The Relevance of the Colon to Zinc Nutrition
Abstract
:1. Introduction
2. Intestinal Zinc Homeostasis
3. Dietary (Exogenous) Zinc
3.1. Zinc Transporters
4. Kinetics of Colonic Zinc Absorption
5. Colonic Absorption of Zinc in Rodent Models
6. Promotion of Zinc Absorption by Microbially-Fermentable Substrates
7. Relevance of Zinc Status to Colonic Zinc Absorption
8. Phytase-Mediated Phytate Hydrolysis
9. Endogenous Zinc and the Colon
10. Zinc Absorption in Human Colon
11. Future Studies of Colonic Zinc Absorption
12. Luminal Conditions in the Large and Small Intestine
13. Conclusions
Acknowledgement
Conflicts of Interest
References
- Brown, K.H.; Rivera, J.A.; Bhutta, Z.; Gibson, R.S.; King, J.C.; Lönnerdal, B.; Ruel, M.T.; Sandtröm, B.; Wasantwisut, E.; Hotz, C.; et al. International Zinc Nutrition Consultative Group (IZiNCG) technical document #1. Assessment of the risk of zinc deficiency in populations and options for its control. Food Nutr. Bull. 2004, 25 (Suppl. 2), S99–S203. [Google Scholar]
- Hunt, J.R. Bioavailability of iron, zinc, and other trace minerals from vegetarian diets. Am. J. Clin. Nutr. 2003, 78 (Suppl. 3), 633S–639S. [Google Scholar]
- Fischer Walker, C.L.; Ezzati, M.; Black, R.E. Global and regional child mortality and burden of disease attributable to zinc deficiency. Eur. J. Clin. Nutr. 2009, 63, 591–597. [Google Scholar] [CrossRef] [PubMed]
- Ramakrishna, B.S.; Subramanian, V.; Mohan, V.; Sebastian, B.K.; Young, G.P.; Farthing, M.J.; Binder, H.J. A randomized controlled trial of glucose versus amylase resistant starch hypo-osmolar oral rehydration solution for adult acute dehydrating diarrhea. PLoS One 2008, 3, e1587. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hylander, E.; Ladefoged, K.; Jarnum, S. Calcium absorption after intestinal resection. The importance of a preserved colon. Scand. J. Gastroenterol. 1990, 25, 705–710. [Google Scholar] [CrossRef] [PubMed]
- Hara, H.; Konishi, A.; Kasai, T. Contribution of the cecum and colon to zinc absorption in rats. J. Nutr. 2000, 130, 83–89. [Google Scholar] [PubMed]
- Yonekura, L.; Suzuki, H. Effects of dietary zinc levels, phytic acid and resistant starch on zinc bioavailability in rats. Eur. J. Nutr. 2005, 44, 384–391. [Google Scholar] [CrossRef] [PubMed]
- Krebs, N.F. Overview of zinc absorption and excretion in the human gastrointestinal tract. J. Nutr. 2000, 130 (Suppl. 5S), 1374S–1377S. [Google Scholar] [PubMed]
- Manary, M.J.; Abrams, S.A.; Griffin, I.J.; Quimper, M.M.; Shulman, R.J.; Hamzo, M.G.; Chen, Z.; Maleta, K.; Manary, M.J. Perturbed zinc homeostasis in rural 3-5-y-old Malawian children is associated with abnormalities in intestinal permeability attributed to tropical enteropathy. Pediatr. Res. 2010, 67, 671–675. [Google Scholar] [CrossRef] [PubMed]
- Ramakrishna, B.S.; Venkataraman, S.; Mukhopadhya, A. Tropical malabsorption. Postgrad. Med. J. 2006, 82, 779–787. [Google Scholar] [CrossRef] [PubMed]
- Lindenmayer, G.W.; Stoltzfus, R.J.; Prendergast, A.J. Interactions between Zinc Deficiency and Environmental Enteropathy in Developing Countries. Adv. Nutr. 2014, 5, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Jeong, J.; Eide, D.J. The SLC39 family of zinc transporters. Mol. Asp. Med. 2013, 34, 612–619. [Google Scholar] [CrossRef]
- King, J.C. Does zinc absorption reflect zinc status? Int. J. Vitam. Nutr. Res. 2010, 80, 300–306. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.H.; Prasad, A.S.; Brewer, G.J.; Owyang, C. Zinc absorption in human small intestine. Am. J. Physiol. 1989, 256, (Pt 1). G87–G91. [Google Scholar]
- Lonnerdal, B. Dietary factors influencing zinc absorption. J. Nutr. 2000, 130 (Suppl. 5S), 1378S–1383S. [Google Scholar] [PubMed]
- Lopez, H.W.; Leenhardt, F.; Coudray, C.; Remesy, C. Minerals and phytic acid interactions: Is it a real problem for human nutrition? Int. J. Food Sci. Technol. 2002, 37, 727–739. [Google Scholar] [CrossRef]
- Cousins, R.J. Gastrointestinal factors influencing zinc absorption and homeostasis. Int. J. Vitam. Nutr. Res. 2010, 80, 243–248. [Google Scholar] [CrossRef] [PubMed]
- Cousins, R.J.; Liuzzi, J.P.; Lichten, L.A. Mammalian zinc transport, trafficking, and signals. J. Biol. Chem. 2006, 281, 24085–24089. [Google Scholar] [CrossRef] [PubMed]
- Dufner-Beattie, J.; Wang, F.; Kuo, Y.M.; Gitschier, J.; Eide, D.; Andrews, G.K. The acrodermatitis enteropathica gene ZIP4 encodes a tissue-specific, zinc-regulated zinc transporter in mice. J. Biol. Chem. 2003, 278, 33474–33481. [Google Scholar] [CrossRef] [PubMed]
- Pfaffl, M.W.; Windisch, W. Influence of zinc deficiency on the mRNA expression of zinc transporters in adult rats. J. Trace Elem. Med. Biol. 2003, 17, 97–106. [Google Scholar] [CrossRef] [PubMed]
- Cragg, R.A.; Phillips, S.R.; Piper, J.M.; Varma, J.S.; Campbell, F.C.; Mathers, J.C.; Ford, D. Homeostatic regulation of zinc transporters in the human small intestine by dietary zinc supplementation. Gut 2005, 54, 469–478. [Google Scholar] [CrossRef] [PubMed]
- Krebs, N.F. Update on zinc deficiency and excess in clinical pediatric practice. Ann. Nutr. Metab. 2013, 62 (Suppl. 1), 19–29. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, Y.; Cui, X.; Yao, W.; Yu, X.; Cen, P.; Hodges, S.E.; Fisher, W.E.; Brunicardi, F.C.; Chen, C.; et al. Gene profile identifies zinc transporters differentially expressed in normal human organs and human pancreatic cancer. Curr. Mol. Med. 2013, 13, 401–409. [Google Scholar] [PubMed]
- Gisbert-Gonzalez, S.L.; Torres-Molina, F. Zinc uptake in five sectors of the rat gastrointestinal tract: Kinetic study in the whole colon. Pharm. Res. 1996, 13, 1154–1161. [Google Scholar] [CrossRef] [PubMed]
- Condomina, J.; Zornoza-Sabina, T.; Granero, L.; Polache, A. Kinetics of zinc transport in vitro in rat small intestine and colon: Interaction with copper. Eur. J. Pharm. Sci. 2002, 16, 289–295. [Google Scholar] [CrossRef] [PubMed]
- Field, M. Intestinal ion transport and the pathophysiology of diarrhea. J. Clin. Investig. 2003, 111, 931–943. [Google Scholar] [CrossRef] [PubMed]
- Davies, N.T. Studies on the absorption of zinc by rat intestine. Br. J. Nutr. 1980, 43, 189–203. [Google Scholar] [CrossRef] [PubMed]
- Sorensen, J.A.; Andersen, O.; Nielsen, J.B. An in vivo study of the gastrointestinal absorption site for zinc chloride in mice. J. Trace Elem. Med. Biol. 1998, 12, 16–22. [Google Scholar] [CrossRef] [PubMed]
- Lopez, H.W.; Coudray, C.; Bellanger, J.; Younes, H.; Demigné, C.; Rémésy, C. Intestinal fermentation lessens the inhibitory effects of phytic acid on mineral utilization in rats. J. Nutr. 1998, 128, 1192–1198. [Google Scholar] [PubMed]
- Coudray, C.; Feillet-Coudray, C.; Gueux, E.; Mazur, A.; Rayssiguier, Y. Dietary inulin intake and age can affect intestinal absorption of zinc and copper in rats. J. Nutr. 2006, 136, 117–122. [Google Scholar] [PubMed]
- Cummings, J.H. Short chain fatty acids in the human colon. Gut 1981, 22, 763–779. [Google Scholar] [CrossRef] [PubMed]
- Scheppach, W. Efects of short chain fatty acids on gut morphology and function. Gut 1994, 35 (Suppl. 1), S35–S38. [Google Scholar] [CrossRef] [PubMed]
- Younes, H.; Demigne, C.; Remesy, C. Acidic fermentation in the caecum increases absorption of calcium and magnesium in the large intestine of the rat. Br. J. Nutr. 1996, 75, 301–314. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, K.; Hara, H.; Asvarujanon, P.; Aoyama, Y.; Luangpituksa, P. Ingestion of insoluble dietary fibre increased zinc and iron absorption and restored growth rate and zinc absorption suppressed by dietary phytate in rats. Br. J. Nutr. 2001, 86, 443–451. [Google Scholar] [CrossRef] [PubMed]
- Wise, A.; Gilburt, D. Phytate hydrolysis by germfree and conventional rats. Appl. Environ. Microbiol. 1982, 43, 753–756. [Google Scholar] [PubMed]
- Sandberg, A.-S.; Andlid, T. Phytogenic and microbial phytases in human nutrition. Int. J. Food Sci. Technol. 2002, 37, 823–833. [Google Scholar] [CrossRef]
- Viveros, A.; Brenes, A.; Arija, I.; Centeno, C. Effects of Microbial Phytase Supplementation on Mineral Utilization and Serum Enzyme Activities in Broiler Chicks Fed Different Levels of Phosphorus. Poult. Sci. 2002, 81, 1172–1183. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Sinhab, A.K.; Makkara, H.P.S.; Becker, K. Dieatry roles of phytate and phytase in human nutrtion: A review. Food Chem. 2010, 120, 945–959. [Google Scholar] [CrossRef]
- Taylor, C.M.; Bacon, J.R.; Aggett, P.J.; Bremner, I. Homeostatic regulation of zinc absorption and endogenous losses in zinc-deprived men. Am. J. Clin. Nutr. 1991, 53, 755–763. [Google Scholar] [PubMed]
- Umar, S. Intestinal stem cells. Curr. Gastroenterol. Rep. 2010, 12, 340–348. [Google Scholar] [CrossRef] [PubMed]
- Outten, C.E.; O’Halloran, T.V. Femtomolar sensitivity of metalloregulatory proteins controlling zinc homeostasis. Science 2001, 292, 2488–2492. [Google Scholar] [CrossRef] [PubMed]
- Topping, D.L.; Clifton, P.M. Short-chain fatty acids and human colonic function: Roles of resistant starch and nonstarch polysaccharides. Physiol. Rev. 2001, 81, 1031–1064. [Google Scholar] [PubMed]
- Sandstrom, B.; Davidsson, L.; Bosaeus, I.; Eriksson, R.; Alpsten, M. Selenium status and absorption of zinc (65Zn), selenium (75Se) and manganese (54Mn) in patients with short bowel syndrome. Eur. J. Clin. Nutr. 1990, 44, 697–703. [Google Scholar] [PubMed]
- Sandstrom, B.; Cederblad, A.; Kivistö, B.; Stenquist, B.; Andersson, H. Retention of zinc and calcium from the human colon. Am. J. Clin. Nutr. 1986, 44, 501–504. [Google Scholar] [PubMed]
- Ducros, V.; Arnaud, J.; Tahiri, M.; Coudray, C.; Bornet, F.; Bouteloup-Demange, C.; Brouns, F.; Rayssiguier, Y.; Roussel, A.M. Influence of short-chain fructo-oligosaccharides (sc-FOS) on absorption of Cu, Zn, and Se in healthy postmenopausal women. J. Am. Coll. Nutr. 2005, 24, 30–37. [Google Scholar] [CrossRef] [PubMed]
- Coudray, C.; Bellanger, J.; Castiglia-Delavaud, C.; Rémésy, C.; Vermorel, M.; Rayssignuier, Y. Effect of soluble or partly soluble dietary fibres supplementation on absorption and balance of calcium, magnesium, iron and zinc in healthy young men. Eur. J. Clin. Nutr. 1997, 51, 375–380. [Google Scholar] [CrossRef] [PubMed]
- Corpet, D.E.; Pierre, F. How good are rodent models of carcinogenesis in predicting efficacy in humans? A systematic review and meta-analysis of colon chemoprevention in rats, mice and men. Eur. J. Cancer 2005, 41, 1911–1922. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Le Leu, R.K.; Brown, I.L.; Hu, Y.; Morita, T.; Esterman, A.; Young, G.P. Effect of dietary resistant starch and protein on colonic fermentation and intestinal tumourigenesis in rats. Carcinogenesis 2007, 28, 240–245. [Google Scholar]
- Monira, S.; Nakamura, S.; Gotoh, K.; Izutsu, K.; Watanabe, H.; Alam, N.H.; Endtz, H.P.; Cravioto, A.; Ali, S.I.; Nakaya, T.; et al. Gut Microbiota of Healthy and Malnourished Children in Bangladesh. Front. Microbiol. 2011, 2, 228. [Google Scholar] [CrossRef] [PubMed]
- Black, R.E.; Allen, L.H.; Bhutta, Z.A.; Caulfield, L.E.; de Onis, M.; Ezzati, M.; Mathers, C.; Rivera, J. Maternal and child undernutrition: Global and regional exposures and health consequences. Lancet 2008, 371, 243–260. [Google Scholar] [CrossRef] [PubMed]
- Coudray, C.; Demigne, C.; Rayssiguier, Y. Effects of dietary fibers on magnesium absorption in animals and humans. J. Nutr. 2003, 133, 1–4. [Google Scholar] [PubMed]
- Coxam, V. Current data with inulin-type fructans and calcium, targeting bone health in adults. J. Nutr. 2007, 137 (Suppl. 11), 2527S–2533S. [Google Scholar] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gopalsamy, G.L.; Alpers, D.H.; Binder, H.J.; Tran, C.D.; Ramakrishna, B.S.; Brown, I.; Manary, M.; Mortimer, E.; Young, G.P. The Relevance of the Colon to Zinc Nutrition. Nutrients 2015, 7, 572-583. https://doi.org/10.3390/nu7010572
Gopalsamy GL, Alpers DH, Binder HJ, Tran CD, Ramakrishna BS, Brown I, Manary M, Mortimer E, Young GP. The Relevance of the Colon to Zinc Nutrition. Nutrients. 2015; 7(1):572-583. https://doi.org/10.3390/nu7010572
Chicago/Turabian StyleGopalsamy, Geetha Lavaniya, David H Alpers, Henry J Binder, Cuong D Tran, B S Ramakrishna, Ian Brown, Mark Manary, Elissa Mortimer, and Graeme P Young. 2015. "The Relevance of the Colon to Zinc Nutrition" Nutrients 7, no. 1: 572-583. https://doi.org/10.3390/nu7010572
APA StyleGopalsamy, G. L., Alpers, D. H., Binder, H. J., Tran, C. D., Ramakrishna, B. S., Brown, I., Manary, M., Mortimer, E., & Young, G. P. (2015). The Relevance of the Colon to Zinc Nutrition. Nutrients, 7(1), 572-583. https://doi.org/10.3390/nu7010572