |
VEGF | Vascular endothelial growth factor |
WHO | World Health Organization |
References
- Meek, J.Y.; Noble, L.; Section on Breastfeeding. Policy Statement: Breastfeeding and the Use of Human Milk. Pediatrics 2022, 150, e2022057988s. [Google Scholar] [CrossRef]
- Victora, C.G.; Bahl, R.; Barros, A.J.D.; Franca, G.V.A.; Horton, S.; Krasevec, J.; Murch, S.; Sankar, M.J.; Walker, N.; Rollins, N.C.; et al. Breastfeeding in the 21st century: Epidemiology, mechanisms, and lifelong effect. Lancet 2016, 387, 475–490. [Google Scholar] [CrossRef]
- Critch, J.N.; Canadian Paediatric Society, Nutrition and Gastroenterology Committee. Nutrition for healthy term infants, six to 24 months: An overview. Paediatr. Child Health 2014, 19, 547–552. [Google Scholar] [PubMed]
- Guideline: Protecting, Promoting and Supporting Breastfeeding in Facilities Providing Maternity and Newborn Services; World Health Organization: Geneva, Switzerland, 2017.
- Vieira Borba, V.; Sharif, K.; Shoenfeld, Y. Breastfeeding and autoimmunity: Programing health from the beginning. Am. J. Reprod. Immunol. 2018, 79, e12778. [Google Scholar] [CrossRef]
- Nongonierma, A.B.; FitzGerald, R.J. Bioactive properties of milk proteins in humans: A review. Peptides 2015, 73, 20–34. [Google Scholar] [CrossRef]
- Barker, D.J.P. EDITORIAL: The developmental origins of adult disease. Eur. J. Epidemiol. 2002, 18, 733–736. [Google Scholar] [CrossRef]
- Barker, D.J.P. The origins of the developmental origins theory. J. Intern. Med. 2007, 261, 412–417. [Google Scholar] [CrossRef] [PubMed]
- Rollins, N.C.; Bhandari, N.; Hajeebhoy, N.; Horton, S.; Lutter, C.K.; Martines, J.C.; Piwoz, E.G.; Richter, L.M.; Victora, C.G.; Lancet Breastfeeding Series Group. Why invest, and what it will take to improve breastfeeding practices? Lancet 2016, 387, 491–504. [Google Scholar] [CrossRef]
- Oddy, W.H. Breastfeeding, Childhood Asthma, and Allergic Disease. Ann. Nutr. Metab. 2017, 70 (Suppl. 2), 26–36. [Google Scholar] [CrossRef] [PubMed]
- Nagel, G.; Büchele, G.; Weinmayr, G.; Björkstén, B.; Chen, Y.Z.; Wang, H.; Nystad, W.; Saraclar, Y.; Bråbäck, L.; Batlles-Garrido, J.; et al. Effect of breastfeeding on asthma, lung function and bronchial hyperreactivity in ISAAC Phase II. Eur. Respir. J. 2009, 33, 993–1002. [Google Scholar] [CrossRef] [PubMed]
- Pawankar, R. Allergic diseases and asthma: A global public health concern and a call to action. World Allergy Organ. J. 2014, 7, 12. [Google Scholar] [CrossRef] [PubMed]
- Lodge, C.J.; Tan, D.J.; Lau, M.X.; Dai, X.; Tham, R.; Lowe, A.J.; Bowatte, G.; Allen, K.J.; Dharmage, S.C. Breastfeeding and asthma and allergies: A systematic review and meta-analysis. Acta Paediatr. 2015, 104, 38–53. [Google Scholar] [CrossRef] [PubMed]
- Lowe, A.J.; Carlin, J.B.; Bennett, C.M.; Abramson, M.J.; Hosking, C.S.; Hill, D.J.; Dharmage, S.C. Atopic disease and breast-feeding—Cause or consequence? J. Allergy Clin. Immunol. 2006, 117, 682–687. [Google Scholar] [CrossRef]
- Wu, T.D.; Brigham, E.P.; McCormack, M.C. Asthma in the Primary Care Setting. Med. Clin. N. Am. 2019, 103, 435–452. [Google Scholar] [CrossRef]
- Xue, M.; Dehaas, E.; Chaudhary, N.; O’Byrne, P.; Satia, I.; Kurmi, O.P. Breastfeeding and risk of childhood asthma: A systematic review and meta-analysis. ERJ Open Res. 2021, 7, 00504–02021. [Google Scholar] [CrossRef]
- Brew, B.K.; Allen, C.W.; Toelle, B.G.; Marks, G.B. Systematic review and meta-analysis investigating breast feeding and childhood wheezing illness. Paediatr. Perinat Epidemiol. 2011, 25, 507–518. [Google Scholar] [CrossRef] [PubMed]
- Gorlanova, O.; Appenzeller, R.; Mahmoud, Y.S.; Ramsey, K.A.; Usemann, J.; Decrue, F.; Kuehni, C.E.; Röösli, M.; Latzin, P.; Fuchs, O.; et al. Effect of breastfeeding duration on lung function, respiratory symptoms and allergic diseases in school-age children. Pediatr. Pulmonol. 2020, 55, 1448–1455. [Google Scholar] [CrossRef] [PubMed]
- Flohr, C.; Henderson, A.J.; Kramer, M.S.; Patel, R.; Thompson, J.; Rifas-Shiman, S.L.; Yang, S.; Vilchuck, K.; Bogdanovich, N.; Hameza, M.; et al. Effect of an Intervention to Promote Breastfeeding on Asthma, Lung Function, and Atopic Eczema at Age 16 Years: Follow-up of the PROBIT Randomized Trial. JAMA Pediatr. 2018, 172, e174064. [Google Scholar] [CrossRef] [PubMed]
- Chiu, C.Y.; Liao, S.L.; Su, K.W.; Tsai, M.H.; Hua, M.C.; Lai, S.H.; Chen, L.C.; Yao, T.C.; Yeh, K.W.; Huang, J.L. Exclusive or Partial Breastfeeding for 6 Months Is Associated With Reduced Milk Sensitization and Risk of Eczema in Early Childhood: The PATCH Birth Cohort Study. Medicine 2016, 95, e3391. [Google Scholar] [CrossRef] [PubMed]
- Rahman, T.; Sarwar, P.F.; Potter, C.; Comstock, S.S.; Klepac-Ceraj, V. Role of human milk oligosaccharide metabolizing bacteria in the development of atopic dermatitis/eczema. Front. Pediatr. 2023, 11, 1090048. [Google Scholar] [CrossRef] [PubMed]
- Ta, L.D.H.; Chan, J.C.Y.; Yap, G.C.; Purbojati, R.W.; Drautz-Moses, D.I.; Koh, Y.M.; Tay, C.J.X.; Huang, C.-H.; Kioh, D.Y.Q.; Woon, J.Y.; et al. A compromised developmental trajectory of the infant gut microbiome and metabolome in atopic eczema. Gut Microbes 2020, 12, 1801964. [Google Scholar] [CrossRef] [PubMed]
- Koukou, Z.; Papadopoulou, E.; Panteris, E.; Papadopoulou, S.; Skordou, A.; Karamaliki, M.; Diamanti, E. The Effect of Breastfeeding on Food Allergies in Newborns and Infants. Children 2023, 10, 1046. [Google Scholar] [CrossRef] [PubMed]
- Grimshaw, K.E.C.; Bryant, T.; Oliver, E.M.; Martin, J.; Maskell, J.; Kemp, T.; Mills, E.N.C.; Foote, K.D.; Margetts, B.M.; Beyer, K.; et al. Incidence and risk factors for food hypersensitivity in UK infants: Results from a birth cohort study. Clin. Transl. Allergy 2015, 6, 1. [Google Scholar] [CrossRef]
- Venter, C.; Pereira, B.; Voigt, K.; Grundy, J.; Clayton, C.B.; Higgins, B.; Arshad, S.H.; Dean, T. Factors associated with maternal dietary intake, feeding and weaning practices, and the development of food hypersensitivity in the infant. Pediatr. Allergy Immunol. 2009, 20, 320–327. [Google Scholar] [CrossRef] [PubMed]
- Capra, M.E.; Decarolis, N.M.; Monopoli, D.; Laudisio, S.R.; Giudice, A.; Stanyevic, B.; Esposito, S.; Biasucci, G. Complementary feeding: Tradition, innovation and pitfalls. Nutrients 2024, 16, 737. [Google Scholar] [CrossRef] [PubMed]
- Lachover-Roth, I.; Cohen-Engler, A.; Furman, Y.; Rosman, Y.; Meir-Shafrir, K.; Mozer-Mandel, M.; Farladansky-Gershnabel, S.; Biron-Shental, T.; Confino-Cohen, R. Food allergy and infant feeding practices: Are they related? Ann. Allergy Asthma Immunol. 2023, 131, 369–375.e3. [Google Scholar] [CrossRef] [PubMed]
- di Mauro, G.; Bernardini, R.; Barberi, S.; Capuano, A.; Correra, A.; Angelis, G.L.D.; Iacono, I.D.; de Martino, M.; Ghiglioni, D.; Di Mauro, D.; et al. Prevention of food and airway allergy: Consensus of the Italian Society of Preventive and Social Paediatrics, the Italian Society of Paediatric Allergy and Immunology, and Italian Society of Pediatrics. World Allergy Organ. J. 2016, 9, 28. [Google Scholar] [CrossRef]
- Libuda, L.; Filipiak-Pittroff, B.; Standl, M.; Schikowski, T.; von Berg, A.; Koletzko, S.; Bauer, C.-P.; Heinrich, J.; Berdel, D.; Gappa, M. Full Breastfeeding and Allergic Diseases-Long-Term Protection or Rebound Effects? Nutrients 2023, 15, 2780. [Google Scholar] [CrossRef]
- Cardwell, C.R.; Stene, L.C.; Ludvigsson, J.; Rosenbauer, J.; Cinek, O.; Svensson, J.; Perez-Bravo, F.; Memon, A.; Gimeno, S.G.; Wadsworth, E.J.; et al. Breastfeeding and childhood-onset type 1 diabetes: A pooled analysis of individual participant data from 43 observational studies. Diabetes Care 2012, 35, 2215–2225. [Google Scholar] [CrossRef] [PubMed]
- Güngör, D.; Nadaud, P.; LaPergola, C.C.; Dreibelbis, C.; Wong, Y.P.; Terry, N.; Abrams, S.A.; Beker, L.; Jacobovits, T.; Järvinen, K.M.; et al. Infant milk feeding practices and diabetes outcomes in offspring: A systematic review. Am. J. Clin. Nutr. 2019, 109, 817S–837S. [Google Scholar] [CrossRef]
- Lund-Blix, N.A.; Sander, S.D.; Størdal, K.; Andersen, A.-M.N.; Rønningen, K.S.; Joner, G.; Skrivarhaug, T.; Njølstad, P.R.; Husby, S.; Stene, L.C. Infant Feeding and Risk of Type 1 Diabetes in Two Large Scandinavian Birth Cohorts. Diabetes Care 2017, 40, 920–927. [Google Scholar] [CrossRef]
- Alotiby, A.A. The role of breastfeeding as a protective factor against the development of the immune-mediated diseases: A systematic review. Front. Pediatr. 2023, 11, 1086999. [Google Scholar] [CrossRef]
- Lund-Blix, N.A.; Stene, L.C.; Rasmussen, T.; Torjesen, P.A.; Andersen, L.F.; Rønningen, K.S. Infant feeding in relation to islet autoimmunity and type 1 diabetes in genetically susceptible children: The MIDIA Study. Diabetes Care 2015, 38, 257–263. [Google Scholar] [CrossRef]
- Holz, A.; Riefflin, M.; Heesen, C.; Riemann-Lorenz, K.; Obi, N.; Becher, H. Breastfeeding and Risk of Multiple Sclerosis: A Systematic Review and Meta-Analysis of Observational Studies. Neuroepidemiology 2022, 56, 391–401. [Google Scholar] [CrossRef] [PubMed]
- Ragnedda, G.; Leoni, S.; Parpinel, M.; Casetta, I.; Riise, T.; Myhr, K.-M.; Wolfson, C.; Pugliatti, M. Reduced duration of breastfeeding is associated with a higher risk of multiple sclerosis in both Italian and Norwegian adult males: The EnvIMS study. J. Neurol. 2015, 262, 1271–1277. [Google Scholar] [CrossRef] [PubMed]
- Conradi, S.; Malzahn, U.; Paul, F.; Quill, S.; Harms, L.; Bergh, F.T.; Ditzenbach, A.; Georgi, T.; Heuschmann, P.; Rosche, B. Breastfeeding is associated with lower risk for multiple sclerosis. Mult. Scler. 2013, 19, 553–558. [Google Scholar] [CrossRef] [PubMed]
- Graves, J.S.; Chitnis, T.; Weinstock-Guttman, B.; Rubin, J.; Zelikovitch, A.S.; Nourbakhsh, B.; Simmons, T.; Waltz, M.; Casper, T.C.; Waubant, E.; et al. Maternal and Perinatal Exposures Are Associated With Risk for Pediatric-Onset Multiple Sclerosis. Pediatrics 2017, 139, e20162838. [Google Scholar] [CrossRef] [PubMed]
- Kindgren, E.; Fredrikson, M.; Ludvigsson, J. Early feeding and risk of Juvenile idiopathic arthritis: A case control study in a prospective birth cohort. Pediatr. Rheumatol. Online J. 2017, 15, 46. [Google Scholar] [CrossRef] [PubMed]
- Mason, T.; Rabinovich, C.E.; Fredrickson, D.D.; Amoroso, K.; Reed, A.M.; Stein, L.D.; Kredich, D.W. Breastfeeding and the development of juvenile rheumatoid arthritis. J. Rheumatol. 1995, 22, 1166–1170. [Google Scholar]
- Koker, O.; Aliyeva, A.; Sahin, S.; Adrovic, A.; Yildiz, M.; Haslak, F.; Gunalp, A.; Barut, K.; Kasapcopur, O. An overview of the relationship between juvenile idiopathic arthritis and potential environmental risk factors: Do early childhood habits or habitat play a role in the affair? Int. J. Rheum Dis. 2022, 25, 1376–1385. [Google Scholar] [CrossRef]
- Rosenberg, A.M. Evaluation of associations between breast feeding and subsequent development of juvenile rheumatoid arthritis. J. Rheumatol. 1996, 23, 1080–1082. [Google Scholar]
- Shenoi, S.; Shaffer, M.L.; Wallace, C.A. Environmental Risk Factors and Early-Life Exposures in Juvenile Idiopathic Arthritis: A Case-Control Study. Arthritis Care Res. 2016, 68, 1186–1194. [Google Scholar] [CrossRef]
- Chen, H.; Wang, J.; Zhou, W.; Yin, H.; Wang, M. Breastfeeding and Risk of Rheumatoid Arthritis: A Systematic Review and Metaanalysis. J. Rheumatol. 2015, 42, 1563–1569. [Google Scholar] [CrossRef] [PubMed]
- Fort, P.; Moses, N.; Fasano, M.; Goldberg, T.; Lifshitz, F. Breast and soy-formula feedings in early infancy and the prevalence of autoimmune thyroid disease in children. J. Am. Coll. Nutr. 1990, 9, 164–167. [Google Scholar] [CrossRef] [PubMed]
- Räisänen, L.; Viljakainen, H.; Sarkkola, C.; Kolho, K.-L. Perinatal risk factors for pediatric onset type 1 diabetes, autoimmune thyroiditis, juvenile idiopathic arthritis, and inflammatory bowel diseases. Eur. J. Pediatr. 2021, 180, 2115–2123. [Google Scholar] [CrossRef] [PubMed]
- Benjamin, E.J.; Virani, S.S.; Callaway, C.W.; Chamberlain, A.M.; Chang, A.R.; Cheng, S.; Chiuve, S.E.; Cushman, M.; Delling, F.N.; Deo, R.; et al. Heart Disease and Stroke Statistics—2018 Update: A Report From the American Heart Association. Circulation 2018, 137, e67–e492. [Google Scholar] [CrossRef]
- Stone, N.; Robinson, J.G.; McBride, F.P.; Schwartz, F.J.S.; Shero, S.T.; Smith, S.C.; Watson, K.; Wilson, P.W.F.; Lichtenstein, A.H.; Merz, C.N.B.; et al. 2013 ACC/AHA Guideline on the Treatment of Blood Cholesterol to Reduce Atherosclerotic Cardiovascular Risk in Adults. Circulation 2014, 129, S1–S45. [Google Scholar] [CrossRef] [PubMed]
- Candelino, M.; Tagi, V.M.; Chiarelli, F. Cardiovascular risk in children: A burden for future generations. Ital. J. Pediatr. 2022, 48, 57. [Google Scholar] [CrossRef] [PubMed]
- de Ferranti, S.D.; Steinberger, J.; Ameduri, R.; Baker, A.; Gooding, H.; Kelly, A.S.; Mietus-Snyder, M.; Mitsnefes, M.M.; Peterson, A.L.; St-Pierre, J.; et al. Cardiovascular Risk Reduction in High-Risk Pediatric Patients: A Scientific Statement From the American Heart Association. Circulation 2019, 139, e603–e634. [Google Scholar] [CrossRef] [PubMed]
- El-Khuffash, A.; Jain, A.; Lewandowski, A.J.; Levy, P.T. Preventing disease in the 21st century: Early breast milk exposure and later cardiovascular health in premature infants. Pediatr. Res. 2020, 87, 385–390. [Google Scholar] [CrossRef] [PubMed]
- Capra, M.E.; Pederiva, C.; Viggiano, C.; De Santis, R.; Banderali, G.; Biasucci, G. Nutritional approach to prevention and treatment of cardiovascular disease in childhood. Nutrients 2021, 13, 2359. [Google Scholar] [CrossRef] [PubMed]
- Ballard, O.; Morrow, A.L. Human milk composition: Nutrients and bioactive factors. Pediatr. Clin. N. Am. 2013, 60, 49–74. [Google Scholar] [CrossRef] [PubMed]
- Hui, X.; Lam, K.S.L.; Vanhoutte, P.M.; Xu, A. Adiponectin and cardiovascular health: An update. Br. J. Pharmacol. 2012, 165, 574–590. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, Y.A.; Lopez, V.; Lönnerdal, B. Mammalian lactoferrin receptors: Structure and function. Cell. Mol. Life Sci. 2005, 62, 2560–2575. [Google Scholar] [CrossRef]
- Hassiotou, F.; Hartmann, P.E. At the dawn of a new discovery: The potential of breast milk stem cells. Adv. Nutr. 2014, 5, 770–778. [Google Scholar] [CrossRef] [PubMed]
- Ounpuu, S.; Negassa, A.; Yusuf, S. INTER-HEART: A global study of risk factors for acute myocardial infarction. Am. Heart J. 2001, 141, 711–721. [Google Scholar] [CrossRef] [PubMed]
- Gillman, M.W.; Rifas-Shiman, S.L.; Camargo, C.A., Jr.; Berkey, C.S.; Frazier, A.L.; Rockett, H.R.; Field, A.E.; Colditz, G.A. Risk of overweight among adolescents who were breastfed as infants. JAMA 2001, 285, 2461–2467. [Google Scholar] [CrossRef]
- Horta, B.L.; Loret de Mola, C.; Victora, C.G. Long-term consequences of breastfeeding on cholesterol, obesity, systolic blood pressure and type 2 diabetes: A systematic review and meta-analysis. Acta Paediatr. 2015, 104, 30–37. [Google Scholar] [CrossRef]
- Owen, C.G.; Whincup, P.H.; Gilg, J.A.; Cook, D.G. Effect of breast feeding in infancy on blood pressure in later life: Systematic review and meta-analysis. BMJ 2003, 327, 1189–1195. [Google Scholar] [CrossRef]
- Hosaka, M.; Asayama, K.; Staessen, J.A.; Ohkubo, T.; Hayashi, K.; Tatsuta, N.; Kurokawa, N.; Satoh, M.; Hashimoto, T.; Hirose, T.; et al. Breastfeeding leads to lower blood pressure in 7-year-old Japanese children: Tohoku Study of Child Development. Hypertens. Res. 2012, 36, 117–122. [Google Scholar] [CrossRef]
- Liu, J.; Gao, D.; Li, Y.; Chen, M.; Wang, X.; Ma, Q.; Ma, T.; Chen, L.; Ma, Y.; Zhang, Y.; et al. Breastfeeding Duration and High Blood Pressure in Children and Adolescents: Results from a Cross-Sectional Study of Seven Provinces in China. Nutrients 2022, 14, 3152. [Google Scholar] [CrossRef] [PubMed]
- de Jonge, L.L.; van Osch-Gevers, L.; Geelhoed, J.M.; Hofman, A.; Steegers, E.A.; Helbing, W.A.; Jaddoe, V.W. Breastfeeding is not associated with left cardiac structures and blood pressure during the first two years of life. The Generation R Study. Early Hum. Dev. 2010, 86, 463–468. [Google Scholar] [CrossRef] [PubMed]
- Järvisalo, M.J.; Hutri-Kähönen, N.; Juonala, M.; Mikkilä, V.; Räsänen, L.; Lehtimäki, T.; Viikari, J.; Raitakari, O.T. Breast feeding in infancy and arterial endothelial function later in life. The Cardiovascular Risk in Young Finns Study. Eur. J. Clin. Nutr. 2008, 63, 640–645. [Google Scholar] [CrossRef]
- Holmes, V.A.; Cardwell, C.; McKinley, M.C.; Young, I.S.; Murray, L.J.; Boreham, C.A.; Woodside, J.V. Association between breast-feeding and anthropometry and CVD risk factor status in adolescence and young adulthood: The Young Hearts Project, Northern Ireland. Public Health Nutr. 2010, 13, 771–778. [Google Scholar] [CrossRef] [PubMed]
- Rudnicka, A.R.; Owen, C.G.; Strachan, D.P. The effect of breastfeeding on cardiorespiratory risk factors in adult life. Pediatrics 2007, 119, e1107–e1115. [Google Scholar] [CrossRef]
- Wilson, P.W.; D’Agostino, R.B.; Levy, D.; Belanger, A.M.; Silbershatz, H.; Kannel, W.B. Prediction of coronary heart disease using risk factor categories. Circulation 1998, 97, 1837–1847. [Google Scholar] [CrossRef] [PubMed]
- Owen, C.G.; Whincup, P.H.; Kaye, S.J.; Martin, R.M.; Davey Smith, G.; Cook, D.G.; Bergstrom, E.; Black, S.; Wadsworth, M.E.; Fall, C.H.; et al. Does initial breastfeeding lead to lower blood cholesterol in adult life? A quantitative review of the evidence. Am. J. Clin. Nutr. 2008, 88, 305–314. [Google Scholar] [CrossRef]
- Capra, M.E.; Monopoli, D.; Decarolis, N.M.; Giudice, A.; Stanyevic, B.; Esposito, S.; Biasucci, G. Dietary Models and Cardiovascular Risk Prevention in Pediatric Patients. Nutrients 2023, 15, 3664. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Gao, D.; Chen, L.; Ma, T.; Ma, Y.; Chen, M.; Dong, B.; Dong, Y.; Ma, J.; Arnold, L. The Association between Breastfeeding Duration and Lipid Profile among Children and Adolescents. Nutrients 2021, 13, 2728. [Google Scholar] [CrossRef] [PubMed]
- Hui, L.L.; Kwok, M.K.; Nelson, E.A.S.; Lee, S.L.; Leung, G.M.; Schooling, C.M. Breastfeeding in Infancy and Lipid Profile in Adolescence. Pediatrics 2019, 143, e20183075. [Google Scholar] [CrossRef]
- Singhal, A.; Cole, T.J.; Fewtrell, M.; Lucas, A. Breastmilk feeding and lipoprotein profile in adolescents born preterm: Follow-up of a prospective randomised study. Lancet 2004, 363, 1571–1578. [Google Scholar] [CrossRef] [PubMed]
- Mayer-Davis, E.J.; Lawrence, J.M.; Dabelea, D.; Divers, J.; Isom, S.; Dolan, L.; Imperatore, G.; Linder, B.; Marcovina, S.; Pettitt, D.J.; et al. Incidence Trends of Type 1 and Type 2 Diabetes among Youths, 2002–2012. N. Engl. J. Med. 2017, 376, 1419–1429. [Google Scholar] [CrossRef] [PubMed]
- Cheshmeh, S.; Nachvak, S.M.; Hojati, N.; Elahi, N.; Heidarzadeh-Esfahani, N.; Saber, A. The effects of breastfeeding and formula feeding on the metabolic factors and the expression level of obesity and diabetes-predisposing genes in healthy infants. Physiol. Rep. 2022, 10, e15469. [Google Scholar] [CrossRef] [PubMed]
- Boddicker, R.L.; Koltes, J.E.; Fritz-Waters, E.R.; Koesterke, L.; Weeks, N.; Yin, T.; Mani, V.; Nettleton, D.; Reecy, J.M.; Baumgard, L.H.; et al. Genome-wide methylation profile following prenatal and postnatal dietary omega-3 fatty acid supplementation in pigs. Anim. Genet. 2016, 47, 658–671. [Google Scholar] [CrossRef] [PubMed]
- Hui, L.L.; Kwok, M.K.; Nelson, E.A.S.; Lee, S.L.; Leung, G.M.; Schooling, C.M. The association of breastfeeding with insulin resistance at 17 years: Prospective observations from Hong Kong’s “Children of 1997” birth cohort. Matern. Child Nutr. 2018, 14, e12490. [Google Scholar] [CrossRef] [PubMed]
- Pirilä, S.; Taskinen, M.; Viljakainen, H.; Mäkitie, O.; Kajosaari, M.; Saarinen-Pihkala, U.M.; Turanlahti, M. Breast-fed infants and their later cardiovascular health: A prospective study from birth to age 32 years. Br. J. Nutr. 2014, 111, 1069–1076. [Google Scholar] [CrossRef] [PubMed]
- Lewandowski, A.J.; Levy, P.T.; Bates, M.L.; McNamara, P.J.; Nuyt, A.M.; Goss, K.N. Impact of the Vulnerable Preterm Heart and Circulation on Adult Cardiovascular Disease Risk. Hypertension 2020, 76, 1028–1037. [Google Scholar] [CrossRef] [PubMed]
- Lyons, K.E.; Ryan, C.A.; Dempsey, E.M.; Ross, R.P.; Stanton, C. Breast milk, a source of beneficial microbes and associated benefits for infant health. Nutrients 2020, 12, 1039. [Google Scholar] [CrossRef] [PubMed]
- Houghteling, P.D.; Walker, W.A. Why is initial bacterial colonization of the intestine important to infants’and children’s health? J. Pediatr. Gastroenterol. Nutr. 2015, 60, 294–307. [Google Scholar] [CrossRef] [PubMed]
- Milani, C.; Duranti, S.; Bottacini, F.; Casey, E.; Turroni, F.; Mahony, J.; Belzer, C.; Delgado Palacio, S.; Arboleya Montes, S.; Mancabelli, L.; et al. The first microbial colonizers of the human gut: Composition, activities, and health implications of the infant gut Microbiota. Microbiol. Mol. Biol. Rev. 2017, 81, e00036-17. [Google Scholar] [CrossRef] [PubMed]
- Henrick, B.M.; Rodriguez, L.; Lakshmikanth, T.; Pou, C.; Henckel, E.; Arzoomand, A.; Olin, A.; Wang, J.; Mikes, J.; Tan, Z.; et al. Bifidobacteria mediated immune system imprinting early in life. Cell 2021, 184, 3884–3898.e11. [Google Scholar] [CrossRef] [PubMed]
- Doare, L.; Holder, K.; Bassett, B.; Pannaraj, A. Mother’s milk: A purposeful contribution to the development of the infant Microbiota and immunity. Front. Immunol. 2018, 9, 361. [Google Scholar] [CrossRef]
- Chong, H.-Y.; Tan, L.T.-H.; Law, J.W.-F.; Hong, K.-W.; Ratnasingam, V.; Ab Mutalib, N.-S.; Lee, L.-H.; Letchumanan, V. Exploring the potential of human milk and formula milk on infants’ gut and health. Nutrients 2022, 14, 3554. [Google Scholar] [CrossRef] [PubMed]
- Hermansson, H.; Kumar, H.; Collado, M.C.; Salminen, S.; Isolauri, E.; Rautava, S. Breast milk Microbiota is shaped by mode of delivery and intrapartum antibiotic exposure. Front. Nutr. 2019, 6, 3554. [Google Scholar] [CrossRef] [PubMed]
- Cabrera-Rubio, R.; Collado, M.C.; Laitinen, K.; Salminen, S.; Isolauri, E.; Mira, A. The human milk microbiome changes over lactation and is shaped by maternal weight and mode of delivery. Am. J. Clin. Nutr. 2012, 96, 544–551. [Google Scholar] [CrossRef]
- An Den Elsen, L.; Rekima, A.; Verhasselt, V. Early-Life Nutrition and Gut Immune Development; Nestlé Nutrition Institute Workshop Series S Karger AG: Basel, Switzerland, 2019; pp. 137–149. [Google Scholar]
- Narasimhan, P.B.; Marcovecchio, P.; Hamers, A.A.J.; Hedrick, C.C. Nonclassical monocytes in health and disease. Annu. Rev. Immunol. 2019, 37, 439–456. [Google Scholar] [CrossRef]
- Gu, J.; Ni, X.; Pan, X.; Lu, H.; Lu, Y.; Zhao, J.; Zheng, S.G.; Hippen, K.L.; Wang, X.; Lu, L. Human CD39hi regulatory T cells present stronger stability and function under inflammatory conditions. Cell. Mol. Immunol. 2017, 14, 521–528. [Google Scholar] [CrossRef] [PubMed]
- Ehrlich, A.M.; Pacheco, A.R.; Henrick, B.M.; Taft, D.; Xu, G.; Huda, M.N.; Mishchuk, D.; Goodson, M.L.; Slupsky, C.; Barile, D.; et al. Indole-3-lactic acid associated with Bifidobacterium-dominated microbiota significantly decreases inflammation in intestinal epithelial cells. BMC Microbiol. 2020, 20, 357. [Google Scholar] [CrossRef]
- Davis, E.C.; Castagna, V.P.; Sela, D.A.; Hillard, M.A.; Lindberg, S.; Mantis, N.J.; Seppo, A.E.; Järvinen, K.M. Gut microbiome and breast-feeding: Implications for early immune development. J. Allergy Clin. Immunol. 2022, 150, 523–534. [Google Scholar] [CrossRef] [PubMed]
- Praveen, P.; Jordan, F.; Priami, C.; Morine, M.J. The role of breast-feeding in infant immune system: A systems perspective on the intestinal microbiome. Microbiome 2015, 3, 41. [Google Scholar] [CrossRef]
- Silano, M.; Agostoni, C.; Sanz, Y.; Guandalini, S. Infant feeding and risk of developing celiac disease: A systematic review. BMJ Open 2016, 6, e009163. [Google Scholar] [CrossRef]
- Ivarsson, A.; Hernell, O.; Stenlund, H.; Persson, L.Å. Breast-feeding protects against celiac disease. Am. J. Clin. Nutr. 2002, 75, 914–921. [Google Scholar] [CrossRef]
- Norris, J.M.; Barriga, K.; Hoffenberg, E.J.; Taki, I.; Miao, D.; Haas, J.E.; Emery, L.M.; Sokol, R.J.; Erlich, H.A.; Eisenbarth, G.S.; et al. Risk of celiac disease autoimmunity and timing of gluten introduction in the diet of infants at increased risk of disease. JAMA 2005, 293, 2343–2351. [Google Scholar] [CrossRef] [PubMed]
- ESPGHAN Committee on Nutrition; Agostoni, C.; Braegger, C.; Decsi, T.; Kolacek, S.; Koletzko, B.; Michaelsen, K.F.; Mihatsch, W.; Moreno, L.A.; Puntis, J.; et al. Breast-feeding: A commentary by the ESPGHAN Committee on Nutrition. J. Pediatr. Gastroenterol. Nutr. 2009, 49, 112–125. [Google Scholar]
- Ananthakrishnan, A.N.; Bernstein, C.N.; Iliopoulos, D.; Macpherson, A.; Neurath, M.F.; Ali, R.A.R.; Vavricka, S.R.; Fiocchi, C. Environmental triggers in IBD: A review of progress and evidence. Nat. Rev. Gastroenterol. Hepatol. 2018, 15, 39–49. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, M.; Sabino, J.; Frias-Gomes, C.; Hillenbrand, C.M.; Soudant, C.; Axelrad, J.E.; Shah, S.C.; Ribeiro-Mourão, F.; Lambin, T.; Peter, I.; et al. Early life exposures and the risk of inflammatory bowel disease: Systematic review and meta-analyses. EClinicalMedicine 2021, 36, 100884. [Google Scholar] [CrossRef] [PubMed]
- Azad, M.B.; Konya, T.; Maughan, H.; Guttman, D.S.; Field, C.J.; Chari, R.S.; Sears, M.R.; Becker, A.B.; Scott, J.A.; Kozyrskyj, A.L. Gut microbiota of healthy Canadian infants: Profiles by mode of delivery and infant diet at 4 months. CMAJ 2013, 185, 385–394. [Google Scholar] [CrossRef] [PubMed]
- Azad, M.; Konya, T.; Persaud, R.; Guttman, D.; Chari, R.; Field, C.; Sears, M.R.; Mandhane, P.; Turvey, S.; Subbarao, P.; et al. Impact of maternal Intrapartum antibiotics, method of birth and breastfeeding on gut microbiota during the first year of life: A prospective cohort study. BJOG 2016, 123, 983–993. [Google Scholar] [CrossRef] [PubMed]
- Madsen, K.L.; Fedorak, R.N.; Tavernini, M.M.; Doyle, J.S. Normal breast milk limits the development of colitis in IL-10-deficient mice. Inflamm. Bowel Dis. 2002, 8, 390–398. [Google Scholar] [CrossRef] [PubMed]
- Barclay, A.R.; Russell, R.K.; Wilson, M.L.; Gilmour, W.H.; Satsangi, J.; Wilson, D.C. Systematic review: The role of breastfeeding in the development of pediatric inflammatory bowel disease. J. Pediatr. 2009, 155, 421–426. [Google Scholar] [CrossRef] [PubMed]
Non Communicable Disease | BF Effect on Disease Development |
---|---|
Asthma | There is no direct effect of BF on development of lung function. However, a sort of protection may be secondarily due to a decreased vulnerability to early viral infections or chronic inflammatory conditions during preschool years. |
Eczema and allergic rhinitis | The protective effect of BF on these diseases is controversial and may be seen mostly within the first years of life. Specific microbial genes and products (such as human milk oligosaccharides) of human milk have some immunomodulatory effects and may be essential for this protective effect. |
Food allergies | BF appears to provide protection against various common childhood allergic diseases but not food allergies. |
T1DM | Evidence of a protective effect of BF vs. no BF and of longer vs. shorter BF against T1DM. |
Other autoimmune disease | Few studies suggest protective effects of BF against Rheumatoid arthritis and Multiple Sclerosis; no correlation found between BF and JIA, BF, and SLE; not enough studies looking into the effects of BF towards developing autoimmune thyroiditis. |
Overweight/obesity | BF may reduce the incidence of weight excess and the longer the duration of BF, the greater the preventive effect. |
Blood hypertension | BF has a small protective effect against systolic blood pressure, mostly in childhood, but other factors such as environment and socioeconomic and demographic characteristics cannot be ruled out. |
T2DM | The relationship between BF and T2DM incidence is not yet fully understood. |
Hypercholesterolemia | BM is richer in cholesterol than formula milk, which may result in the inhibition of endogenous cholesterol. Earlier studies showed BF may be associated with lower cholesterol concentration. |
Glucose metabolism | The relationship between BF and T2DM incidence is not yet fully understood. BF may positively affect fasting insulin and HOMA but does not have an effect on fasting glucose. |
Cardiac morphology | There is a beneficial association in subjects born prematurely, but there are not any studies about babies born at term. |
Celiac disease | BF during the introduction of gluten into the diet, along with an extended duration of breastfeeding, may provide a protective effect against the onset of CD. |
Inflammatory bowel disease | BF, by reducing early and late alterations of the microbiota, may play a protective role in the development of IBD. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Capra, M.E.; Aliverti, V.; Bellani, A.M.; Berzieri, M.; Montani, A.G.; Pisseri, G.; Sguerso, T.; Esposito, S.; Biasucci, G. Breastfeeding and Non-Communicable Diseases: A Narrative Review. Nutrients 2025, 17, 511. https://doi.org/10.3390/nu17030511
Capra ME, Aliverti V, Bellani AM, Berzieri M, Montani AG, Pisseri G, Sguerso T, Esposito S, Biasucci G. Breastfeeding and Non-Communicable Diseases: A Narrative Review. Nutrients. 2025; 17(3):511. https://doi.org/10.3390/nu17030511
Chicago/Turabian StyleCapra, Maria Elena, Valentina Aliverti, Arianna Maria Bellani, Martina Berzieri, Anna Giuseppina Montani, Gianlorenzo Pisseri, Tullia Sguerso, Susanna Esposito, and Giacomo Biasucci. 2025. "Breastfeeding and Non-Communicable Diseases: A Narrative Review" Nutrients 17, no. 3: 511. https://doi.org/10.3390/nu17030511
APA StyleCapra, M. E., Aliverti, V., Bellani, A. M., Berzieri, M., Montani, A. G., Pisseri, G., Sguerso, T., Esposito, S., & Biasucci, G. (2025). Breastfeeding and Non-Communicable Diseases: A Narrative Review. Nutrients, 17(3), 511. https://doi.org/10.3390/nu17030511