A pharmacokinetic study was conducted to assess the biochemical dose-response and tolerability of high-dose prenatal vitamin D3 supplementation in Dhaka, Bangladesh (23°N). Pregnant women at 27–30 weeks gestation (
n = 28) were randomized to 70,000 IU once + 35,000 IU/week vitamin D3
[...] Read more.
A pharmacokinetic study was conducted to assess the biochemical dose-response and tolerability of high-dose prenatal vitamin D3 supplementation in Dhaka, Bangladesh (23°N). Pregnant women at 27–30 weeks gestation (
n = 28) were randomized to 70,000 IU once + 35,000 IU/week vitamin D3 (group PH: pregnant, higher dose) or 14,000 IU/week vitamin D3 (PL: pregnant, lower dose) until delivery. A group of non-pregnant women (
n = 16) was similarly administered 70,000 IU once + 35,000 IU/week for 10 weeks (NH: non-pregnant, higher-dose). Rise (∆) in serum 25-hydroxyvitamin D concentration ([25(OH)D]) above baseline was the primary pharmacokinetic outcome. Baseline mean [25(OH)D] were similar in PH and PL (35 nmol/L
vs. 31 nmol/L,
p = 0.34). A dose-response effect was observed: ∆[25(OH)D] at modeled steady-state was 19 nmol/L (95% CI, 1 to 37) higher in PH
vs. PL (
p = 0.044). ∆[25(OH)D] at modeled steady-state was lower in PH
versus NH but the difference was not significant (−15 nmol/L, 95% CI −34 to 5;
p = 0.13). In PH, 100% attained [25(OH)D] ≥ 50 nmol/L and 90% attained [25(OH)D] ≥ 80 nmol/L; in PL, 89% attained [25(OH)D] ≥ 50 nmol/L but 56% attained [25(OH)D] ≥ 80 nmol/L. Cord [25(OH)D] (
n = 23) was slightly higher in PH
versus PL (117 nmol/L
vs. 98 nmol/L;
p = 0.07). Vitamin D3 was well tolerated; there were no supplement-related serious adverse clinical events or hypercalcemia. In summary, a regimen of an initial dose of 70,000 IU and 35,000 IU/week vitamin D3 in the third trimester of pregnancy was non-hypercalcemic and attained [25(OH)D] ≥ 80 nmol/L in virtually all mothers and newborns. Further research is required to establish the safety of high-dose vitamin D3 in pregnancy and to determine if supplement-induced [25(OH)D] elevations lead to maternal-infant health benefits.
Full article