Dietary Salt Restriction Practices Contribute to Obesity Prevention in Middle-Aged and Older Japanese Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Measures
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Sodium Reduction. 2023. Available online: https://www.who.int/news-room/fact-sheets/detail/salt-reduction (accessed on 17 January 2025).
- Japan Ministry of Health, Labour and Welfare. Health Japan 21 (The Third Term). 2024. Available online: https://www.mhlw.go.jp/stf/seisakunitsuite/bunya/kenkou_iryou/kenkou/kenkounippon21_00006.html (accessed on 23 January 2025). (In Japanese)
- He, F.J.; Li, J.; Macgregor, G.A. Effect of longer term modest salt reduction on blood pressure: Cochrane systematic review and meta-analysis of randomised trials. BMJ 2013, 346, f1325. [Google Scholar] [CrossRef] [PubMed]
- Strazzullo, P.; D’Elia, L.; Kandala, N.-B.; Cappuccio, F.P. Salt intake, stroke, and cardiovascular disease: Meta-analysis of prospective studies. BMJ 2009, 339, b4567. [Google Scholar] [CrossRef] [PubMed]
- Binia, A.; Jaeger, J.; Hu, Y.; Singh, A.; Zimmermann, D. Daily potassium intake and sodium-to-potassium ratio in the reduction of blood pressure: A meta-analysis of randomized controlled trials. J. Hypertens. 2015, 33, 1509–1520. [Google Scholar] [CrossRef] [PubMed]
- He, F.J.; Macgregor, G.A. Beneficial effects of potassium on human health. Physiol. Plant. 2008, 133, 725–735. [Google Scholar] [CrossRef] [PubMed]
- Japanese Society of Hypertension. Guidelines for the Management of Hypertension. 2019. Available online: https://www.jpnsh.jp/data/jsh2019/JSH2019_hp.pdf (accessed on 23 January 2025).
- Sacks, F.M.; Svetkey, L.P.; Vollmer, W.M.; Appel, L.J.; Bray, G.A.; Harsha, D.; Obarzanek, E.; Conlin, P.R.; Miller, E.R.; Simons-Morton, D.G.; et al. Effects on blood pressure of reduced dietary sodium and the Dietary Approaches to Stop Hypertension (DASH) diet. DASH-Sodium Collaborative Research Group. N. Engl. J. Med. 2001, 344, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Liu, T.; Kuklina, E.V.; Flanders, W.D.; Hong, Y.; Gillespie, C.; Chang, M.H.; Gwinn, M.; Dowling, N.; Khoury, M.J.; et al. Sodium and potassium intake and mortality among US adults: Prospective data from the Third National Health and Nutrition Examination Survey. Arch. Intern. Med. 2011, 171, 1183–1191. [Google Scholar] [CrossRef] [PubMed]
- Judd, S.E.; Aaron, K.J.; Letter, A.J.; Muntner, P.; Jenny, N.S.; Campbell, R.C.; Kabagambe, E.K.; Levitan, E.B.; Levine, D.A.; Shikany, J.M.; et al. High sodium: Potassium intake ratio increases the risk for all-cause mortality: The REasons for Geographic And Racial Differences in Stroke (REGARDS) study. J. Nutr. Sci. 2013, 2, e13. [Google Scholar] [CrossRef]
- Okayama, A.; Okuda, N.; Miura, K.; Okamura, T.; Hayakawa, T.; Akasaka, H.; Ohnishi, H.; Saitoh, S.; Arai, Y.; Kiyohara, Y.; et al. Dietary sodium-to-potassium ratio as a risk factor for stroke, cardiovascular disease and all-cause mortality in Japan: The NIPPON DATA80 cohort study. BMJ 2016, 6, e011632. [Google Scholar] [CrossRef] [PubMed]
- Powell-Wiley, T.M.; Poirier, P.; Burke, L.E.; Després, J.P.; Gordon-Larsen, P.; Lavie, C.J.; Lear, S.A.; Ndumele, C.E.; Neeland, I.J.; Sanders, P.; et al. Obesity and cardiovascular disease: A scientific statement from the American Heart Association. Circulation 2021, 143, e984–e1010. [Google Scholar] [CrossRef] [PubMed]
- The Global BMI Mortality Collaboration; Di Angelantonio, E.; Bhupathiraju, S.N.; Wormser, D.; Gao, P.; Kaptoge, S.; Berrington de Gonzalez, A.; Cairns, B.J.; Huxley, R.; Jackson, C.L.; et al. Body-mass index and all-cause mortality: Individual-participant-data meta-analysis of 239 prospective studies in four continents. Lancet 2016, 388, 776–786. [Google Scholar] [CrossRef] [PubMed]
- Nyamdorj, R.; Qiao, Q.; Söderberg, S.; Pitkäniemi, J.; Zimmet, P.; Shaw, J.; Alberti, G.; Nan, H.; Uusitalo, U.; Pauvaday, V.; et al. Comparison of body mass index with waist circumference, waist-to-hip ratio, and waist-to-stature ratio as a predictor of hypertension incidence in Mauritius. J. Hypertens. 2008, 26, 866–870. [Google Scholar] [CrossRef] [PubMed]
- Shihab, H.M.; Meoni, L.A.; Chu, A.Y.; Wang, N.Y.; Ford, D.E.; Liang, K.Y.; Gallo, J.J.; Klag, M.J. Body mass index and risk of incident hypertension over the life course: The Johns Hopkins Precursors Study. Circulation 2012, 126, 2983–2989. [Google Scholar] [CrossRef]
- Ishikawa-Takata, K.; Ohta, T.; Moritaki, K.; Gotou, T.; Inoue, S. Obesity, weight change and risks for hypertension, diabetes and hypercholesterolemia in Japanese men. Eur. J. Clin. Nutr. 2002, 56, 601–607. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.-C.; Sung, F.-C.; Su, T.-C.; Chien, K.-L.; Hsu, H.-C.; Lee, Y.-T. Two-year change in body mass index and subsequent risk of hypertension among men and women in a Taiwan community. J. Hypertens. 2009, 27, 1370–1376. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Stamler, J.; Chan, Q.; Van Horn, L.; Daviglus, M.L.; Dyer, A.R.; Miura, K.; Okuda, N.; Wu, Y.; Ueshima, H.; et al. Salt intake and prevalence of overweight/obesity in Japan, China, the United Kingdom, and the United States: The INTERMAP Study. Am. J. Clin. Nutr. 2019, 110, 34–40. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Ouyang, Y.; Liu, J.; Zhu, M.; Zhao, G.; Bao, W.; Hu, F.B. Fruit and vegetable consumption and mortality from all causes, cardiovascular disease, and cancer: Systematic review and dose–response meta-analysis of prospective cohort studies. BMJ 2014, 349, g4490. [Google Scholar] [CrossRef] [PubMed]
- Kaiser, K.A.; Brown, A.W.; Bohan Brown, M.M.B.; Shikany, J.M.; Mattes, R.D.; Allison, D.B. Increased fruit and vegetable intake has no discernible effect on weight loss: A systematic review and meta-analysis. Am. J. Clin. Nutr. 2014, 100, 567–576. [Google Scholar] [CrossRef] [PubMed]
- Barnes, T.L.; French, S.A.; Harnack, L.J.; Mitchell, N.R.; Wolfson, J. Snacking behaviors, diet quality, and body mass index in a community sample of working adults. J. Acad. Nutr. Diet 2015, 115, 1117–1123. [Google Scholar] [CrossRef]
- Okada, C.; Imano, H.; Muraki, I.; Yamada, K.; Iso, H. The association of having a late dinner or bedtime snack and skipping breakfast with overweight in Japanese women. J. Obes. 2019, 2019, 2439571. [Google Scholar] [CrossRef]
- AlKalbani, S.R.; Murrin, C. The association between alcohol intake and obesity in a sample of the Irish adult population, a cross-sectional study. BMC Public Health 2023, 23, 2075. [Google Scholar] [CrossRef] [PubMed]
- Bouna-Pyrrou, P.; Muehle, C.; Kornhuber, J.; Weinland, C.; Lenz, B. Body mass index and serum levels of soluble leptin receptor are sex-specifically related to alcohol binge drinking behavior. Psychoneuroendocrinology 2021, 127, 105179. [Google Scholar] [CrossRef] [PubMed]
- Bhutani, S.; Schoeller, D.A.; Walsh, M.C.; McWilliams, C. Frequency of eating out at both fast-food and sit-down restaurants was associated with high body mass index in non-large metropolitan communities in Midwest. Am. J. Health Promot. 2018, 32, 75–83. [Google Scholar] [CrossRef]
- Kim, D.; Ahn, B.-I. Eating out and consumers’ health: Evidence on obesity and balanced nutrition intakes. Int. J. Environ. Res. Public Health 2020, 17, 586. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.S.; Lee, J. Effects of exercise interventions on weight, body mass index, lean body mass and accumulated visceral fat in overweight and obese individuals: A systematic review and meta-analysis of randomized controlled trials. Int. J. Environ. Res. Public Health 2021, 18, 2635. [Google Scholar] [CrossRef] [PubMed]
- Hyōgo Prefectural Government. Hyogo Nutrition and Diet Survey. 2021. Available online: https://web.pref.hyogo.lg.jp/kf17/hyogoeiyoushokuseikatujittaichousa.html (accessed on 11 March 2023). (In Japanese)
- Statistics Bureau of Japan. Population Census of Japan. 2015. Available online: https://www.stat.go.jp/english/data/kokusei/index.html (accessed on 23 January 2025).
- Japan Ministry of Education, Culture, Sports, Science and Technology; Ministry of Health, Labor and Welfare; Ministry of Economy; Trade and Industry. Ethical Guidelines for Life Sciences and Medical Research Involving Human Subjects. Available online: https://www.mhlw.go.jp/content/001077424.pdf (accessed on 17 January 2025). (In Japanese)
- Japan Ministry of Health, Labour and Welfare. The National Health and Nutrition Survey in Japan. 2019. Available online: https://www.mhlw.go.jp/stf/seisakunitsuite/bunya/kenkou_iryou/kenkou/eiyou/r1-houkoku_00002.html (accessed on 23 January 2025). (In Japanese)
- Yokoyama, Y.; Takachi, R.; Ishihara, J.; Ishii, Y.; Sasazuki, S.; Sawada, N.; Shinozawa, Y.; Tanaka, J.; Kato, E.; Kitamura, K.; et al. Validity of short and long self-administered food frequency questionnaires in ranking dietary intake in middle-aged and elderly Japanese in the Japan Public Health Center-Based Prospective Study for the Next Generation (JPHC-NEXT) protocol area. J. Epidemiol 2016, 26, 420–432. [Google Scholar] [CrossRef] [PubMed]
- Toyoda, H. Covariance Structure Analysis (Amos Edition)—Structural Equation Modeling; Tokyo Tosho Co., Ltd.: Tokyo, Japan, 2007. (In Japanese) [Google Scholar]
- MacCallum, R.C.; Browne, M.W.; Sugawara, H.M. Power analysis and determination of sample size for covariance structure modeling. Psychol. Methods 1996, 1, 130–149. [Google Scholar] [CrossRef]
- Okuda, N.; Okayama, A.; Miura, K.; Yoshita, K.; Miyagawa, N.; Saitoh, S.; Nakagawa, H.; Sakata, K.; Chan, Q.; Elliott, P.; et al. Food sources of dietary potassium in the adult Japanese population: The International Study of Macro-/Micronutrients and blood pressure (INTERMAP). Nutrients 2020, 12, 787. [Google Scholar] [CrossRef] [PubMed]
- Najjar, R.S.; Feresin, R.G. Plant-Based Diets in the Reduction of Body Fat: Physiological Effects and Biochemical Insights. Nutrients 2019, 11, 2712. [Google Scholar] [CrossRef]
- Zhang, Y.; Balasooriya, H.; Sirisena, S.; Ng, K. The effectiveness of dietary polyphenols in obesity management: A systematic review and meta-analysis of human clinical trials. Food Chem. 2023, 404 Pt B, 134668. [Google Scholar] [CrossRef]
- Yao, N.; Yan, S.; Guo, Y.; Wang, H.; Li, X.; Wang, L.; Hu, W.; Li, B.; Cui, W. The association between carotenoids and subjects with overweight or obesity: A systematic review and meta-analysis. Food Funct. 2021, 12, 4768–4782. [Google Scholar] [CrossRef] [PubMed]
- Mazaheri-Tehrani, S.; Yazdi, M.; Heidari-Beni, M.; Yazdani, Z.; Kelishadi, R. The association between vitamin C dietary intake and its serum levels with anthropometric indices: A systematic review and meta-analysis. Complement. Ther. Clin. Pract. 2023, 51, 101733. [Google Scholar] [CrossRef]
- U.S. Department of Agriculture Economic Research Service. Food Availability and Consumption. 2023. Available online: https://www.ers.usda.gov/data-products/ag-and-food-statistics-charting-the-essentials/food-availability-and-consumption/ (accessed on 23 January 2025).
- Japan Ministry of Health, Labour and Welfare; The Program for Standard Specific Health Checkups and Specific Health Guidance. 2024. Available online: https://www.mhlw.go.jp/stf/seisakunitsuite/bunya/0000194155_00004.html (accessed on 23 January 2025). (In Japanese).
- Kannel, W.B. The Framingham Study: Historical insight on the impact of cardiovascular risk factors in men versus women. J. Gend. Specif. Med. 2002, 5, 27–37. [Google Scholar] [PubMed]
- Clemens, L.H.; Slawson, D.L.; Klesges, R.C. The effect of eating out on quality of diet in premenopausal women. J. Am. Diet Assoc. 1999, 99, 442–444. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Total | Men | Women | ||||
---|---|---|---|---|---|---|---|
n = 418 | n = 190 | n = 228 | p | ||||
n | % | n | % | n | % | ||
Age a | |||||||
40 to 49 years | 131 | 31.3 | 65 | 34.2 | 66 | 28.9 | 0.20 |
50 to 59 years | 114 | 27.3 | 44 | 23.2 | 70 | 30.7 | |
60 to 69 years | 173 | 41.4 | 81 | 42.6 | 92 | 40.4 | |
Living Arrangement a | |||||||
Living alone | 34 | 8.1 | 15 | 7.9 | 19 | 8.3 | 0.89 |
Married couple | 110 | 26.3 | 48 | 25.3 | 62 | 27.2 | |
Parent(s) and children | 216 | 51.7 | 102 | 53.7 | 114 | 50.0 | |
3- or 4-generation household | 54 | 12.9 | 24 | 12.6 | 30 | 13.2 | |
Others | 4 | 1.0 | 1 | 0.5 | 3 | 1.3 | |
Body mass index (BMI, kg/m2) a | |||||||
<18.5 | 17 | 4.1 | 3 | 1.6 | 14 | 6.1 | 0.004 |
≥18.5 and <25 | 303 | 72.5 | 131 | 68.9 | 172 | 75.4 | |
≥25 | 98 | 23.4 | 56 | 29.5 | 42 | 18.4 | |
Number of vegetable dishes daily a | |||||||
5 dishes or more | 21 | 5.0 | 4 | 2.1 | 17 | 7.5 | 0.002 |
4 dishes | 39 | 9.3 | 12 | 6.3 | 27 | 11.8 | |
3 dishes | 118 | 28.2 | 48 | 25.3 | 70 | 30.7 | |
2 dishes | 163 | 39.0 | 81 | 42.6 | 82 | 36.0 | |
1 dish or less | 77 | 18.4 | 45 | 23.7 | 32 | 14.0 | |
Vegetable intake (g/1000 kcal) b | |||||||
168.2 | 139.5 | 176.0 | <0.001 | ||||
141.3 | 179.6 | 127.7 | 157.1 | 168.8 | 184.0 | ||
Fruit intake (g/1000 kcal) b | 58.8 | ||||||
36.1 | 66.0 | 35.1 | 64.3 | <0.001 | |||
30.6 | 40.9 | 59.9 | 70.7 |
Dietary-Related Factors | Men, n = 190 | Women, n = 228 | ||||
---|---|---|---|---|---|---|
Dietary Salt Restriction | Dietary Salt Restriction | |||||
Practising | Not Practising | p | Practising | Not Practising | p | |
n = 81 | n = 109 | n = 155 | n = 73 | |||
Mean | Mean | Mean | Mean | |||
SD | SD | SD | SD | |||
Body mass index (BMI, kg/m2) | 23.6 | 24.2 | 0.22 | 22.2 | 23.1 | 0.07 |
2.7 | 3.4 | 3.2 | 3.7 | |||
Energy intake (kcal) | 2254 | 2272 | 0.65 | 1807 | 1806 | 0.93 |
280 | 263 | 56 | 40 | |||
Protein/energy ratio (%E) | 15.0 | 14.7 | 0.033 | 15.5 | 15.4 | 0.08 |
0.8 | 0.8 | 0.6 | 0.3 | |||
Fat/energy ratio (%E) | 23.4 | 23.1 | 0.25 | 24.5 | 24.4 | 0.08 |
2.0 | 1.9 | 0.4 | 0.4 | |||
Carbohydrate/energy ratio (%E) | 50.7 | 51.0 | 0.51 | 54.2 | 54.3 | 0.37 |
3.7 | 3.7 | 1.5 | 1.5 | |||
Sodium intake (mg/1000 kcal) | 1935 | 1936 | 0.97 | 2034 | 2032 | 0.87 |
135 | 144 | 85 | 83 | |||
Potassium intake (mg/1000 kcal) | 1378 | 1336 | 0.009 | 1622 | 1581 | p < 0.001 |
119 | 91 | 104 | 62 | |||
Dietary Na/K ratio (mmol/mmol) | 2.40 | 2.47 | 0.008 | 2.14 | 2.19 | 0.002 |
0.20 | 0.16 | 0.12 | 0.09 | |||
Salt intake (g/1000 kcal) | 4.9 | 4.9 | 0.98 | 5.1 | 5.1 | 0.83 |
0.3 | 0.4 | 0.2 | 0.2 | |||
Vegetable intake (g/1000 kcal) | 150.1 | 143.1 | 0.11 | 183.2 | 176.5 | 0.007 |
33.4 | 26.3 | 22.6 | 13.9 | |||
Fruit intake (g/1000 kcal) | 41.8 | 36.5 | 0.013 | 67.4 | 68.0 | 0.72 |
16.6 | 11.0 | 12.7 | 14.4 |
BMI-Related Eating and Lifestyle Behaviours | Men, n = 190 | Women, n = 228 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Obese, BMI ≥ 25 kg/m2 | Normal Weight/Underweight, BMI < 25 kg/m2 | p | Obese, BMI ≥ 25 kg/m2 | Normal Weight/Underweight, BMI < 25 kg/m2 | p | |||||
n = 56 | n = 134 | n = 42 | n = 186 | |||||||
n | % | n | % | n | % | n | % | |||
Snacking frequency | ||||||||||
At least twice daily | 4 | 7.1 | 10 | 7.5 | 0.74 | 3 | 7.1 | 35 | 18.8 | 0.48 |
6 or 7 days/week | 10 | 17.9 | 29 | 21.6 | 20 | 47.6 | 61 | 32.8 | ||
4 or 5 days/week | 12 | 21.4 | 17 | 12.7 | 11 | 26.2 | 30 | 16.1 | ||
2 or 3 days/week | 17 | 30.4 | 38 | 28.4 | 6 | 14.3 | 36 | 19.4 | ||
1 day/week or less | 13 | 23.2 | 40 | 29.9 | 2 | 4.8 | 24 | 12.9 | ||
Late-night snacking frequency | ||||||||||
At least twice daily | 0 | 0.0 | 0 | 0.0 | 0.17 | 0 | 0.0 | 0 | 0.0 | 0.24 |
6 or 7 days/week | 1 | 1.8 | 4 | 3.0 | 1 | 2.4 | 2 | 1.1 | ||
4 or 5 days/week | 5 | 8.9 | 1 | 0.7 | 1 | 2.4 | 2 | 1.1 | ||
2 or 3 days/week | 5 | 8.9 | 9 | 6.7 | 4 | 9.5 | 8 | 4.3 | ||
1 day/week or less | 45 | 80.4 | 120 | 89.6 | 36 | 85.7 | 174 | 93.5 | ||
Drinking (alcohol) frequency | ||||||||||
Daily | 17 | 30.4 | 49 | 36.6 | 0.88 | 2 | 4.8 | 18 | 9.7 | 0.73 |
5 or 6 days/week | 6 | 10.7 | 12 | 9.0 | 2 | 4.8 | 5 | 2.7 | ||
3 or 4 days/week | 3 | 5.4 | 9 | 6.7 | 2 | 4.8 | 10 | 5.4 | ||
1 or 2 days/week | 6 | 10.7 | 8 | 6.0 | 2 | 4.8 | 9 | 4.8 | ||
1–3 days/month | 5 | 8.9 | 4 | 3.0 | 5 | 11.9 | 19 | 10.2 | ||
Quit (have quit for more than 1 year) | 2 | 3.6 | 3 | 2.2 | 3 | 7.1 | 1 | 0.5 | ||
Hardly drink | 17 | 30.4 | 49 | 36.6 | 26 | 61.9 | 124 | 66.7 | ||
Eating out frequency | ||||||||||
At least twice daily | 1 | 1.8 | 1 | 0.7 | 0.064 | 0 | 0.0 | 0 | 0.0 | 0.91 |
Once daily | 0 | 0.0 | 2 | 1.5 | 0 | 0.0 | 0 | 0.0 | ||
4 to 6 days/week | 5 | 8.9 | 1 | 0.7 | 1 | 2.4 | 2 | 1.1 | ||
2 or 3 days/week | 7 | 12.5 | 9 | 6.7 | 3 | 7.1 | 12 | 6.5 | ||
1 day/week | 3 | 5.4 | 15 | 11.2 | 2 | 4.8 | 14 | 7.5 | ||
1–3 days/month | 31 | 55.4 | 74 | 55.2 | 25 | 59.5 | 117 | 62.9 | ||
Not at all | 9 | 16.1 | 32 | 23.9 | 11 | 26.2 | 41 | 22.0 | ||
Home meal replacement (ready-to-eat food) frequency | ||||||||||
At least twice daily | 0 | 0.0 | 1 | 0.7 | 0.48 | 0 | 0.0 | 0 | 0.0 | 0.061 |
Once daily | 2 | 3.6 | 3 | 2.2 | 0 | 0.0 | 3 | 1.6 | ||
4 to 6 days/week | 2 | 3.6 | 7 | 5.2 | 2 | 4.8 | 7 | 3.8 | ||
2 or 3 days/week | 6 | 10.7 | 17 | 12.7 | 9 | 21.4 | 20 | 10.8 | ||
1 day/week | 13 | 23.2 | 15 | 11.2 | 8 | 19.0 | 20 | 10.8 | ||
1–3 days/month | 25 | 44.6 | 59 | 44.0 | 20 | 47.6 | 107 | 57.5 | ||
Not at all | 8 | 14.3 | 32 | 23.9 | 3 | 7.1 | 29 | 15.6 | ||
Exercise regularity (including walking at least 30 min once) | ||||||||||
At least 3 times/week for at least 1 year | 8 | 14.3 | 29 | 21.6 | 0.24 | 5 | 11.9 | 30 | 16.1 | 0.88 |
2 times/week for more than 1 year | 7 | 12.5 | 21 | 15.7 | 6 | 14.3 | 33 | 17.7 | ||
At least 2 times/week for less than 1 year | 7 | 12.5 | 14 | 10.4 | 8 | 19.0 | 11 | 5.9 | ||
Almost never | 25 | 44.6 | 48 | 35.8 | 20 | 47.6 | 81 | 43.5 | ||
Not at all | 9 | 16.1 | 22 | 16.4 | 3 | 7.1 | 31 | 16.7 |
Men, n = 190 | Women, n = 228 | Interaction | Sex | Age Group | Multiple Comparison a | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
40–49 Years | 50–59 Years | 60–69 Years | 40–49 Years | 50–59 Years | 60–69 Years | ||||||
n = 65 | n = 44 | n = 81 | n = 66 | n = 70 | n = 92 | (Age × Sex) | |||||
Mean | Mean | Mean | Mean | Mean | Mean | ||||||
SD | SD | SD | SD | SD | SD | ||||||
Dietary practices for salt restriction | F = 0.723 | F = 21.713 | F = 7.530 | ||||||||
Score (1–4 points) | 2.18 | 2.43 | 2.57 | 2.67 | 2.67 | 3.01 | df = 2412 | df = 1412 | Male < Female | df = 2412 | 40–49 < 60–69 ** |
0.85 | 0.73 | 0.87 | 0.81 | 0.88 | 0.81 | p = 0.49 | p < 0.001 | p = 0.001 | |||
Dietary Na/K ratio (mmol/mmol) | F = 0.872 | F = 389.280 | F = 5.364 | ||||||||
2.46 | 2.46 | 2.41 | 2.19 | 2.15 | 2.14 | df = 2412 | df = 1412 | Male > Female | df = 2412 | 40–49 > 50–59 | |
0.19 | 0.16 | 0.18 | 0.09 | 0.11 | 0.12 | p = 0.42 | p < 0.001 | p = 0.005 | 40–49 > 60–69 * | ||
Salt intake (g/1000 kcal) | F = 0.634 | F = 69.303 | F = 0.591 | ||||||||
4.89 | 4.88 | 4.89 | 5.10 | 5.12 | 5.16 | df = 2412 | df = 1412 | Male < Female | df = 2412 | ||
0.37 | 0.38 | 0.34 | 0.21 | 0.20 | 0.22 | p = 53 | p < 0.001 | p = 0.55 | |||
Body mass index (BMI, kg/m2) | F = 1.559 | F = 23.567 | F = 0.702 | ||||||||
23.8 | 24.4 | 23.9 | 22.2 | 22.1 | 23.0 | df = 2412 | df = 1412 | Male > Female | df = 2412 | ||
3.3 | 2.8 | 3.1 | 3.7 | 3.2 | 3.2 | p = 0.21 | p < 0.001 | p = 0.50 | |||
Eating out frequency | F = 0.399 | F = 6.143 | F = 2.106 | ||||||||
Score (1–7 points) | 2.31 | 2.41 | 2.09 | 2.09 | 2.04 | 1.93 | df = 2412 | df = 1412 | Male > Female | df = 2412 | |
1.00 | 1.24 | 1.20 | 0.76 | 0.92 | 0.80 | p = 0.67 | p = 0.014 | p = 0.12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kibayashi, E.; Nakade, M. Dietary Salt Restriction Practices Contribute to Obesity Prevention in Middle-Aged and Older Japanese Adults. Nutrients 2025, 17, 536. https://doi.org/10.3390/nu17030536
Kibayashi E, Nakade M. Dietary Salt Restriction Practices Contribute to Obesity Prevention in Middle-Aged and Older Japanese Adults. Nutrients. 2025; 17(3):536. https://doi.org/10.3390/nu17030536
Chicago/Turabian StyleKibayashi, Etsuko, and Makiko Nakade. 2025. "Dietary Salt Restriction Practices Contribute to Obesity Prevention in Middle-Aged and Older Japanese Adults" Nutrients 17, no. 3: 536. https://doi.org/10.3390/nu17030536
APA StyleKibayashi, E., & Nakade, M. (2025). Dietary Salt Restriction Practices Contribute to Obesity Prevention in Middle-Aged and Older Japanese Adults. Nutrients, 17(3), 536. https://doi.org/10.3390/nu17030536