4.1. Energy Intake and Profile
There is consensus in the literature that society as a whole is currently in a nutritional transition and there is a need for accurate and updated dietary intake data. Total mean daily energy intake in the ANIBES study is lower than in other surveys like the ENIDE study (“Encuesta Nacional de Ingesta Dietética Española”) [
20], a nationwide survey carried out in 2011 with people aged 18–64 where leftovers were not considered as in the ANIBES study. The Food Consumption Survey (FCS), conducted in Spain since 1987, revealed that mean energy consumption for the Spanish adult population in 2010 was 2609 kcal/person/day, which was clearly lower than in 1964 (3008 kcal/person/day) [
19,
25,
26]. However, it should be considered that overestimation may exist in this survey since discards were not recorded. Therefore, our present findings confirm a decreasing trend in energy intake, which has been observed in Spain from different surveys [
19,
26,
27,
28] and is consistent with a similar pattern that is occurring in most European countries [
29,
30,
31,
32]. When compared with EFSA (European Food Safety Authority 2013) dietary reference values for energy [
33] and current (2013) Spanish dietary recommendations for energy [
23], intake in the ANIBES study population was only adequate for boys and girls, whereas it was below the average requirement (AR) considering a physical activity level of 1.6 (moderate), for adolescent males (80% of the AR), adult males (78.0% of the AR), and elderly males (77.9% of the AR). In adolescent men, P75 and higher was necessary to guarantee the established AR, and similar was observed for adolescent women. For females, these were 82.6% of the established AR for adolescent women, 82.0% in the case of adult women, and 80.5% for elderly women. It should be considered of special concern that P50 of elderly women in the ANIBES study consumed only 1,426 kcal/day, which may compromise an adequate nutrient-dense diet during the ageing process. In addition, the nutritional status of elderly men (65 to 75 years) may be compromised since only those above P75 reached the adequate AR for energy intake. When national current (2013) dietary recommendations for energy [
23] were used for comparison, the results were even more marked in terms of potential insufficient energy intake, with boys only able to cover 81.9% of the recommended dietary intake (RDI); this was 82.3% in the case of girls. Of special note are adolescent men (75.9% of RDI) and women (76.0% of RDI), and particularly adults (69.0% of RDI for men; 79.5% for women) and the elderly population (73.8% of RDI for men; 78.7% for women). It should be considered, however, that these RDI may be insufficiently up to date with respect to stratification of current physical activity levels for the Spanish population.
One of the main dietary quality indices is the energy/caloric profile. In the ANIBES study, protein intake was 16.8%E, well above the upper recommended limit (<15%E). The ENIDE study showed a similar percentage of energy from protein, 18%E, and trends in the Spain FCS are similar [
19,
20]. Protein intake as a percent of total energy intake ranged from 11.1%E to 17.6%E in the different European countries included in the European Nutrition Health Report (2009) [
14]. Fat intake for the total ANIBES study population was 38.5%E, being significantly higher for women. However, there were no age differences in terms of fat contribution to energy, which ranged from 37.2%E in elderly adults to 38.9%E in children. Fat is an important dense source of energy and facilitates the absorption of fat-soluble dietary components, such as vitamins. Fats and oils are also important sources of essential fatty acids. However, high-fat diets may decrease insulin sensitivity and are positively associated with increased cardiovascular risk [
34,
35,
36], although a precise dose-response relationship has not been defined. There is evidence that moderate fat intake (<35%E) is accompanied by reduced energy intake and therefore, moderate weight reduction and/or prevention of weight gain may be better achieved. However, EFSA has concluded that there are insufficient data to define a lower threshold intake (LTI) or tolerable upper intake level (UL) for total fat [
37]. Presently, at a European level, a lower boundary for the reference intake range of 20%E and an upper boundary of 35%E have been proposed [
37]. A similar range has been recently proposed by WHO and FAO [
36].
The SFA intake in the ANIBES study was above the recommendations for all age groups and both genders. SFA are synthetized by the body and are not required in the diet; therefore, no dietary reference intakes have been set. However, there is a positive dose-dependent relationship between intake of a mixture of saturated fatty acids and blood low density lipoprotein (LDL) cholesterol concentrations, when compared with carbohydrates [
36]. There is also evidence from dietary intervention studies that decreasing the intake of products rich in saturated fatty acids by replacing them with products rich in
n-6 PUFA (without changing total fat intake) decreased the number of cardiovascular events [
38,
39,
40]. Because the relationship between increased saturated fatty acid intake and increased LDL cholesterol concentrations is continuous, no threshold of saturated fatty acid intake can be defined below which there is no adverse effect; therefore, no UL can be set, as EFSA has recently established [
37]. Even so, the WHO/FAO have recommended that a maximum intake of 10%E for saturated fatty acids should be set [
36]. This limit for SFA has also been proposed very recently in the FESNAD Consensus Document on Dietary Fats and Oils for the Adult Spanish Population [
41]. Interestingly, the American Heart Association (AHA) has recommended a maximum intake of <7%E for SFA to reduce cardiovascular risk [
42]. More recently (2013), the dietary guidelines launched jointly by the AHA and American College of Cardiology proposed a lower amount of energy from SFA (5%–6%E) [
43], although there is insufficient scientific evidence proving an association between SFA and cardiovascular and/or diabetes risk.
It is agreed that one positive aspect of the dietary patterns in Spain that should be maintained is the relatively high proportion of MUFA, mostly owing to the common use of olive oil in the Spanish diet [
44,
45]. In our ANIBES population, MUFA contributed 16.8%E; this was slightly higher in the elderly group and lower in children and adolescents. MUFA intake from energy across Europe ranged from 22% in Greece to 11% in non-olive-oil-consuming countries [
37]. The 2011 goals of the Spanish Society of Community Nutrition (SENC) [
24] recommended that MUFA should contribute >20%E of total energy. In 2010, an EFSA panel [
37] proposed not setting any dietary reference value for MUFA based on the following: MUFA are synthesized by the body, have no known specific role in preventing or promoting diet-related diseases, and are therefore not indispensable constituents of the diet. This assumption by EFSA, however, is untenable as MUFA are among the most abundant fatty acids in most tissue cells and contribute to maintaining membrane fluidity and enzymatic activities. Additionally, there is convincing evidence that MUFA lower both total and LDL plasma cholesterol levels, and replacement of PUFA with MUFA decreases the risk of cardiovascular disease (CVD). Indeed, the FAO/WHO have recommended a MUFA intake of about 16%–19% (obtained by the difference in intake between SFA and PUFA) [
36]. Moreover, in the PREDIMED intervention study [
46], intake of virgin olive oil (high in MUFA content) was associated with a lower risk of CVD events and total mortality. Interestingly, participants who followed the olive oil-rich Mediterranean diet had a mean MUFA intake of 22%E. Therefore, from the PREDIMED study findings, a MUFA intake target of 20%E–25%E (with virgin olive oil as a main source) is desirable. As for PUFA, in view of the different metabolic effects of the various dietary PUFA [
45,
47], EFSA has proposed not to formulate a dietary reference value for the intake of total PUFA [
37]. Other organizations, such as WHO/FAO in 2010 [
36] and SENC (2011) [
24], have suggested that PUFA should contribute 6%–10% and 5%, respectively, of total energy intake. In the present study, PUFA contributed roughly 6.6%E, with no gender or age differences. In addition, total
n-3 PUFA intake expressed as the percentage of energy intake was 0.63%E for the ANIBES study population and increased with age. The WHO/FAO [
36] have recommended a minimum intake for adults of 250 mg/day for
n-3 long-chain PUFA and up to 2 g/day to help prevent CVD.
Intervention studies have provided evidence that high fat (>35%E), low carbohydrate (<50%E) diets are associated with adverse short- and long-term effects on body weight, although the data are insufficient to define an LTI for carbohydrates [
47,
48]. An EFSA panel [
47] therefore reached the conclusion that only a reference intake range can be given, 45%E–60%E, where monosaccharides plus disaccharides should be below 10% of the total energy intake. Data from different dietary surveys have shown that average carbohydrate intakes for children and adolescents in European countries varied between 43%E and 58%E, and from 38%E to 56%E in adults, whereas average sugar intakes varied between 16%E and 36%E in children and adults [
14,
47]. In the present study, a low energy intake of 41.1% from carbohydrates was seen (17.0% from sugars); a trend was observed according to age, with the lowest contribution in elderly males (39.6%E) and the highest in the youngest age groups (44.4%E). Similar results and trends were obtained for the ENIDE dietary survey in Spain [
20]. It is known that frequent consumption of sugar-containing foods can increase the risk of dental caries [
49]. However, the available data do not allow the setting of an upper limit for intake of (added) sugars on the basis of risk reduction for dental caries. Evidence relating a high intake of sugars (mainly as added sugars), compared with high starch intakes, to weight gain is also inconsistent [
50]. In consequence, according to EFSA, the available data are insufficient to set an upper limit for added sugar intake [
36]. Moreover, although there is some evidence that high sugar intakes (>20%E) may increase serum triglyceride and cholesterol concentrations and might adversely affect serum glucose and insulin levels, these data are also insufficient to set an upper limit for (added) sugar intake. The latter does not exclude, however, that food-based dietary guidelines and nutrition goals for the population should take into account the potential negative roles under certain conditions [
24,
51]. A new WHO guideline [
52] recommends that adults and children reduce their daily intake of free sugars to less than 10% of their total energy intake. A further reduction to below 5% has been suggested to provide additional health benefits. The percentage of energy from sugars in our study was 17.0%E for the total population, and was significantly higher in females compared with males and more marked in the oldest participants.
Other minor sources of energy from diet were also estimated. Fiber intake contributed 1.4%E of the total energy, which was significantly higher in females than males. Alcohol intake contribution in the adult populations was considered moderate at 1.9%E. However, alcohol intake is one of the dietary components for which underreporting may occur, especially in women and participants with higher education levels and socioeconomic status [
53,
54]. In fact, energy contribution from alcohol in men was almost two-fold compared with women. On the other hand, the highest contribution from alcohol corresponded to elderly males (4.1%E), and it was much higher than for elderly women (1.4%E).
4.2. Food Sources of Energy
We were able to make the most detailed evaluation to date of how the different food groups and subgroups contribute to energy intake in the Spanish diet. The food group contributing the most to energy consumption was cereals and derivatives (27.4%), regardless of age group or gender. This pattern should be considered positive, but is insufficient for adequate nutrient density (
i.e., carbohydrates and dietary fiber intake). Individually, bread was the main contributor, although more efforts are needed to return consumption to levels seen in previous generations of Spaniards, according to the traditional Mediterranean diet [
55,
56]. Moreover, the baked goods and pastry subgroup closely followed bread, with potentially higher contributions of sugar and unhealthy fats, which was the case for all age groups and especially the youngest (9.4%E). Interestingly, ready-to-eat breakfast cereals and cereal bars contributed most in adolescents, with much lower contribution in the elderly population. Our results also revealed that the contribution of meat and meat products seemed very high for all age groups, which made it difficult to reach the recommended energy and lipid profiles. For comparison, the meats and derivatives group accounted for a total 179 g/adult/day in the last FCS (2012), and has remained steadily high over the last 12 years. Moreover, it should be noted that this food group has increased by roughly 300% when compared with 1960s results in Spain. In addition, caution should be advised since the subgroup that includes sausages and other meat products represented approximately 7.0%E of the total energy in children and adolescents from the ANIBES sample, which was quite different from the elderly group (4.5%E).
The next main group contributing to energy intake was oils and fats (12.3%E), but age-marked differences were seen. The lowest contribution was in children and adolescents accounting for 10%E, but this was 15%E in elderly adults; this means that a “missing” percentage of the energy from oils and fats in the youngest age groups may be replaced by meat and meat products. Fortunately, olive oil represented the main contributor, with nearly 10%E of total intake. Milk and dairy products were next in energy contribution, showing a clear decreasing trend with advancing age. As expected, milk was the main subgroup, although a decreasing trend in milk consumption has been observed in Spain in recent years. In fact, a significant decrease in the amount of purchased dairy products has taken place from the years 2000 (416 g/person/day) to 2012 (359 g/person/day), according to the FCS [
19,
26]. One of the main concerns is the possibility that milk is being replaced by other less nutrient-dense foods and beverages, mainly in younger age groups. In the ENIDE dietary survey during 2011 in Spain [
14], the main sources of energy were meat and meat products (18%), followed by cereals and derivatives (17%), oils and fats (12%), and milk and dairy products (11%). According to the Spain FCS, the food groups contributing most to energy consumption were cereals and derivatives (24.6%), meat and meat products (14.3%), oils and fats (13.6%) and milk and derivatives (12.5%). By contrast, fish and shellfish (3%), non-alcoholic beverages (2.9%), and alcoholic beverages (2.3%) showed a lower contribution to total energy intake. By comparison, data from other European countries (e.g., Nordic countries) showed that cereals and milk and dairy products are usually the main energy sources, ahead of the meat and derivatives group [
57,
58].
In the present ANIBES study, the following contributing groups showed a marked gap, since the sum of the remaining disaggregated 35 food and beverage groups and subgroups was only 33.2% (600 kcal/day) of the total energy intake. Interestingly, the contribution of fish to total energy intake was only 3.6% and increased markedly with advancing age. This may compensate for younger age groups, to achieve current dietary guidelines for fish consumption [
24]. The FCS showed similar results for fish and shellfish as sources of energy (3.0%). However, the ENIDE results were much higher (9%) for fish, shellfish, and derivatives in the adult population [
14].
The impact of sugared soft drink consumption on obesity and metabolic disorders has come under intense scrutiny and debate worldwide in recent years [
59,
60,
61,
62], and large differences between countries have been observed. The present study showed that sugared soft drinks contributed 2.0% (36 kcal/day out of 1810 kcal/day) to total energy intake. A lower consumption compared with mean contribution was seen in children (1.9%E, 34 kcal/day) whereas the lowest contribution was for the elderly population (0.7%E, 13 kcal/day). Higher consumptions were found, however, for adolescents (3.4%E, 61 kcal/day) and the contribution in adults was 2.1%E, 38 kcal/day. Using FCS data, we have previously shown [
17] that all non-alcoholic drinks contributed 2.9% to total energy intake in Spain. For additional comparison, in the ENIDE dietary survey, non-dairy beverages (excluding alcoholic drinks) contributed 2%E (46 kcal/day) in the adult Spanish population [
20]. By contrast, the United States has usually had the highest contribution to energy intake from sweetened beverages. However, a recent study using data from NHANES surveys showed that from 1988 to 1994 and 1999 to 2004, the consumption of these beverages increased [
63], but consumption of beverages and foods with added sugars declined from 1999 to 2000 [
64]. Another food group of concern, which is usually not well quantified, is that of so-called sugars and sweets, mainly owing to its potential role in overweight, obesity, and several metabolic disorders [
59,
60,
61,
62]. We showed that this group currently represents 3.3% of total energy intake in Spain and decreases with age (5.1% in children and 2.6% in elderly adults). In the ENIDE survey, this food group contributed 5% to total energy intake [
20].
Finally, we found lower contribution than initially expected from alcoholic drinks (2.6%E, 47 kcal/day), which was higher for elderly participants. Alcoholic beverages of lower alcohol content (beer, wine, cider) represented over 90% of energy contribution within this group. These results are similar to those obtained from the latest Spanish FCS (2.3%E) [
19]. In general, alcoholic beverage consumption has undergone a slow decline during recent years (259 g/person/day in 2000
versus 208 g/person/day in 2012) [
19]. Within this group, as a beverage traditionally included in the Mediterranean diet concept, wine only represented 23.5% of total alcoholic beverage consumption whereas it accounted for 62% of the total consumption in 1991. In the last few years, a gradual substitution of wine for beer has taken place, which represents almost 70% of the total alcoholic beverage consumption at present [
19].