Chronotype and Cancer: Emerging Relation Between Chrononutrition and Oncology from Human Studies
Abstract
:1. Introduction
2. Chronotype and Time-Restricted Eating (TRE)
3. Evidence from Human Studies on Chrononutrition and Cancer
3.1. Chronotype and Cancer
3.2. Time-Restricted Eating and Cancer
4. Mechanisms Underlying the Role of Chronotype and Chrononutrition on Cancer
4.1. Cell Cycle Regulation, Chronotype and Cancer
4.2. Metabolic Disruption, Inflammation, Chronotype and Cancer
4.3. Circadian Rhythm, Chronotype and Gut Microbiota
5. Limitations of Current Research
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AMPK | AMP-Activated Protein Kinase |
BCAC | Breast Cancer Association Consortium |
CDKN1A | Cyclin-Dependent Kinase Inhibitor 1A |
GADD45A | Growth Arrest and DNA Damage Inducible Alpha |
GWAS | Genome-Wide Association Study |
IGF | Insulin-Like Growth Factor |
KITLG | KIT Ligand |
MCC | Multicase–control Study |
MCTQ | Munich Chronotype Questionnaire |
MDM2 | Mouse Double Minute 2 Homolog |
mTOR | Mechanistic Target of Rapamycin |
PDGF | Platelet-Derived Growth Factor |
PRACTICAL | Prostate Cancer Association Group to Investigate Cancer-Associated Alterations in the Genome |
SCFAs | Short-Chain Fatty Acids |
TNF-α | Tumor Necrosis Factor-Alpha |
TRE | Time-restricted eating |
TRF | Time-restricted feeding |
VEGF | Vascular Endothelial Growth Factor |
References
- Rosenwasser, A.M.; Turek, F.W. Neurobiology of circadian rhythm regulation. Sleep Med. Clin. 2015, 10, 403–412. [Google Scholar] [CrossRef]
- Patke, A.; Young, M.W.; Axelrod, S. Molecular mechanisms and physiological importance of circadian rhythms. Nat. Rev. Mol. Cell Biol. 2020, 21, 67–84. [Google Scholar] [CrossRef] [PubMed]
- Hastings, M.H.; Maywood, E.S.; Brancaccio, M. Generation of circadian rhythms in the suprachiasmatic nucleus. Nat. Rev. Neurosci. 2018, 19, 453–469. [Google Scholar] [CrossRef] [PubMed]
- Van Drunen, R.; Eckel-Mahan, K. Circadian rhythms of the hypothalamus: From function to physiology. Clocks & Sleep 2021, 3, 189–226. [Google Scholar] [CrossRef] [PubMed]
- Logan, R.W.; McClung, C.A. Rhythms of life: Circadian disruption and brain disorders across the lifespan. Nat. Rev. Neurosci. 2019, 20, 49–65. [Google Scholar] [CrossRef] [PubMed]
- Drăgoi, C.M.; Nicolae, A.C.; Ungurianu, A.; Margină, D.M.; Grădinaru, D.; Dumitrescu, I.-B. Circadian Rhythms, Chrononutrition, Physical Training, and Redox Homeostasis-Molecular Mechanisms in Human Health. Cells 2024, 13, 138. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Y.; Guo, Z.; Wu, M.; Chen, F.; Chen, L. Circadian rhythm regulates the function of immune cells and participates in the development of tumors. Cell Death Discov. 2024, 10, 199. [Google Scholar] [CrossRef] [PubMed]
- Godos, J.; Grosso, G.; Castellano, S.; Galvano, F.; Caraci, F.; Ferri, R. Association between diet and sleep quality: A systematic review. Sleep Med. Rev. 2021, 57, 101430. [Google Scholar] [CrossRef] [PubMed]
- Quarta, S.; Siculella, L.; Levante, A.; Carluccio, M.A.; Calabriso, N.; Scoditti, E.; Damiano, F.; Lecciso, F.; Pinto, P.; García-Conesa, M.-T.; et al. Association between Mediterranean lifestyle and perception of well-being and distress in a sample population of university Italian students. Int. J. Food Sci. Nutr. 2023, 74, 556–567. [Google Scholar] [CrossRef]
- Godos, J.; Lanza, G.; Ferri, R.; Caraci, F.; Cano, S.S.; Elio, I.; Micek, A.; Castellano, S.; Grosso, G. Relation between dietary inflammatory potential and sleep features: Systematic review of observational studies. Med. J. Nutrition Metab. 2024, 1–14. [Google Scholar] [CrossRef]
- Sciacca, S.; Lo Giudice, A.; Asmundo, M.G.; Cimino, S.; Alshatwi, A.A.; Morgia, G.; Ferro, M.; Russo, G.I. Adherence to the Mediterranean diet and prostate cancer severity. Med. J. Nutrition Metab. 2023, 16, 353–362. [Google Scholar] [CrossRef]
- Flanagan, A.; Bechtold, D.A.; Pot, G.K.; Johnston, J.D. Chrono-nutrition: From molecular and neuronal mechanisms to human epidemiology and timed feeding patterns. J. Neurochem. 2021, 157, 53–72. [Google Scholar] [CrossRef] [PubMed]
- Ahluwalia, M.K. Chrononutrition-When We Eat Is of the Essence in Tackling Obesity. Nutrients 2022, 14, 5080. [Google Scholar] [CrossRef] [PubMed]
- Kalmbach, D.A.; Schneider, L.D.; Cheung, J.; Bertrand, S.J.; Kariharan, T.; Pack, A.I.; Gehrman, P.R. Genetic basis of chronotype in humans: Insights from three landmark GWAS. Sleep 2017, 40, zsw048. [Google Scholar] [CrossRef] [PubMed]
- Mohawk, J.A.; Green, C.B.; Takahashi, J.S. Central and peripheral circadian clocks in mammals. Annu. Rev. Neurosci. 2012, 35, 445–462. [Google Scholar] [CrossRef]
- Lotti, S.; Pagliai, G.; Colombini, B.; Sofi, F.; Dinu, M. Chronotype Differences in Energy Intake, Cardiometabolic Risk Parameters, Cancer, and Depression: A Systematic Review with Meta-Analysis of Observational Studies. Adv. Nutr. 2022, 13, 269–281. [Google Scholar] [CrossRef] [PubMed]
- Bell-Pedersen, D.; Cassone, V.M.; Earnest, D.J.; Golden, S.S.; Hardin, P.E.; Thomas, T.L.; Zoran, M.J. Circadian rhythms from multiple oscillators: Lessons from diverse organisms. Nat. Rev. Genet. 2005, 6, 544–556. [Google Scholar] [CrossRef]
- Jagannath, A.; Taylor, L.; Wakaf, Z.; Vasudevan, S.R.; Foster, R.G. The genetics of circadian rhythms, sleep and health. Hum. Mol. Genet. 2017, 26, R128–R138. [Google Scholar] [CrossRef]
- Cox, K.H.; Takahashi, J.S. Circadian clock genes and the transcriptional architecture of the clock mechanism. J. Mol. Endocrinol. 2019, 63, R93–R102. [Google Scholar] [CrossRef] [PubMed]
- Montaruli, A.; Castelli, L.; Mulè, A.; Scurati, R.; Esposito, F.; Galasso, L.; Roveda, E. Biological rhythm and chronotype: New perspectives in health. Biomolecules 2021, 11, 487. [Google Scholar] [CrossRef] [PubMed]
- Almoosawi, S.; Vingeliene, S.; Gachon, F.; Voortman, T.; Palla, L.; Johnston, J.D.; Van Dam, R.M.; Darimont, C.; Karagounis, L.G. Chronotype: Implications for Epidemiologic Studies on Chrono-Nutrition and Cardiometabolic Health. Adv. Nutr. 2019, 10, 30–42. [Google Scholar] [CrossRef] [PubMed]
- Taylor, B.J.; Hasler, B.P. Chronotype and mental health: Recent advances. Curr. Psychiatry Rep. 2018, 20, 59. [Google Scholar] [CrossRef] [PubMed]
- Ribas-Latre, A.; Eckel-Mahan, K. Interdependence of nutrient metabolism and the circadian clock system: Importance for metabolic health. Mol. Metab. 2016, 5, 133–152. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, S.; Norbury, R.; Faßbender, K.C.; Ettinger, U.; Kumari, V. Beyond sleep: A multidimensional model of chronotype. Neurosci. Biobehav. Rev. 2023, 148, 105114. [Google Scholar] [CrossRef]
- de Oliveira Melo, N.C.; Cuevas-Sierra, A.; Souto, V.F.; Martínez, J.A. Biological Rhythms, Chrono-Nutrition, and Gut Microbiota: Epigenomics Insights for Precision Nutrition and Metabolic Health. Biomolecules 2024, 14, 559. [Google Scholar] [CrossRef]
- Chaix, A.; Manoogian, E.N.C.; Melkani, G.C.; Panda, S. Time-Restricted Eating to Prevent and Manage Chronic Metabolic Diseases. Annu. Rev. Nutr. 2019, 39, 291–315. [Google Scholar] [CrossRef]
- St-Onge, M.-P.; Mikic, A.; Pietrolungo, C.E. Effects of diet on sleep quality. Adv. Nutr. 2016, 7, 938–949. [Google Scholar] [CrossRef] [PubMed]
- Binks, H.; E Vincent, G.; Gupta, C.; Irwin, C.; Khalesi, S. Effects of diet on sleep: A narrative review. Nutrients 2020, 12, 936. [Google Scholar] [CrossRef] [PubMed]
- Chaput, J.-P. Sleep patterns, diet quality and energy balance. Physiol. Behav. 2014, 134, 86–91. [Google Scholar] [CrossRef]
- Dashti, H.S.; Scheer, F.A.; Jacques, P.F.; Lamon-Fava, S.; Ordovás, J.M. Short sleep duration and dietary intake: Epidemiologic evidence, mechanisms, and health implications. Adv. Nutr. 2015, 6, 648–659. [Google Scholar] [CrossRef] [PubMed]
- Hawley, J.A.; Sassone-Corsi, P.; Zierath, J.R. Chrono-nutrition for the prevention and treatment of obesity and type 2 diabetes: From mice to men. Diabetologia 2020, 63, 2253–2259. [Google Scholar] [CrossRef]
- Almoosawi, S.; Vingeliene, S.; Karagounis, L.G.; Pot, G.K. Chrono-nutrition: A review of current evidence from observational studies on global trends in time-of-day of energy intake and its association with obesity. Proc. Nutr. Soc. 2016, 75, 487–500. [Google Scholar] [CrossRef]
- Adan, A.; Archer, S.N.; Hidalgo, M.P.; Di Milia, L.; Natale, V.; Randler, C. Circadian typology: A comprehensive review. Chronobiol. Int. 2012, 29, 1153–1175. [Google Scholar] [CrossRef]
- Wei, F.; Chen, W.; Lin, X. Night-shift work, breast cancer incidence, and all-cause mortality: An updated meta-analysis of prospective cohort studies. Sleep Breath. 2022, 26, 1509–1526. [Google Scholar] [CrossRef] [PubMed]
- Rivera-Izquierdo, M.; Martínez-Ruiz, V.; Castillo-Ruiz, E.M.; Manzaneda-Navío, M.; Pérez-Gómez, B.; Jiménez-Moleón, J.J. Shift Work and Prostate Cancer: An Updated Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health 2020, 17, 1345. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Wang, J.-J.; Lin, C.-H.; Zhou, Q.; Wang, W.-L.; Qin, T.; Li, X.; Wang, Z.-J. Association of sleep duration, sleep apnea, and shift work with risk of colorectal neoplasms: A systematic review and meta-analysis. J. Gastrointest. Oncol. 2022, 13, 1805–1817. [Google Scholar] [CrossRef] [PubMed]
- Dun, A.; Zhao, X.; Jin, X.; Wei, T.; Gao, X.; Wang, Y.; Hou, H. Association Between Night-Shift Work and Cancer Risk: Updated Systematic Review and Meta-Analysis. Front. Oncol. 2020, 10, 1006. [Google Scholar] [CrossRef]
- Phoi, Y.Y.; Rogers, M.; Bonham, M.P.; Dorrian, J.; Coates, A.M. A scoping review of chronotype and temporal patterns of eating of adults: Tools used, findings, and future directions. Nutr. Res. Rev. 2022, 35, 112–135. [Google Scholar] [CrossRef] [PubMed]
- Von Behren, J.; Hurley, S.; Goldberg, D.; Clague DeHart, J.; Wang, S.S.; Reynolds, P. Chronotype and risk of post-menopausal endometrial cancer in the California Teachers Study. Chronobiol. Int. 2021, 38, 1151–1161. [Google Scholar] [CrossRef]
- Costas, L.; Frias-Gomez, J.; Benavente Moreno, Y.; Peremiquel-Trillas, P.; Carmona, Á.; de Francisco, J.; Caño, V.; Paytubi, S.; Pelegrina, B.; Martínez, J.M.; et al. Night work, chronotype and risk of endometrial cancer in the Screenwide case-control study. Occup. Environ. Med. 2022, 79, 624–627. [Google Scholar] [CrossRef] [PubMed]
- Hurley, S.; Goldberg, D.; Von Behren, J.; Clague DeHart, J.; Wang, S.; Reynolds, P. Chronotype and postmenopausal breast cancer risk among women in the California Teachers Study. Chronobiol. Int. 2019, 36, 1504–1514. [Google Scholar] [CrossRef] [PubMed]
- Von Behren, J.; Goldberg, D.; Hurley, S.; Clague DeHart, J.; Wang, S.S.; Reynolds, P. Prospective analysis of sleep characteristics, chronotype, and risk of breast cancer in the california teachers study. Cancer Causes Control 2024, 35, 597–604. [Google Scholar] [CrossRef] [PubMed]
- McNeil, J.; Barberio, A.M.; Friedenreich, C.M.; Brenner, D.R. Sleep and cancer incidence in Alberta’s Tomorrow Project cohort. Sleep 2019, 42, zsy252. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Tan, X. The role of MTNR1B polymorphism on circadian rhythm-related cancer: A UK Biobank cohort study. Int. J. Cancer 2022, 151, 888–896. [Google Scholar] [CrossRef]
- Ramin, C.; Devore, E.E.; Pierre-Paul, J.; Duffy, J.F.; Hankinson, S.E.; Schernhammer, E.S. Chronotype and breast cancer risk in a cohort of US nurses. Chronobiol. Int. 2013, 30, 1181–1186. [Google Scholar] [CrossRef]
- Hansen, J.; Lassen, C.F. Nested case-control study of night shift work and breast cancer risk among women in the Danish military. Occup. Environ. Med. 2012, 69, 551–556. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.; Zhu, M.; Ji, M.; Fan, J.; Huang, Y.; Wei, X.; Jiang, X.; Xu, J.; Yin, R.; Wang, Y.; et al. Relationships between sleep traits and lung cancer risk: A prospective cohort study in UK Biobank. Sleep 2021, 44, zsab089. [Google Scholar] [CrossRef] [PubMed]
- Peeri, N.C.; Tao, M.-H.; Demissie, S.; Nguyen, U.-S.D.T. Sleep duration, chronotype, and insomnia and the risk of lung cancer: United kingdom biobank cohort. Cancer Epidemiol. Biomarkers Prev. 2022, 31, 766–774. [Google Scholar] [CrossRef] [PubMed]
- Cordina-Duverger, E.; Uchai, S.; Tvardik, N.; Billmann, R.; Martin, D.; Trédaniel, J.; Wislez, M.; Blons, H.; Laurent-Puig, P.; Antoine, M.; et al. Sleep Traits, Night Shift Work and Lung Cancer Risk among Women: Results from a Population-Based Case-Control Study in France (The WELCA Study). Int. J. Environ. Res. Public Health 2022, 19, 16246. [Google Scholar] [CrossRef]
- Dickerman, B.A.; Markt, S.C.; Koskenvuo, M.; Hublin, C.; Pukkala, E.; Mucci, L.A.; Kaprio, J. Sleep disruption, chronotype, shift work, and prostate cancer risk and mortality: A 30-year prospective cohort study of Finnish twins. Cancer Causes Control 2016, 27, 1361–1370. [Google Scholar] [CrossRef] [PubMed]
- Cordina-Duverger, E.; Cénée, S.; Trétarre, B.; Rebillard, X.; Lamy, P.-J.; Wendeu-Foyet, G.; Menegaux, F. Sleep Patterns and Risk of Prostate Cancer: A Population-Based Case Control Study in France (EPICAP). Cancer Epidemiol. Biomarkers Prev. 2022, 31, 2070–2078. [Google Scholar] [CrossRef] [PubMed]
- Lv, X.; Li, Y.; Li, R.; Guan, X.; Li, L.; Li, J.; Si, S.; Ji, X.; Cao, Y.; Xue, F. Relationships of sleep traits with prostate cancer risk: A prospective study of 213,999 UK Biobank participants. Prostate 2022, 82, 984–992. [Google Scholar] [CrossRef] [PubMed]
- Lozano-Lorca, M.; Olmedo-Requena, R.; Vega-Galindo, M.-V.; Vázquez-Alonso, F.; Jiménez-Pacheco, A.; Salcedo-Bellido, I.; Sánchez, M.-J.; Jiménez-Moleón, J.-J. Night shift work, chronotype, sleep duration, and prostate cancer risk: CAPLIFE study. Int. J. Environ. Res. Public Health 2020, 17, 6300. [Google Scholar] [CrossRef] [PubMed]
- Papantoniou, K.; Castaño-Vinyals, G.; Espinosa, A.; Aragonés, N.; Pérez-Gómez, B.; Burgos, J.; Gómez-Acebo, I.; Llorca, J.; Peiró, R.; Jimenez-Moleón, J.J.; et al. Night shift work, chronotype and prostate cancer risk in the MCC-Spain case-control study. Int. J. Cancer 2015, 137, 1147–1157. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Tian, R.; Zong, X.; Jeon, M.S.; Luo, J.; Colditz, G.A.; Wang, J.S.; Tsilidis, K.K.; Ju, Y.-E.S.; Govindan, R.; et al. Sleep behaviors, genetic predispositions, and risk of esophageal cancer. Cancer Epidemiol. Biomarkers Prev. 2023, 32, 1079–1086. [Google Scholar] [CrossRef] [PubMed]
- Leung, L.; Grundy, A.; Siemiatycki, J.; Arseneau, J.; Gilbert, L.; Gotlieb, W.H.; Provencher, D.M.; Aronson, K.J.; Koushik, A. Shift work patterns, chronotype, and epithelial ovarian cancer risk. Cancer Epidemiol. Biomarkers Prev. 2019, 28, 987–995. [Google Scholar] [CrossRef]
- Freeman, J.R.; Saint-Maurice, P.F.; Zhang, T.; Matthews, C.E.; Stolzenberg-Solomon, R.Z. Sleep and risk of pancreatic cancer in the UK biobank. Cancer Epidemiol. Biomarkers Prev. 2024, 33, 624–627. [Google Scholar] [CrossRef] [PubMed]
- Yarmolinsky, J.; Wade, K.H.; Richmond, R.C.; Langdon, R.J.; Bull, C.J.; Tilling, K.M.; Relton, C.L.; Lewis, S.J.; Davey Smith, G.; Martin, R.M. Causal inference in cancer epidemiology: What is the role of mendelian randomization? Cancer Epidemiol. Biomarkers Prev. 2018, 27, 995–1010. [Google Scholar] [CrossRef]
- Richmond, R.C.; Davey Smith, G. Mendelian randomization: Concepts and scope. Cold Spring Harb. Perspect. Med. 2022, 12, a040501. [Google Scholar] [CrossRef]
- Tian, S.; Huangfu, L.; Ai, S.; Zheng, J.; Shi, L.; Yan, W.; Zhu, X.; Wang, Q.; Deng, J.; Bao, Y.; et al. Causal relationships between chronotype and risk of multiple cancers by using longitudinal data and Mendelian randomization analysis. Sci. China Life Sci. 2023, 66, 2433–2436. [Google Scholar] [CrossRef]
- Feng, J.; Wen, Y.; Zhang, Z.; Zhang, Y. Sleep traits and breast cancer risk: A two-sample Mendelian randomization study. Sci. Rep. 2024, 14, 17746. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Yang, C.; Zou, Y.; Jones, S.E.; Zhao, X.; Zhang, L.; Han, Z.; Hao, Y.; Xiao, J.; Xiao, C.; et al. Using human genetics to understand the phenotypic association between chronotype and breast cancer. J. Sleep Res. 2024, 33, e13973. [Google Scholar] [CrossRef] [PubMed]
- Yuan, S.; Mason, A.M.; Titova, O.E.; Vithayathil, M.; Kar, S.; Chen, J.; Li, X.; Burgess, S.; Larsson, S.C. Morning chronotype and digestive tract cancers: Mendelian randomization study. Int. J. Cancer 2023, 152, 697–704. [Google Scholar] [CrossRef]
- He, F.; Yang, F.; Tang, C.; Chen, D.; Xiong, J.; Zou, Y.; Zhao, D.; Peng, D.; Qian, K. Association between sleep traits and risk of colorectal cancer: A bidirectional Mendelian randomization study. J. Gastrointest. Oncol. 2024, 15, 1556–1567. [Google Scholar] [CrossRef]
- Zong, L.; Liu, G.; He, H.; Huang, D. Causal association of sleep traits with the risk of thyroid cancer: A mendelian randomization study. BMC Cancer 2024, 24, 605. [Google Scholar] [CrossRef]
- Sun, X.; Ye, D.; Jiang, M.; Qian, Y.; Mao, Y. Genetically proxied morning chronotype was associated with a reduced risk of prostate cancer. Sleep 2021, 44, zsab104. [Google Scholar] [CrossRef]
- Wang, J.; Tang, H.; Duan, Y.; Yang, S.; An, J. Association between Sleep Traits and Lung Cancer: A Mendelian Randomization Study. J. Immunol. Res. 2021, 2021, 1893882. [Google Scholar] [CrossRef] [PubMed]
- Stringer, E.J.; Cloke, R.W.G.; Van der Meer, L.; Murphy, R.A.; Macpherson, N.A.; Lum, J.J. The Clinical Impact of Time-restricted Eating on Cancer: A Systematic Review. Nutr. Rev. 2024. [Google Scholar] [CrossRef]
- Lu, C.; Sun, H.; Huang, J.; Yin, S.; Hou, W.; Zhang, J.; Wang, Y.; Xu, Y.; Xu, H. Long-Term Sleep Duration as a Risk Factor for Breast Cancer: Evidence from a Systematic Review and Dose-Response Meta-Analysis. Biomed Res. Int. 2017, 2017, 4845059. [Google Scholar] [CrossRef]
- Zhou, T.; Wang, Z.; Qiao, C.; Wang, S.; Hu, S.; Wang, X.; Ma, X.; Wang, D.; Li, J.; Li, Z.; et al. Sleep disturbances and the risk of lung cancer: A meta-epidemiological study. BMC Cancer 2023, 23, 884. [Google Scholar] [CrossRef] [PubMed]
- Stone, C.R.; Haig, T.R.; Fiest, K.M.; McNeil, J.; Brenner, D.R.; Friedenreich, C.M. The association between sleep duration and cancer-specific mortality: A systematic review and meta-analysis. Cancer Causes Control 2019, 30, 501–525. [Google Scholar] [CrossRef]
- Liu, R.; Wu, S.; Zhang, B.; Guo, M.; Zhang, Y. The association between sleep duration and prostate cancer: A systematic review and meta-analysis. Medicine (Baltimore) 2020, 99, e21180. [Google Scholar] [CrossRef]
- Palomar-Cros, A.; Espinosa, A.; Straif, K.; Pérez-Gómez, B.; Papantoniou, K.; Gómez-Acebo, I.; Molina-Barceló, A.; Olmedo-Requena, R.; Alguacil, J.; Fernández-Tardón, G.; et al. The Association of Nighttime Fasting Duration and Prostate Cancer Risk: Results from the Multicase-Control (MCC) Study in Spain. Nutrients 2021, 13, 2662. [Google Scholar] [CrossRef] [PubMed]
- Palomar-Cros, A.; Harding, B.N.; Espinosa, A.; Papantoniou, K.; Pérez-Gómez, B.; Straif, K.; Ardanaz, E.; Fernández Villa, T.; Amiano, P.; Gómez-Acebo, I.; et al. Association of time of breakfast and nighttime fasting duration with breast cancer risk in the multicase-control study in Spain. Front. Nutr. 2022, 9, 941477. [Google Scholar] [CrossRef]
- D’cunha, K.; Park, Y.; Leech, R.M.; Protani, M.M.; Marquart-Wilson, L.; Reeves, M.M. Eating frequency, timing of meals, and sleep duration before and after a randomized controlled weight loss trial for breast cancer survivors. J. Cancer Surviv. 2024. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, F.; Li, X.; Wu, J.; Chen, X.; Su, Y.; Qin, T.; Liu, X.; Liang, L.; Ma, J.; et al. Breakfast skipping and risk of all-cause, cardiovascular and cancer mortality among adults: A systematic review and meta-analysis of prospective cohort studies. Food Funct. 2024, 15, 5703–5713. [Google Scholar] [CrossRef] [PubMed]
- Wirth, M.D.; Turner-McGrievy, G.; Shivappa, N.; Murphy, E.A.; Hébert, J.R. Interaction between Meal-timing and Dietary Inflammatory Potential: Association with Cardiometabolic Endpoints in a 3-month Prospective Analysis. J. Nutr. 2023, 153, 3555–3564. [Google Scholar] [CrossRef] [PubMed]
- Srour, B.; Plancoulaine, S.; Andreeva, V.A.; Fassier, P.; Julia, C.; Galan, P.; Hercberg, S.; Deschasaux, M.; Latino-Martel, P.; Touvier, M. Circadian nutritional behaviours and cancer risk: New insights from the NutriNet-santé prospective cohort study: Disclaimers. Int. J. Cancer 2018, 143, 2369–2379. [Google Scholar] [CrossRef] [PubMed]
- Masri, S.; Kinouchi, K.; Sassone-Corsi, P. Circadian clocks, epigenetics, and cancer. Curr. Opin. Oncol. 2015, 27, 50–56. [Google Scholar] [CrossRef]
- Soták, M.; Sumová, A.; Pácha, J. Cross-talk between the circadian clock and the cell cycle in cancer. Ann. Med. 2014, 46, 221–232. [Google Scholar] [CrossRef]
- Ghelli Luserna di Rorà, A.; Cerchione, C.; Martinelli, G.; Simonetti, G. A WEE1 family business: Regulation of mitosis, cancer progression, and therapeutic target. J. Hematol. Oncol. 2020, 13, 126. [Google Scholar] [CrossRef] [PubMed]
- Dhanasekaran, R.; Deutzmann, A.; Mahauad-Fernandez, W.D.; Hansen, A.S.; Gouw, A.M.; Felsher, D.W. The MYC oncogene—the grand orchestrator of cancer growth and immune evasion. Nat. Rev. Clin. Oncol. 2022, 19, 23–36. [Google Scholar] [CrossRef] [PubMed]
- Montalto, F.I.; De Amicis, F. Cyclin D1 in cancer: A molecular connection for cell cycle control, adhesion and invasion in tumor and stroma. Cells 2020, 9, 2648. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Zheng, Y.; Dai, R.; Gu, X. Crosstalk between Circadian Rhythm Dysregulation and Tumorigenesis, Tumor Metabolism and Tumor Immune Response. Aging Dis. 2024. [Google Scholar] [CrossRef]
- Manousakis, E.; Miralles, C.M.; Esquerda, M.G.; Wright, R.H.G. Cdkn1a/p21 in breast cancer: Part of the problem, or part of the solution? Int. J. Mol. Sci. 2023, 24, 17488. [Google Scholar] [CrossRef]
- Andrae, J.; Gallini, R.; Betsholtz, C. Role of platelet-derived growth factors in physiology and medicine. Genes Dev. 2008, 22, 1276–1312. [Google Scholar] [CrossRef] [PubMed]
- Elebiyo, T.C.; Rotimi, D.; Evbuomwan, I.O.; Maimako, R.F.; Iyobhebhe, M.; Ojo, O.A.; Oluba, O.M.; Adeyemi, O.S. Reassessing vascular endothelial growth factor (VEGF) in anti-angiogenic cancer therapy. Cancer Treat. Res. Commun. 2022, 32, 100620. [Google Scholar] [CrossRef]
- Sheikh, E.; Tran, T.; Vranic, S.; Levy, A.; Bonfil, R.D. Role and significance of c-KIT receptor tyrosine kinase in cancer: A review. Bosn. J. Basic Med. Sci. 2022, 22, 683–698. [Google Scholar] [CrossRef] [PubMed]
- Rana, S.; Mahmood, S. Circadian rhythm and its role in malignancy. J. Circadian Rhythm. 2010, 8, 3. [Google Scholar] [CrossRef] [PubMed]
- Lamont, E.W.; James, F.O.; Boivin, D.B.; Cermakian, N. From circadian clock gene expression to pathologies. Sleep Med. 2007, 8, 547–556. [Google Scholar] [CrossRef] [PubMed]
- Gotoh, T.; Vila-Caballer, M.; Liu, J.; Schiffhauer, S.; Finkielstein, C.V. Association of the circadian factor Period 2 to p53 influences p53’s function in DNA-damage signaling. Mol. Biol. Cell 2015, 26, 359–372. [Google Scholar] [CrossRef] [PubMed]
- Palomer, X.; Salvador, J.M.; Griñán-Ferré, C.; Barroso, E.; Pallàs, M.; Vázquez-Carrera, M. GADD45A: With or without you. Med. Res. Rev. 2024, 44, 1375–1403. [Google Scholar] [CrossRef] [PubMed]
- Karni-Schmidt, O.; Lokshin, M.; Prives, C. The roles of MDM2 and MDMX in cancer. Annu. Rev. Pathol. 2016, 11, 617–644. [Google Scholar] [CrossRef]
- Yun, C.W.; Lee, S.H. The roles of autophagy in cancer. Int. J. Mol. Sci. 2018, 19, 3466. [Google Scholar] [CrossRef] [PubMed]
- Hwangbo, D.-S.; Lee, H.-Y.; Abozaid, L.S.; Min, K.-J. Mechanisms of lifespan regulation by calorie restriction and intermittent fasting in model organisms. Nutrients 2020, 12, 1194. [Google Scholar] [CrossRef] [PubMed]
- Ulgherait, M.; Midoun, A.M.; Park, S.J.; Gatto, J.A.; Tener, S.J.; Siewert, J.; Klickstein, N.; Canman, J.C.; Ja, W.W.; Shirasu-Hiza, M. Circadian autophagy drives iTRF-mediated longevity. Nature 2021, 598, 353–358. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Peng, J.; Tang, W.; Xia, Y.; Song, P. A circadian rhythm-restricted diet regulates autophagy to improve cognitive function and prolong lifespan. Biosci. Trends 2023, 17, 356–368. [Google Scholar] [CrossRef] [PubMed]
- Jamshed, H.; Beyl, R.A.; Della Manna, D.L.; Yang, E.S.; Ravussin, E.; Peterson, C.M. Early Time-Restricted Feeding Improves 24-Hour Glucose Levels and Affects Markers of the Circadian Clock, Aging, and Autophagy in Humans. Nutrients 2019, 11, 1234. [Google Scholar] [CrossRef]
- Yin, Z.; Klionsky, D.J. Intermittent time-restricted feeding promotes longevity through circadian autophagy. Autophagy 2022, 18, 471–472. [Google Scholar] [CrossRef] [PubMed]
- Arble, D.M.; Ramsey, K.M.; Bass, J.; Turek, F.W. Circadian disruption and metabolic disease: Findings from animal models. Best Pract. Res. Clin. Endocrinol. Metab. 2010, 24, 785–800. [Google Scholar] [CrossRef]
- Chaput, J.-P.; McHill, A.W.; Cox, R.C.; Broussard, J.L.; Dutil, C.; da Costa, B.G.G.; Sampasa-Kanyinga, H.; Wright, K.P. The role of insufficient sleep and circadian misalignment in obesity. Nat. Rev. Endocrinol. 2023, 19, 82–97. [Google Scholar] [CrossRef] [PubMed]
- Remchak, M.-M.E.; Heiston, E.M.; Ballantyne, A.; Dotson, B.L.; Stewart, N.R.; Spaeth, A.M.; Malin, S.K. Insulin sensitivity and metabolic flexibility parallel plasma TCA levels in early chronotype with metabolic syndrome. J. Clin. Endocrinol. Metab. 2022, 107, e3487–e3496. [Google Scholar] [CrossRef] [PubMed]
- Malin, S.K.; Remchak, M.-M.E.; Heiston, E.M.; Battillo, D.J.; Gow, A.J.; Shah, A.M.; Liu, Z. Intermediate versus morning chronotype has lower vascular insulin sensitivity in adults with obesity. Diabetes Obes. Metab. 2024, 26, 1582–1592. [Google Scholar] [CrossRef] [PubMed]
- Malin, S.K.; Remchak, M.-M.E.; Smith, A.J.; Ragland, T.J.; Heiston, E.M.; Cheema, U. Early chronotype with metabolic syndrome favours resting and exercise fat oxidation in relation to insulin-stimulated non-oxidative glucose disposal. Exp. Physiol. 2022, 107, 1255–1264. [Google Scholar] [CrossRef] [PubMed]
- Sutton, E.F.; Beyl, R.; Early, K.S.; Cefalu, W.T.; Ravussin, E.; Peterson, C.M. Early Time-Restricted Feeding Improves Insulin Sensitivity, Blood Pressure, and Oxidative Stress Even without Weight Loss in Men with Prediabetes. Cell Metab. 2018, 27, 1212–1221.e3. [Google Scholar] [CrossRef]
- Che, T.; Yan, C.; Tian, D.; Zhang, X.; Liu, X.; Wu, Z. Time-restricted feeding improves blood glucose and insulin sensitivity in overweight patients with type 2 diabetes: A randomised controlled trial. Nutr. Metab 2021, 18, 88. [Google Scholar] [CrossRef] [PubMed]
- Marinac, C.R.; Natarajan, L.; Sears, D.D.; Gallo, L.C.; Hartman, S.J.; Arredondo, E.; Patterson, R.E. Prolonged Nightly Fasting and Breast Cancer Risk: Findings from NHANES (2009-2010). Cancer Epidemiol. Biomarkers Prev. 2015, 24, 783–789. [Google Scholar] [CrossRef] [PubMed]
- Walker, W.H.; Kaper, A.L.; Meléndez-Fernández, O.H.; Bumgarner, J.R.; Liu, J.A.; Walton, J.C.; DeVries, A.C.; Nelson, R.J. Time-restricted feeding alters the efficiency of mammary tumor growth. Chronobiol. Int. 2022, 39, 535–546. [Google Scholar] [CrossRef]
- Turbitt, W.J.; Orlandella, R.M.; Gibson, J.T.; Peterson, C.M.; Norian, L.A. Therapeutic Time-restricted Feeding Reduces Renal Tumor Bioluminescence in Mice but Fails to Improve Anti-CTLA-4 Efficacy. Anticancer Res. 2020, 40, 5445–5456. [Google Scholar] [CrossRef] [PubMed]
- Lu, W.; Wang, J.; Wang, C.; Wang, H.; Gao, W.; Ye, S.; Shen, R. Anti-Tumor Effect and Mechanism Study of Caloric Restriction, Achieved by Time-Restricted Feeding, in Mice. Cancer Control 2024, 31, 10732748241302956. [Google Scholar] [CrossRef]
- Salvadori, G.; Mirisola, M.G.; Longo, V.D. Intermittent and periodic fasting, hormones, and cancer prevention. Cancers 2021, 13, 4587. [Google Scholar] [CrossRef] [PubMed]
- Fanti, M.; Longo, V.D. Nutrition, GH/IGF-1 signaling, and cancer. Endocr. Relat. Cancer 2024, 31, e230048. [Google Scholar] [CrossRef]
- Nenkov, M.; Ma, Y.; Gaßler, N.; Chen, Y. Metabolic reprogramming of colorectal cancer cells and the microenvironment: Implication for therapy. Int. J. Mol. Sci. 2021, 22, 6262. [Google Scholar] [CrossRef]
- Weng, M.-L.; Chen, W.-K.; Chen, X.-Y.; Lu, H.; Sun, Z.-R.; Yu, Q.; Sun, P.-F.; Xu, Y.-J.; Zhu, M.-M.; Jiang, N.; et al. Fasting inhibits aerobic glycolysis and proliferation in colorectal cancer via the Fdft1-mediated AKT/mTOR/HIF1α pathway suppression. Nat. Commun. 2020, 11, 1869. [Google Scholar] [CrossRef]
- Salvadori, G.; Zanardi, F.; Iannelli, F.; Lobefaro, R.; Vernieri, C.; Longo, V.D. Fasting-mimicking diet blocks triple-negative breast cancer and cancer stem cell escape. Cell Metab. 2021, 33, 2247–2259.e6. [Google Scholar] [CrossRef] [PubMed]
- Cortellino, S.; Quagliariello, V.; Delfanti, G.; Blaževitš, O.; Chiodoni, C.; Maurea, N.; Di Mauro, A.; Tatangelo, F.; Pisati, F.; Shmahala, A.; et al. Fasting mimicking diet in mice delays cancer growth and reduces immunotherapy-associated cardiovascular and systemic side effects. Nat. Commun. 2023, 14, 5529. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Huang, L.; Zhao, J.; Chen, S.; Liu, J.; Li, G. The circadian clock and inflammation: A new insight. Clin. Chim. Acta 2021, 512, 12–17. [Google Scholar] [CrossRef] [PubMed]
- Waggoner, S.N. Circadian rhythms in immunity. Curr. Allergy Asthma Rep. 2020, 20, 2. [Google Scholar] [CrossRef] [PubMed]
- Nakao, A. Temporal regulation of cytokines by the circadian clock. J. Immunol. Res. 2014, 2014, 614529. [Google Scholar] [CrossRef]
- Landskron, G.; De la Fuente, M.; Thuwajit, P.; Thuwajit, C.; Hermoso, M.A. Chronic inflammation and cytokines in the tumor microenvironment. J. Immunol. Res. 2014, 2014, 149185. [Google Scholar] [CrossRef]
- Marinac, C.R.; Sears, D.D.; Natarajan, L.; Gallo, L.C.; Breen, C.I.; Patterson, R.E. Frequency and Circadian Timing of Eating May Influence Biomarkers of Inflammation and Insulin Resistance Associated with Breast Cancer Risk. PLoS ONE 2015, 10, e0136240. [Google Scholar] [CrossRef]
- Hatori, M.; Vollmers, C.; Zarrinpar, A.; DiTacchio, L.; Bushong, E.A.; Gill, S.; Leblanc, M.; Chaix, A.; Joens, M.; Fitzpatrick, J.A.J.; et al. Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet. Cell Metab. 2012, 15, 848–860. [Google Scholar] [CrossRef] [PubMed]
- Kamp, D.W.; Shacter, E.; Weitzman, S.A. Chronic inflammation and cancer: The role of the mitochondria. Oncology 2011, 25, 400. [Google Scholar] [PubMed]
- Gutierrez Lopez, D.E.; Lashinger, L.M.; Weinstock, G.M.; Bray, M.S. Circadian rhythms and the gut microbiome synchronize the host’s metabolic response to diet. Cell Metab. 2021, 33, 873–887. [Google Scholar] [CrossRef] [PubMed]
- Lotti, S.; Dinu, M.; Colombini, B.; Amedei, A.; Sofi, F. Circadian rhythms, gut microbiota, and diet: Possible implications for health. Nutr. Metab. Cardiovasc. Dis. 2023, 33, 1490–1500. [Google Scholar] [CrossRef]
- Bishehsari, F.; Voigt, R.M.; Keshavarzian, A. Circadian rhythms and the gut microbiota: From the metabolic syndrome to cancer. Nat. Rev. Endocrinol. 2020, 16, 731–739. [Google Scholar] [CrossRef] [PubMed]
- Litichevskiy, L.; Thaiss, C.A. The oscillating gut microbiome and its effects on host circadian biology. Annu. Rev. Nutr. 2022, 42, 145–164. [Google Scholar] [CrossRef] [PubMed]
- Weger, B.D.; Gobet, C.; Yeung, J.; Martin, E.; Jimenez, S.; Betrisey, B.; Foata, F.; Berger, B.; Balvay, A.; Foussier, A.; et al. The Mouse Microbiome Is Required for Sex-Specific Diurnal Rhythms of Gene Expression and Metabolism. Cell Metab. 2019, 29, 362–382.e8. [Google Scholar] [CrossRef]
- Reitmeier, S.; Kiessling, S.; Clavel, T.; List, M.; Almeida, E.L.; Ghosh, T.S.; Neuhaus, K.; Grallert, H.; Linseisen, J.; Skurk, T.; et al. Arrhythmic gut microbiome signatures predict risk of type 2 diabetes. Cell Host Microbe 2020, 28, 258–272.e6. [Google Scholar] [CrossRef]
- Nobs, S.P.; Tuganbaev, T.; Elinav, E. Microbiome diurnal rhythmicity and its impact on host physiology and disease risk. EMBO Rep. 2019, 20, e47129. [Google Scholar] [CrossRef] [PubMed]
- Nshanian, M.; Gruber, J.J.; Geller, B.S.; Chleilat, F.; Lancaster, S.M.; White, S.M.; Alexandrova, L.; Camarillo, J.M.; Kelleher, N.L.; Zhao, Y.; et al. Short-chain fatty acid metabolites propionate and butyrate are unique epigenetic regulatory elements linking diet, metabolism and gene expression. Nat. Metab. 2025, 7, 196–211. [Google Scholar] [CrossRef] [PubMed]
- Woo, V.; Alenghat, T. Epigenetic regulation by gut microbiota. Gut Microbes 2022, 14, 2022407. [Google Scholar] [CrossRef]
- Jakubowicz, D.; Matz, Y.; Landau, Z.; Rosenblum, R.C.; Twito, O.; Wainstein, J.; Tsameret, S. Interaction Between Early Meals (Big-Breakfast Diet), Clock Gene mRNA Expression, and Gut Microbiome to Regulate Weight Loss and Glucose Metabolism in Obesity and Type 2 Diabetes. Int. J. Mol. Sci. 2024, 25, 12355. [Google Scholar] [CrossRef] [PubMed]
- Carasso, S.; Fishman, B.; Lask, L.S.; Shochat, T.; Geva-Zatorsky, N.; Tauber, E. Metagenomic analysis reveals the signature of gut microbiota associated with human chronotypes. FASEB J. 2021, 35, e22011. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, M.R.; Aggarwal, P.; Costa, R.G.F.; Cole, A.M.; Trinchieri, G. Targeting the gut microbiota for cancer therapy. Nat. Rev. Cancer 2022, 22, 703–722. [Google Scholar] [CrossRef] [PubMed]
- Nakatsu, G.; Andreeva, N.; MacDonald, M.H.; Garrett, W.S. Interactions between diet and gut microbiota in cancer. Nat. Microbiol. 2024, 9, 1644–1654. [Google Scholar] [CrossRef] [PubMed]
Author, Year | Cohort Name, Country | Cancer Type | Study Design | No. Samples, Cases and Controls | Sex, Age | Exposure | Main Findings |
---|---|---|---|---|---|---|---|
Von Behren, 2021, [39] | California Teachers Study, USA | Endometrial cancer | Nested case–control | 437 cases, 26,753 controls | F, <90 y | Chronotype measured through a single question based on Horne–Ostberg Morningness–Eveningness Questionnaire | Women who were definite evening types had a statistically significantly increased odds of having cancer (OR = 1.44, 95% CI 1.09–1.91) when compared with morning types. |
Costas, 2022, [40] | Screenwide Study, Spain | Endometrial cancer | Hospital-based case–control | 180 cases, 218 controls | F, NR | Chronotype assessed through the Munich Chronotype Questionnaire (MCTQ), and through self-reported questions | Inconsistent patterns for chronotype and endometrial cancer risk were observed. |
Hurley, 2019, [41] | California Teachers Study, USA | Breast cancer | Nested case–control | 2719 cases, 36,967 controls | F, <90 y | Chronotype measured through a single question based on Horne–Ostberg Morningness–Eveningness Questionnaire | Evening chronotype women had a higher likelihood of having cancer (OR = 1.20, 95% CI: 1.06–1.35) compared with morning chronotype women. |
Von Behren, 2024, [42] | California Teachers Study, USA | Breast cancer | Prospective cohort | 39,555, 1085 cases | F, <90 y | Chronotype measured through a single question based on Horne–Ostberg Morningness–Eveningness Questionnaire | The evening chronotype was associated with an increased risk of breast cancer (HR = 1.19, 95% CI: 1.04–1.36). |
McNeil, 2019, [43] | Alberta’s Tomorrow Project, Canada | Various cancer sites | Prospective cohort | 19,822, 1322 cases | M and F, 35–69 y | Chronotypes assessed through questions about sleep (habitual sleep duration, bed and wake times, sleep timing midpoint) | A later sleep timing midpoint (indicative of an evening chronotype) was associated with an increased incidence of combined (HR = 1.20, 95% CI: 1.04–1.37) and breast (HR = 1.49, 95% CI: 1.09–2.03) cancers. |
Wu, 2022, [44] | UK Biobank, UK | Breast cancer, prostate cancer | Prospective cohort | 216,702, 2367 breast cancer cases, 2866 prostate cancer cases | M and F, 40–69 y | Chronotype was self-reported based on touchscreen questionnaire | The evening chronotype was associated with breast cancer risk in females who carry the rs10830963 G risk allele in the melatonin receptor 1B (P trend = 0.015). No association was found for prostate cancer. |
Ramin, 2013, [45] | Nurses’ Health Study II, USA | Breast cancer | Prospective cohort | 72,517, 1834 cases | F, 15–42 y | Chronotype measured through a specific question and data about night shifts | Participants who self-reported as neither morning nor evening type had a 27% increased risk of breast cancer (OR = 1.27, 95% CI: 1.04–1.56) compared with definite morning types, while none of the other chronotypes were significantly associated with breast cancer risk. |
Hansen, 2012, [46] | NA, Denmark | Breast cancer | Nested case–control | 219 cases, 899 age-matched controls | F, <75 y | Chronotype measured through a specific question | Frequent night shift work increased the risk for breast cancer (OR = 1.4, 95% CI: 0.9–2.1), especially in participants self-identified as morning chronotypes (OR = 3.9, 95% CI: 1.6–9.5). |
Xie, 2021 [47] | UK Biobank, UK | Lung cancer | Prospective cohort | 469,691, 2177 cases | M and F, <90 y | Chronotype was self-reported based on touchscreen questionnaire | An evening preference was associated with an elevated lung cancer risk compared with a morning preference (HR = 1.25, 95% CI: 1.07–1.46). |
Peeri, 2022, [48] | UK Biobank, UK | Lung cancer | Prospective cohort | 382,966, 3644 cases | M and F, <90 y | Chronotype was self-reported based on touchscreen questionnaire | Individuals with slight and definite evening chronotypes were at a greater risk of lung cancer compared with definite morning chronotypes (HR = 1.17, 95% CI, 1.06–1.28 and HR = 1.37, 95% CI, 1.21–1.54, respectively). |
Cordina-Duverger, 2022, [49] | Women Epidemiology Lung Cancer Study, France | Lung cancer | Population-based case–control | 716 cases, 758 controls | F, 18–75 y | Chronotype measured through a specific question | No association between chronotype and lung cancer was found. |
Dickerman, 2016, [50] | Older Finnish Twin Cohort, Finland | Prostate cancer | Prospective cohort | 11,370, 602 cases | M, 69.9 ± 8.9 y | Chronotype measured through a questionnaire | Individuals showed that “somewhat evening” types had a significantly increased risk of prostate cancer (HR = 1.3, 95% CI: 1.1–1.6) compared with “definite morning” types. |
Cordina-Duverger, 2022, [51] | EPICAP Study, France | Prostate cancer | Population-based case–control | 819 cases, 879 controls | M, <75 y | Chronotype was assessed using the Morningness–Eveningness Questionnaire | Men with an evening chronotype showed an increased prostate cancer risk (OR = 1.96, 95% CI: 1.04–3.70). |
Lv, 2022, [52] | UK Biobank, UK | Prostate cancer | Prospective cohort | 213,999, 6747 cases | M, <90 y | Chronotype was self-reported based on touchscreen questionnaire | Chronotype was not associated with cancer risk. |
Lozano-Lorca, 2020, [53] | CAPLIFE Study, Spain | Prostate cancer | Population-based case–control | 465 cases, 410 controls | M, 40–80 y | Chronotype was evaluated using the Munich ChronoType Questionnaire (MCTQ) at 40 years old | Night shift work was associated with prostate cancer (OR = 1.47, 95% CI: 1.02–2.11), especially for rotating night shifts (OR = 1.73, 95% CI: 1.09–2.75). The magnitude of the association for ever night work and prostate cancer was higher in evening subjects (OR = 3.14, 95% CI:0.91–10.76) than in morning chronotypes (OR = 1.25, 95% CI: 0.78–2.00). |
Papantoniou, 2015, [54] | MCC-Spain Study, Spain | Prostate cancer | Population-based case–control | 1095 cases, 1318 controls | M. 27–85 y | Chronotype was estimated as the mid-sleep time on free days corrected for oversleep on free days compared with working days. | Subjects with longer durations of shift work reported a high risk of tumors (≥28 years: RRR 1.63, 95% CI: 1.08–2.45; p-trend = 0.027), especially those with an evening chronotype; tumor risk also increased in morning chronotypes after long-term night work. |
Wang, 2023, [55] | UK Biobank, UK | Esophageal cancer | Prospective cohort | 393,114, 389 cases | M and F, 37–73 y | Chronotype was self-reported based on touchscreen questionnaire | The evening chronotype was associated with an elevated risk of cancer diagnosed after 2 years of enrollment (HR = 2.79, 95% CI: 1.32–5.88). |
Leung, 2019, [56] | Prevention of Ovarian Cancer in Quebec Study, Canada | Ovarian cancer | Population-based case–control | 496 cases, 906 controls | F, 18–79 y | Chronotype measured through a specific question | There was no consistent increase in epithelial ovarian cancer risk with longer durations of shift work. The adjusted analysis for the highest shift work category compared with no shift work was 1.20 (95% CI, 0.89–1.63). This association was stronger among individuals identifying as having a “morning” chronotype (OR = 1.64, 95% CI: 1.01–2.65). |
Freeman, 2024, [57] | UK Biobank, UK | Pancreatic cancer | Prospective cohort | 475,286, 1079 cases | M and F, <90 y | Chronotype was self-reported based on touchscreen questionnaire | No associations were found for evening chronotype and risk of pancreatic cancer in “definitely” an evening person versus “definitely” a morning person, (HR = 0.99, 95% CI: 0.77–1.29). |
Author, Year | Genetic Information | No. Samples for Genetic Information | Data on Cancer | No. Sample Data on Cancer | Exposure (Genetic Traits) | Main Findings |
---|---|---|---|---|---|---|
Tian, 2023, [60] | UK Biobank | 379,222 | UK Biobank | 50,252 cases of total cancer and various subtypes | Chronotype (morning), sleep duration, getting up in the morning, nap during daytime, insomnia, narcolepsy | A positive association between the definite evening chronotype and the incidence risk of overall cancer, breast cancer, lung cancer, endometrial cancer, and ovarian cancer was reported. A causal relationship from the Mendelian randomization analysis showed a protective effect of the definite morning chronotype on the risk of overall cancer (OR = 0.91, 95% CI: 0.85–0.97 per category increase), lung cancer (OR = 0.34, 95%CI: 0.26–0.44 per category increase), and breast cancer (OR = 0.69, 95% CI: 0.59–0.80 per category increase), as well as slightly weaker effects for ovarian cancer (OR = 0.61, 95% CI: 0.39–0.97 per category increase) and endometrial cancer (OR = 0.62, 95%CI 0.43–0.91 per category increase), with positive associations between the definite evening chronotype and these types of cancers. |
Feng, 2024, [61] | UK Biobank and 23andMe | 177,604 and 248,094 | Breast Cancer Association Consortium (BCAC) | 133,384 cases of breast cancer and 113,789 controls | Chronotype (definite morning, more morning, more evening, definite evening) | The study reported that daytime dozing and the genetically determined morning chronotype are causally linked to a lower risk of breast cancer. |
Wu, 2024, [62] | UK Biobank | 449,734 | Breast Cancer Association Consortium (BCAC) and Discovery, Biology and Risk of Inherited Variants in Breast Cancer Consortium (DRIVE) | 122,977 cases of breast cancer and 105,974 controls | Chronotype | A significantly reduced risk of overall breast cancer (OR = 0.89, 95% CI: 0.83–0.94) for the genetically predicted morning chronotype was observed. |
Yuan, 2023, [63] | UK Biobank and 23andMe | 449,734 and 248,098 | UK Biobank and FinnGen | 11,952 cases of digestive tract cancer (1339 esophageal, 1086 stomach, 503 liver, 656 biliary tract, 1414 pancreatic and 7543 colorectal cancer) from UK Biobank and 7638 cases of digestive tract cancers (358 esophageal, 889 stomach, 442 liver, 157 biliary tract, 881 pancreatic and 4401 colorectal) from FinnGen | Chronotype | Genetic liability to the morning chronotype was associated with a reduced risk of overall digestive tract cancer (OR = 0.94, 95% CI: 0.90–0.98), stomach cancer (OR = 0.84, 95% CI: 0.73–0.97) and colorectal cancer (OR = 0.92, 95% CI: 0.87–0.98). |
He, 2024, [64] | UK Biobank | 337,000 | UK Biobank | 5657 cases of colorectal cancer, 2226 cases of colon cancer, and 1170 cases of rectum cancer | Chronotype (morning), sleep duration, getting up in the morning, nap during daytime, insomnia, snoring, daytime dozing | The study showed that the morning chronotype was marginally associated with the risk of colon cancer (OR = 1.004, 95% CI: 1.000–1.007). |
Zong, 2024, [65] | UK Biobank, FinnGen and 23andMe | Up to 462,400 | MRC-IEU and Italian data | 989 and 701 cases of thyroid cancer and 217,803 and 499 controls | Chronotype, sleep duration, snoring, sleep disorders, getting up in the morning, sleeplessness/insomnia, nap during day | The results showed a potential causal relation between thyroid cancer and the genetically determined morning chronotype. |
Sun, 2021, [66] | UK Biobank and 23andMe | 449,734 and 248,098 | Prostate Cancer Association Group to Investigate Cancer-Associated Alterations in the Genome Consortium (PRACTICAL) | 79,148 cases of prostate cancer and 61,106 controls | Chronotype | Individuals with genetically predicted morningness had a reduced causal risk of prostate cancer (OR = 0.71, 95% CI: 0.54–0.94) compared with the eveningness. |
Wang, 2021, [67] | UK Biobank | 462,434 | International Lung Cancer Consortium (ILCCO) | 11,348 cases of lung cancer and 15,861 controls | Chronotype, getting up in the morning, sleep duration, nap during the day, sleeplessness | The results showed that sleeplessness was associated with a higher risk of lung adenocarcinoma, while sleep duration played a protective role in lung cancer, with no significant associations with chronotype per se. |
Author, Year | Cohort Name, Country | Cancer Type | Study Design | No. Samples, Cases and Controls | Sex, Age | Exposure | Main Findings |
---|---|---|---|---|---|---|---|
Palomar-Cros, 2021, [73] | MCC-Spain Study, Spain | Prostate cancer | Population-based case–control | 607 cases, 848 controls | M, age range 20–85 y. Cases 66.0 y (±8.4), controls 65.6 y (±7.0) | Circadian data were assessed through a telephone interview | Nighttime fasting >11 h was associated with a reduced risk of prostate cancer compared with those fasting for ≤11 h (OR = 0.77, 95% 0.54–1.07). Combining a long nighttime fasting and an early breakfast was associated with a lower risk of prostate cancer compared with a short nighttime fasting and a late breakfast (OR = 0.54, 95% CI 0.27–1.04). |
Palomar-Cros, 2022, [74] | MCC-Spain Study, Spain | Breast cancer | Population-based case–control | 1181 cases, 1326 controls | F, 55.4 y (±11.6) cases, 58.4 y (±12.5) controls | Circadian data were assessed through a telephone interview | In premenopausal women, breakfast time was associated with an 18% increase in breast cancer risk (OR = 1.18, 95% CI: 1.01–1.40). No association was found in postmenopausal women. Nighttime fasting was not related to breast cancer. |
D’cunha, 2024, [75] | Living Well after Breast Cancer, Australia and New Zealand | Breast cancer | Randomized controlled trial | 159 cases | F, 18–75 y 55 ± 9 y | Chronotype was estimated from self-reported sleep logs recorded consecutively for 7 days | Breast cancer survivors with a late chronotype, compared with early, tended to consume a greater proportion of daily calories after 5 PM (p < 0.05), eat after 8 PM (p < 0.05), and eat less frequently (≥10% difference). |
Srour, 2018, [78] | NutriNet-Santé cohort, France | Breast and prostate cancer | Longitudinal cohort | 41,389, 428 breast cancer cases, 179 prostate cancer cases | M and F, 59.2 ± 11.3 y | Three 24 h dietary records | Late eaters (after 9:30 pm) had an increased risk of breast (HR = 1.48 [1.02–2.17], p = 0.03) and prostate (HR = 2.20 [1.28–3.78], p = 0.004) cancers. No association was observed between cancer risk and number of eating episodes, nighttime fasting duration, time of first eating episode or macronutrient composition of the last eating episode. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Godos, J.; Currenti, W.; Ferri, R.; Lanza, G.; Caraci, F.; Frias-Toral, E.; Guglielmetti, M.; Ferraris, C.; Lipari, V.; Carvajal Altamiranda, S.; et al. Chronotype and Cancer: Emerging Relation Between Chrononutrition and Oncology from Human Studies. Nutrients 2025, 17, 529. https://doi.org/10.3390/nu17030529
Godos J, Currenti W, Ferri R, Lanza G, Caraci F, Frias-Toral E, Guglielmetti M, Ferraris C, Lipari V, Carvajal Altamiranda S, et al. Chronotype and Cancer: Emerging Relation Between Chrononutrition and Oncology from Human Studies. Nutrients. 2025; 17(3):529. https://doi.org/10.3390/nu17030529
Chicago/Turabian StyleGodos, Justyna, Walter Currenti, Raffaele Ferri, Giuseppe Lanza, Filippo Caraci, Evelyn Frias-Toral, Monica Guglielmetti, Cinzia Ferraris, Vivian Lipari, Stefanía Carvajal Altamiranda, and et al. 2025. "Chronotype and Cancer: Emerging Relation Between Chrononutrition and Oncology from Human Studies" Nutrients 17, no. 3: 529. https://doi.org/10.3390/nu17030529
APA StyleGodos, J., Currenti, W., Ferri, R., Lanza, G., Caraci, F., Frias-Toral, E., Guglielmetti, M., Ferraris, C., Lipari, V., Carvajal Altamiranda, S., Galvano, F., Castellano, S., & Grosso, G. (2025). Chronotype and Cancer: Emerging Relation Between Chrononutrition and Oncology from Human Studies. Nutrients, 17(3), 529. https://doi.org/10.3390/nu17030529