The Association Between Serum Ergothioneine Concentration and Japanese Dietary Habits: The Third Survey of the ROAD Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Examination at EGT Baseline (Third Survey of ROAD Study)
2.2.1. Questionnaire, Interviews, and Anthropometric Measurements
2.2.2. Dietary Assessment
2.2.3. Measurement of Serum EGT Concentrations
2.3. Ethical Approval
2.4. Statistical Analysis
3. Results
3.1. Characteristics of Participants
3.2. Serum Values of EGT
3.3. Association Between Serum EGT Concentration and Diet History
3.4. Association Between Serum EGT Concentration and Dietary Nutrient History
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- National Institute of Population and Social Security Research in Japan. Population Projections for Japan (2017): 2016 to 2065. Available online: https://www.ipss.go.jp/pp-zenkoku/e/zenkoku_e2017/pp29_summary.pdf (accessed on 26 November 2024).
- Paul, B.D.; Snyder, S.H. The unusual amino acid L-ergothioneine is a physiologic cytoprotectant. Cell Death Differ. 2010, 17, 1134–1140. [Google Scholar] [CrossRef] [PubMed]
- Nakamichi, N.; Nakayama, K.; Ishimoto, T.; Masuo, Y.; Wakayama, T.; Sekiguchi, H.; Sutoh, K.; Usumi, K.; Iseki, S.; Kato, Y. Food-derived hydrophilic antioxidant ergothioneine is distributed to the brain and exerts antidepressant effect in mice. Brain Behav. 2016, 6, e00477. [Google Scholar] [CrossRef] [PubMed]
- Nakamichi, N.; Nakao, S.; Nishiyama, M.; Takeda, Y.; Ishimoto, T.; Masuo, Y.; Matsumoto, S.; Suzuki, M.; Kato, Y. Oral Administration of the Food-Derived Hydrophilic Antioxidant Ergothioneine Enhances Object Recognition Memory in Mice. Curr. Mol. Pharmacol. 2021, 14, 220–233. [Google Scholar] [CrossRef] [PubMed]
- Ames, B.N. Prolonging healthy aging: Longevity vitamins and proteins. Proc. Natl. Acad. Sci. USA 2018, 115, 10836–10844. [Google Scholar] [CrossRef]
- Cheah, I.K.; Feng, L.; Tang, R.M.Y.; Lim, K.H.C.; Halliwell, B. Ergothioneine levels in an elderly population decrease with age and incidence of cognitive decline; a risk factor for neurodegeneration? Biochem. Biophys. Res. Commun. 2016, 478, 162–167. [Google Scholar] [CrossRef]
- Hatano, T.; Saiki, S.; Okuzumi, A.; Mohney, R.P.; Hattori, N. Identification of novel biomarkers for Parkinson’s disease by metabolomic technologies. J. Neurol. Neurosurg. Psychiatry 2016, 87, 295–301. [Google Scholar] [CrossRef]
- Kameda, M.; Teruya, T.; Yanagida, M.; Kondoh, H. Frailty markers comprise blood metabolites involved in antioxidation, cognition, and mobility. Proc. Natl. Acad. Sci. USA 2020, 117, 9483–9489. [Google Scholar] [CrossRef]
- Nierenberg, J.L.; He, J.; Li, C.; Gu, X.; Shi, M.; Razavi, A.C.; Mi, X.; Li, S.; Bazzano, L.A.; Anderson, A.H.; et al. Serum metabolites associate with physical performance among middle-aged adults: Evidence from the Bogalusa Heart Study. Aging 2020, 12, 11914–11941. [Google Scholar] [CrossRef]
- Shinozaki, Y.; Furuichi, K.; Toyama, T.; Kitajima, S.; Hara, A.; Iwata, Y.; Sakai, N.; Shimizu, M.; Kaneko, S.; Isozumi, N.; et al. Impairment of the carnitine/organic cation transporter 1-ergothioneine axis is mediated by intestinal transporter dysfunction in chronic kidney disease. Kidney Int. 2017, 92, 1356–1369. [Google Scholar] [CrossRef]
- Lai, Y.; Xue, J.; Liu, C.W.; Gao, B.; Chi, L.; Tu, P.; Lu, K.; Ru, H. Serum Metabolomics Identifies Altered Bioenergetics, Signaling Cascades in Parallel with Exposome Markers in Crohn’s Disease. Molecules 2019, 24, 449. [Google Scholar] [CrossRef]
- Chaves, N.A.; Alegria, T.G.P.; Dantas, L.S.; Netto, L.E.S.; Miyamoto, S.; Bonini Domingos, C.R.; da Silva, D.G.H. Impaired antioxidant capacity causes a disruption of metabolic homeostasis in sickle erythrocytes. Free Radic. Biol. Med. 2019, 141, 34–46. [Google Scholar] [CrossRef] [PubMed]
- Smith, E.; Ottosson, F.; Hellstrand, S.; Ericson, U.; Orho-Melander, M.; Fernandez, C.; Melander, O. Ergothioneine is associated with reduced mortality and decreased risk of cardiovascular disease. Heart 2020, 106, 691–697. [Google Scholar] [CrossRef] [PubMed]
- Katsube, M.; Watanabe, H.; Suzuki, K.; Ishimoto, T.; Tatebayashi, Y.; Kato, Y.; Murayama, N. Food-derived antioxidant ergothioneine improves sleep difficulties in humans. J. Funct. Foods 2022, 95, 105165. [Google Scholar] [CrossRef]
- Katsube, M.; Ishimoto, T.; Fukushima, Y.; Kagami, A.; Shuto, T.; Kato, Y. Ergothioneine promotes longevity and healthy aging in male mice. Geroscience 2024, 46, 3889–3909. [Google Scholar] [CrossRef]
- Fovet, T.; Guilhot, C.; Delobel, P.; Chopard, A.; Py, G.; Brioche, T. Ergothioneine Improves Aerobic Performance Without Any Negative Effect on Early Muscle Recovery Signaling in Response to Acute Exercise. Front. Physiol. 2022, 13, 834597. [Google Scholar] [CrossRef]
- Halliwell, B.; Cheah, I.K.; Tang, R.M.Y. Ergothioneine—A diet-derived antioxidant with therapeutic potential. FEBS Lett. 2018, 592, 3357–3366. [Google Scholar] [CrossRef]
- Yoshimura, N.; Muraki, S.; Oka, H.; Kawaguchi, H.; Nakamura, K.; Akune, T. Cohort profile: Research on Osteoarthritis/Osteoporosis Against Disability study. Int. J. Epidemiol. 2010, 39, 988–995. [Google Scholar] [CrossRef]
- Yoshimura, N.; Muraki, S.; Oka, H.; Mabuchi, A.; En-Yo, Y.; Yoshida, M.; Saika, A.; Yoshida, H.; Suzuki, T.; Yamamoto, S.; et al. Prevalence of knee osteoarthritis, lumbar spondylosis, and osteoporosis in Japanese men and women: The research on osteoarthritis/osteoporosis against disability study. J. Bone Miner. Metab. 2009, 27, 620–628. [Google Scholar] [CrossRef]
- Muraki, S.; Akune, T.; Oka, H.; En-Yo, Y.; Yoshida, M.; Nakamura, K.; Kawaguchi, H.; Yoshimura, N. Prevalence of falls and the association with knee osteoarthritis and lumbar spondylosis as well as knee and lower back pain in Japanese men and women. Arthritis Care Res. 2011, 63, 1425–1431. [Google Scholar] [CrossRef]
- Muraki, S.; Akune, T.; Oka, H.; Ishimoto, Y.; Nagata, K.; Yoshida, M.; Tokimura, F.; Nakamura, K.; Kawaguchi, H.; Yoshimura, N. Incidence and risk factors for radiographic knee osteoarthritis and knee pain in Japanese men and women: A longitudinal population-based cohort study. Arthritis Rheum. 2012, 64, 1447–1456. [Google Scholar] [CrossRef]
- Muraki, S.; Akune, T.; Oka, H.; Ishimoto, Y.; Nagata, K.; Yoshida, M.; Tokimura, F.; Nakamura, K.; Kawaguchi, H.; Yoshimura, N. Incidence and risk factors for radiographic lumbar spondylosis and lower back pain in Japanese men and women: The ROAD study. Osteoarthr. Cartil. 2012, 20, 712–718. [Google Scholar] [CrossRef] [PubMed]
- Yoshimura, N.; Muraki, S.; Oka, H.; Tanaka, S.; Kawaguchi, H.; Nakamura, K.; Akune, T. Accumulation of metabolic risk factors such as overweight, hypertension, dyslipidaemia, and impaired glucose tolerance raises the risk of occurrence and progression of knee osteoarthritis: A 3-year follow-up of the ROAD study. Osteoarthr. Cartil. 2012, 20, 1217–1226. [Google Scholar] [CrossRef] [PubMed]
- Yoshimura, N.; Muraki, S.; Oka, H.; Tanaka, S.; Kawaguchi, H.; Nakamura, K.; Akune, T. Mutual associations among musculoskeletal diseases and metabolic syndrome components: A 3-year follow-up of the ROAD study. Mod. Rheumatol. 2015, 25, 438–448. [Google Scholar] [CrossRef] [PubMed]
- Otsuka, Y.; Iidaka, T.; Horii, C.; Muraki, S.; Oka, H.; Nakamura, K.; Izumo, T.; Rogi, T.; Shibata, H.; Tanaka, S.; et al. Dietary Intake of Vitamin E and Fats Associated with Sarcopenia in Community-Dwelling Older Japanese People: A Cross-Sectional Study from the Fifth Survey of the ROAD Study. Nutrients 2021, 13, 1730. [Google Scholar] [CrossRef]
- Sasaki, S.; Yanagibori, R.; Amano, K. Self-administered diet history questionnaire developed for health education: A relative validation of the test-version by comparison with 3-day diet record in women. J. Epidemiol. 1998, 8, 203–215. [Google Scholar] [CrossRef]
- Muraki, S.; Akune, T.; En-yo, Y.; Yoshida, M.; Tanaka, S.; Kawaguchi, H.; Nakamura, K.; Oka, H.; Yoshimura, N. Association of dietary intake with joint space narrowing and osteophytosis at the knee in Japanese men and women: The ROAD study. Mod. Rheumatol. 2014, 24, 236–242. [Google Scholar] [CrossRef]
- Odai, T.; Terauchi, M.; Hirose, A.; Kato, K.; Miyasaka, N. Bone Mineral Density in Premenopausal Women Is Associated with the Dietary Intake of α-Tocopherol: A Cross-Sectional Study. Nutrients 2019, 11, 2474. [Google Scholar] [CrossRef]
- Kobayashi, S.; Murakami, K.; Sasaki, S.; Okubo, H.; Hirota, N.; Notsu, A.; Fukui, M.; Date, C. Comparison of relative validity of food group intakes estimated by comprehensive and brief-type self-administered diet history questionnaires against 16 d dietary records in Japanese adults. Public Health Nutr. 2011, 14, 1200–1211. [Google Scholar] [CrossRef]
- Maldonado, E.; Morales-Pison, S.; Urbina, F.; Solari, A. Aging Hallmarks and the Role of Oxidative Stress. Antioxidants 2023, 12, 651. [Google Scholar] [CrossRef]
- Sotgia, S.; Zinellu, A.; Mangoni, A.A.; Pintus, G.; Attia, J.; Carru, C.; McEvoy, M. Clinical and biochemical correlates of serum L-ergothioneine concentrations in community-dwelling middle-aged and older adults. PLoS ONE 2014, 9, e84918. [Google Scholar] [CrossRef]
- Tian, X.; Thorne, J.L.; Moore, J.B. Ergothioneine: An underrecognised dietary micronutrient required for healthy ageing? Br. J. Nutr. 2023, 129, 104–114. [Google Scholar] [CrossRef] [PubMed]
- Jones, G.W.; Doyle, S.; Fitzpatrick, D.A. The evolutionary history of the genes involved in the biosynthesis of the antioxidant ergothioneine. Gene 2014, 549, 161–170. [Google Scholar] [CrossRef] [PubMed]
- Park, E.-J.; Lee, W.Y.; Kim, S.T.; Bae, E.K. Ergothioneine accumulation in a medicinal plant Gastrodia elata. J. Med. Plants Res. 2010, 4, 1141–1147. [Google Scholar]
- Pfeiffer, C.; Bauer, T.; Surek, B.; Schömig, E.; Gründemann, D. Cyanobacteria produce high levels of ergothioneine. Food Chem. 2011, 129, 1766–1769. [Google Scholar] [CrossRef]
- Liao, C.; Seebeck, F.P. Convergent Evolution of Ergothioneine Biosynthesis in Cyanobacteria. Chembiochem 2017, 18, 2115–2118. [Google Scholar] [CrossRef]
- Fernández-Bautista, T.; Gómez-Gómez, B.; Gracia-Lor, E.; Pérez-Corona, T.; Madrid, Y. Investigating the Presence of Selenoneine, Ergothioneine, and Selenium-Containing Biomolecules in Fish and Fish-Derived Commercial Products. J. Agric. Food Chem. 2024, 72, 26155–26164. [Google Scholar] [CrossRef]
Total | Men | Women | p-Value | |
---|---|---|---|---|
No. of participants | 1457 | 474 | 983 | - |
Age (years) | 65.6 ± 13.0 | 66.4 ± 13.6 | 65.2 ± 12.7 | 0.11 |
Height (cm) | 156 ± 9.1 | 164.7 ± 7.2 | 151.8 ± 6.7 | <0.001 |
Weight (kg) | 55.6 ± 11.2 | 63.4 ± 11.4 | 51.8 ± 8.8 | <0.001 |
BMI (kg/m2) | 22.7 ± 3.5 | 23.3 ± 3.4 | 22.5 ± 3.5 | <0.001 |
Serum EGT concentration (μM) Median (IQR) | 0.74 (0.39–1.37) | 0.67 (0.35–1.26) | 0.78 (0.40–1.43) | <0.01 |
Diet | Intake Amount (g/Day) | r | p-Value |
---|---|---|---|
Total fish | 145.3 ± 101.7 | 0.215 | <0.001 |
Mushroom | 10.6 ± 9.5 | 0.202 | <0.001 |
Grilled fish | 47.5 ± 41.9 | 0.200 | <0.001 |
Cooked sugar | 3.3 ± 1.8 | 0.173 | <0.001 |
Fish with bones | 17.9 ± 22.8 | 0.168 | <0.001 |
Cooked salt | 3.4 ± 1.3 | 0.157 | <0.001 |
Oily fish | 23.2 ± 23.4 | 0.152 | <0.001 |
Tofu and fried tofu | 45.4 ± 36 | 0.148 | <0.001 |
Fried food | 24.5 ± 21.6 | −0.132 | <0.001 |
Braised fish | 56.6 ± 48.6 | 0.130 | <0.001 |
Braised food | 104.4 ± 66.5 | 0.128 | <0.001 |
Bread | 48.3 ± 29.1 | −0.123 | <0.001 |
Seaweed | 10.8 ± 11 | 0.123 | <0.001 |
Green leafy vegetables | 34.7 ± 32.9 | 0.121 | <0.001 |
Dried fish | 25 ± 23.5 | 0.118 | <0.001 |
Ramen noodles | 12.7 ± 17.8 | −0.091 | 0.001 |
Carrots and pumpkins | 20.9 ± 17.8 | 0.091 | 0.001 |
Grilled meat | 11.1 ± 13.1 | −0.088 | 0.001 |
Cooking oil | 9.4 ± 5.1 | −0.078 | 0.003 |
Cabbage | 39.8 ± 31.9 | 0.075 | 0.004 |
Sake | 18.9 ± 63.5 | 0.068 | 0.009 |
Soy sauce | 1.6 ± 0.4 | −0.067 | 0.010 |
Persimmon/Strawberry | 28.5 ± 37.6 | −0.066 | 0.012 |
Sugar | 2.8 ± 4.5 | −0.064 | 0.014 |
Ham | 6.8 ± 8.2 | −0.064 | 0.014 |
Radish/tuber | 20.7 ± 20.5 | 0.062 | 0.019 |
Hamburger steak | 25.1 ± 22.8 | −0.060 | 0.023 |
Citrus fruits | 49.5 ± 51.5 | −0.056 | 0.032 |
Beer | 69.7 ± 174.7 | 0.054 | 0.039 |
Udon noodles | 20.4 ± 22.6 | 0.051 | 0.051 |
100% juice | 48.1 ± 86.9 | −0.050 | 0.058 |
Rice | 315.7 ± 166.3 | 0.048 | 0.068 |
Liver | 0.8 ± 2.8 | 0.047 | 0.075 |
Ice cream | 11.2 ± 23.7 | −0.046 | 0.082 |
Pickles (other) | 12.5 ± 14.1 | 0.045 | 0.086 |
Low-fat fish | 16.3 ± 18.5 | 0.042 | 0.110 |
Canned tuna | 2.7 ± 5.5 | 0.041 | 0.115 |
Coke | 50.6 ± 104.2 | −0.041 | 0.116 |
Mayonnaise | 5.8 ± 5.4 | −0.040 | 0.123 |
Raw fish | 29.4 ± 28.7 | −0.040 | 0.125 |
Natto | 7.0 ± 13.1 | 0.038 | 0.149 |
Japanese sweets | 10 ± 12.1 | 0.036 | 0.168 |
Citrus fruits (seasonal) | 21.3 ± 15.9 | 0.035 | 0.184 |
Confectionery | 20.6 ± 24.5 | −0.034 | 0.190 |
Potato | 49.8 ± 44.8 | 0.033 | 0.208 |
Wine | 2.7 ± 18.2 | 0.032 | 0.221 |
Tempura/fried fish | 19.8 ± 19.7 | −0.032 | 0.222 |
Miso soup | 129.1 ± 110.8 | 0.031 | 0.244 |
Other | 38.7 ± 40.5 | −0.030 | 0.254 |
Green tea | 243.4 ± 232.2 | −0.029 | 0.264 |
Chicken | 23.2 ± 20.1 | −0.027 | 0.295 |
Coffee | 219.1 ± 176.7 | 0.026 | 0.329 |
Strawberries (seasonal) | 8 ± 11 | 0.024 | 0.350 |
Pork and beef | 27.8 ± 20.4 | 0.024 | 0.367 |
Pickles (green leafy vegetables) | 9.1 ± 10.2 | 0.020 | 0.434 |
Milk | 74.7 ± 81.5 | −0.019 | 0.466 |
Tomatoes | 22.3 ± 25.8 | 0.019 | 0.480 |
Rice crackers | 9.9 ± 12.4 | 0.017 | 0.522 |
Oysters (seasonal) | 10.5 ± 11.3 | 0.015 | 0.570 |
Stir-fry | 43.7 ± 32.4 | 0.015 | 0.573 |
Noodle soup | 60.6 ± 56.6 | −0.014 | 0.586 |
Whiskey | 0.8 ± 8.9 | −0.012 | 0.642 |
Pasta | 9.0 ± 15.5 | −0.009 | 0.739 |
Squid, octopus, shrimp, shellfish | 11.6 ± 13.5 | −0.008 | 0.746 |
Shochu | 12.0 ± 38.3 | −0.008 | 0.768 |
Tea/oolong tea | 48.2 ± 113.1 | −0.007 | 0.777 |
Soba | 9.5 ± 16.9 | −0.006 | 0.822 |
Eggs | 36.6 ± 25.2 | −0.003 | 0.901 |
Low-fat milk | 37.9 ± 68.1 | −0.002 | 0.934 |
Root vegetables | 33.6 ± 26 | 0.001 | 0.962 |
Nutrient | Intake Amount | r | p-Value | ||
---|---|---|---|---|---|
Energy, PFC | Energy | 1808.2 ± 574.8 | kcal/day | 0.041 | 0.12 |
Protein | 70.1 ± 27.8 | g/day | 0.109 | <0.001 | |
Animal protein | 42 ± 21.7 | g/day | 0.121 | <0.001 | |
Vegetable protein | 28.1 ± 9.2 | g/day | 0.046 | 0.081 | |
Lipids | 49.4 ± 19.9 | g/day | 0.009 | 0.742 | |
Animal fat | 23.8 ± 11.7 | g/day | 0.070 | 0.007 | |
Vegetable lipids | 25.6 ± 10.6 | g/day | −0.062 | 0.018 | |
Carbohydrates | 250.1 ± 81.9 | g/day | 0.008 | 0.755 | |
Minerals | Ash | 18.6 ± 6.5 | g/day | 0.107 | <0.001 |
Sodium | 4286.3 ± 1517.4 | mg/day | 0.104 | <0.001 | |
Potassium | 2535.8 ± 1028.9 | mg/day | 0.079 | 0.003 | |
Calcium | 567.1 ± 263.6 | mg/day | 0.118 | <0.001 | |
Magnesium | 250.7 ± 95.8 | mg/day | 0.120 | <0.001 | |
Phosphorus | 1078.4 ± 437 | mg/day | 0.122 | <0.001 | |
Iron | 7.5 ± 3.1 | mg/day | 0.105 | <0.001 | |
Zinc | 7.9 ± 2.8 | mg/day | 0.093 | <0.001 | |
Copper | 1.1 ± 0.4 | mg/day | 0.075 | 0.004 | |
Manganese | 3.2 ± 1.2 | mg/day | 0.041 | 0.12 | |
Vitamins | Retinol | 400.1 ± 421.7 | μg/day | 0.076 | 0.004 |
Retinol equivalent | 699.9 ± 508.9 | μg/day | 0.102 | <0.001 | |
Vitamin D | 19.2 ± 14.2 | μg/day | 0.180 | <0.001 | |
α-Tocopherol | 7.2 ± 3 | mg/day | 0.036 | 0.168 | |
Vitamin K | 243.1 ± 151.9 | μg/day | 0.094 | <0.001 | |
Vitamin B1 | 0.8 ± 0.3 | mg/day | 0.067 | 0.01 | |
Vitamin B2 | 1.2 ± 0.5 | mg/day | 0.069 | 0.008 | |
Niacin | 17.7 ± 7.6 | mg/day | 0.131 | <0.001 | |
Vitamin B6 | 1.3 ± 0.5 | mg/day | 0.102 | <0.001 | |
Vitamin B12 | 11.5 ± 7.7 | μg/day | 0.155 | <0.001 | |
Folic acid | 330.6 ± 145.4 | μg/day | 0.077 | 0.003 | |
Pantothenic acid | 6.2 ± 2.4 | mg/day | 0.066 | 0.012 | |
Vitamin C | 129.4 ± 70.4 | mg/day | −0.012 | 0.634 | |
Fatty acids | Fatty acids (n-3) | 2.8 ± 1.4 | g/day | 0.123 | <0.001 |
Fatty acids (n-6) | 9.1 ± 3.7 | g/day | −0.024 | 0.365 | |
Docosahexaenoic acid | 706.9 ± 509.4 | mg/day | 0.175 | <0.001 | |
Eicosapentaenoic acid | 437.4 ± 338.9 | mg/day | 0.182 | <0.001 | |
Saturated fatty acids | 13 ± 5.7 | g/day | −0.006 | 0.826 | |
Monounsaturated fatty acids | 17.5 ± 7.3 | g/day | −0.009 | 0.727 | |
Polyunsaturated fatty acids | 11.9 ± 4.8 | g/day | 0.019 | 0.468 | |
Fiber | Soluble dietary fiber | 2.8 ± 1.3 | g/day | 0.022 | 0.404 |
Insoluble fiber | 8.4 ± 3.4 | g/day | 0.054 | 0.041 | |
Total dietary fiber | 11.6 ± 4.9 | g/day | 0.052 | 0.047 | |
Carotenoids | β-Carotene equivalent | 3558.5 ± 2356.9 | μg/day | 0.102 | <0.001 |
Others | Salt equivalent | 10.8 ± 3.8 | g/day | 0.103 | <0.001 |
Alcohol | 8.4 ± 17.4 | g/day | 0.047 | 0.071 | |
Daidzein | 10.2 ± 7.9 | mg/day | 0.122 | <0.001 | |
Genistein | 17.3 ± 13.4 | mg/day | 0.123 | <0.001 | |
Cholesterol | 389 ± 191.2 | mg/day | 0.079 | 0.003 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suzuki, K.; Kaneda, Y.; Izumo, T.; Nakao, Y.; Iidaka, T.; Horii, C.; Muraki, S.; Oka, H.; Kawaguchi, H.; Akune, T.; et al. The Association Between Serum Ergothioneine Concentration and Japanese Dietary Habits: The Third Survey of the ROAD Study. Nutrients 2025, 17, 517. https://doi.org/10.3390/nu17030517
Suzuki K, Kaneda Y, Izumo T, Nakao Y, Iidaka T, Horii C, Muraki S, Oka H, Kawaguchi H, Akune T, et al. The Association Between Serum Ergothioneine Concentration and Japanese Dietary Habits: The Third Survey of the ROAD Study. Nutrients. 2025; 17(3):517. https://doi.org/10.3390/nu17030517
Chicago/Turabian StyleSuzuki, Kosuke, Yoshihisa Kaneda, Takayuki Izumo, Yoshihiro Nakao, Toshiko Iidaka, Chiaki Horii, Shigeyuki Muraki, Hiroyuki Oka, Hiroshi Kawaguchi, Toru Akune, and et al. 2025. "The Association Between Serum Ergothioneine Concentration and Japanese Dietary Habits: The Third Survey of the ROAD Study" Nutrients 17, no. 3: 517. https://doi.org/10.3390/nu17030517
APA StyleSuzuki, K., Kaneda, Y., Izumo, T., Nakao, Y., Iidaka, T., Horii, C., Muraki, S., Oka, H., Kawaguchi, H., Akune, T., Hashizume, H., Yamada, H., Nakamura, K., Tanaka, S., & Yoshimura, N. (2025). The Association Between Serum Ergothioneine Concentration and Japanese Dietary Habits: The Third Survey of the ROAD Study. Nutrients, 17(3), 517. https://doi.org/10.3390/nu17030517