Greater Total Antioxidant Capacity from Diet and Supplements Is Associated with a Less Atherogenic Blood Profile in U.S. Adults
Abstract
:1. Introduction
2. Methods
2.1. Study Population
2.2. Estimation of Antioxidant Intake from Diet and Supplements
2.3. Estimation of Total Antioxidant Capacity from Diet and Supplements
2.4. CVD Risk Factors
2.5. Statistical Analysis
3. Results
Characteristics | N | Total Antioxidant Capacity (mg VCE/day) (Range, Median) | |||
---|---|---|---|---|---|
Q1 (n = 975) | Q2 (n = 1001) | Q3 (n = 1035) | Q4 (n = 1028) | ||
(0.5–216.6, 74.1) | (65.6–466.8, 188.9) | (142.3–1199.8, 428.9) | (379.7–9362.9, 1219.4) | ||
n (%) | n (%) | n (%) | n (%) | ||
Gender | |||||
Men | 2071 | 545 (55.2) | 504 (52.7) | 520 (50.9) | 502 (45.7) |
Women | 1968 | 430 (44.8) | 497 (47.3) | 515 (49.1) | 526 (54.3) |
Age (year) | |||||
19–30 | 775 | 251 (27.5) | 208 (23.5) | 179 (16.8) | 137 (14.7) |
31–50 | 1333 | 365 (42.6) | 330 (37.2) | 335 (37.6) | 303 (34.1) |
51–70 | 1267 | 261 (23.6) | 305 (28.1) | 327 (32.5) | 374 (37.8) |
70+ | 664 | 98 (6.2) | 158 (11.2) | 194 (13.1) | 214 (13.4) |
Ethnicity | |||||
White | 2016 | 490 (71.8) | 415 (65.7) | 486 (71.0) | 625 (80.7) |
Black | 664 | 166 (9.6) | 181 (10.7) | 180 (9.6) | 137 (6.6) |
Mexican-American | 623 | 163 (8.9) | 207 (11.1) | 173 (8.4) | 80 (3.0) |
Others | 736 | 156 (9.7) | 198 (12.5) | 196 (11.0) | 186 (9.7) |
PIR | |||||
≤1.3 | 1160 | 360 (29.0) | 299 (21.6) | 269 (18.2) | 232 (15.2) |
>1.3 | 2543 | 545 (71.0) | 607 (78.4) | 673 (81.8) | 718 (84.8) |
Alcohol consumption 1 | |||||
None | 1487 | 377 (33.0) | 384 (30.9) | 377 (29.2) | 349 (29.2) |
Moderate | 1309 | 241 (26.4) | 309 (34.4) | 367 (43.8) | 392 (40.6) |
High | 1243 | 357 (40.6) | 308 (34.7) | 291 (27.0) | 287 (30.2) |
Smoking 2 | |||||
Never | 2182 | 459 (51.1) | 555 (57.1) | 601 (57.7) | 567 (59.4) |
Former | 1014 | 212 (22.2) | 238 (24.5) | 267 (27.6) | 297 (26.4) |
Current (<15 cigarettes/day) | 444 | 155 (13.9) | 109 (11.0) | 96 (8.7) | 84 (7.5) |
Current (≥15 cigarettes/day) | 292 | 115 (12.8) | 63 (7.3) | 50 (6.0) | 64 (6.7) |
Physical activity 3 | |||||
Inactive | 1570 | 451 (42.6) | 370 (32.2) | 362 (32.4) | 387 (34.4) |
<500 MET min/week | 506 | 137 (14.9) | 129 (14.0) | 122 (11.0) | 118 (10.8) |
≥500 MET min/week | 1961 | 387 (42.5) | 502 (53.8) | 550 (56.6) | 522 (54.8) |
BMI (kg/m2) | |||||
<25 | 1295 | 286 (30.3) | 319 (33.3) | 358 (37.3) | 332 (34.5) |
25–30 | 1371 | 325 (33.8) | 343 (35.7) | 352 (33.5) | 351 (33.4) |
≥30 | 1373 | 364 (35.9) | 339 (31.0) | 325 (29.2) | 345 (32.1) |
Antioxidant supplement use 4 | |||||
Yes | 1403 | 74 (10.0) | 302 (35.0) | 484 (49.2) | 543 (51.8) |
No | 2636 | 901 (90.0) | 699 (65.0) | 551 (50.8) | 485 (48.2) |
Use of blood pressure medication 5 | |||||
Yes | 1313 | 261 (22.8) | 303 (26.7) | 374 (32.6) | 375 (32.9) |
No | 2726 | 714 (77.2) | 698 (73.3) | 661 (67.4) | 653 (67.1) |
Use of diabetes medication 6 | |||||
Yes | 257 | 64 (5.1) | 59 (4.8) | 54 (2.8) | 80 (5.3) |
No | 3782 | 911 (94.9) | 942 (95.2) | 981 (97.2) | 948 (94.7) |
Saturated fatty acid intake, (g/day) | 4039 | 28.5 | 26.9 | 26.4 | 24.8 |
Fiber intake (g/day) | 4039 | 14.2 | 17.8 | 19.8 | 18.8 |
Individual Antioxidants | Total Antioxidant Capacity (mg VCE/day) (Range, Median) | |||
---|---|---|---|---|
Antioxidant Supplement Non-Users (n = 2636) | Antioxidant Supplement Users (n = 1403) | |||
TAC | TAC from Diet | TAC from Supplements | TAC | |
(0.5–8432.5, 217.6) | (1.0–9296.5, 268.4) | (0.002–4133.0, 99.9) | (10.4–9362.9, 499.7) | |
Mean (95% CI) | Mean (95% CI) | Mean (95% CI) | Mean (95% CI) | |
Vitamin C | 80.1 (2.4) | 96.1 (4.0) | 241.7 (15.3) | 337.8 (16.6) |
Vitamin E | 2.3 (0.0) | 2.7 (0.1) | 18.3 (1.1) | 21.0 (1.1) |
Carotenoids | 4.3 (0.1) | 4.9 (0.2) | 0.3 (0.0) | 5.2 (0.3) |
Flavonoids | 399.8 (28.8) | 420.6 (28.2) | 10.1 (2.4) | 430.7 (28.5) |
Proanthocyanidins | 63.1 (3.9) | 68.9 (4.0) | - | 68.9 (4.0) |
Rank | Antioxidant Supplement Users 1 | Antioxidant Supplement Non-Users 1 | ||||||
---|---|---|---|---|---|---|---|---|
Food Group | TAC (mg VCE/Day) | % | Cum% | Food Group | TAC (mg VCE/Day) | % | Cum% | |
1 | Tea | 318.4 | 36.9% | 36.9% | Tea | 328.3 | 60.8% | 60.8% |
2 | Antioxidant supplements | 270.4 | 31.3% | 68.2% | Vegetable mixture 3 | 32.8 | 6.5% | 67.4% |
3 | Vegetable mixture 2 | 52.6 | 6.1% | 74.3% | Orange juice | 20.6 | 4.1% | 71.5% |
4 | Orange juice | 25.0 | 2.9% | 77.2% | Wine | 11.8 | 2.3% | 73.8% |
5 | Wine | 21.8 | 2.5% | 79.7% | Fruit drink | 11.2 | 2.2% | 76.0% |
6 | Berries | 20.7 | 2.4% | 82.1% | Berries | 11.1 | 2.2% | 78.3% |
7 | Apple | 9.0 | 1.0% | 83.1% | Grain mixtures, frozen plate meals, soups | 8.2 | 1.6% | 79.9% |
8 | Grain mixtures, frozen plate meals, soups | 7.8 | 0.9% | 84.0% | Apple | 7.7 | 1.5% | 81.4% |
9 | Orange | 7.6 | 0.9% | 84.9% | Orange | 6.7 | 1.3% | 82.8% |
10 | Dark-green vegetables | 7.4 | 0.9% | 85.8% | Tomato | 6.3 | 1.2% | 84.0% |
11 | Fruit drink | 7.1 | 0.8% | 86.6% | Beer | 5.6 | 1.1% | 85.1% |
12 | Tomato | 6.9 | 0.8% | 87.4% | Potato | 5.4 | 1.1% | 86.2% |
13 | Banana | 6.7 | 0.8% | 88.2% | Banana | 4.9 | 1.0% | 87.2% |
14 | Legumes | 4.4 | 0.5% | 88.7% | Legumes | 4.5 | 0.9% | 88.1% |
15 | Potato | 4.3 | 0.5% | 89.2% | Dark-green vegetables | 4.2 | 0.8% | 88.9% |
Intake (g/day) | Total Antioxidant Capacity (mg VCE/day) (Range, Median) | p-Value for Linear Trend 1 | |||
---|---|---|---|---|---|
Q1 (n = 975) | Q2 (n = 1001) | Q3 (n = 1035) | Q4 (n = 1028) | ||
(0.5–216.6, 74.1) | (65.6–466.8, 188.9) | (142.3–1199.8, 428.9) | (379.7–9362.9, 1219.4) | ||
Mean (SEM) | Mean (SEM) | Mean (SEM) | Mean (SEM) | ||
Fruit & fruit products | 51.2 (3.4) | 166.2 (7.0) | 253.0 (9.5) | 201.1 (10.0) | <0.0001 |
Citrus fruit and juices | 5.0 (0.8) | 40.0 (2.9) | 97.0 (7.4) | 65.3 (5.8) | <0.0001 |
Berries | 1.0 (0.3) | 4.7 (0.6) | 11.6 (1.6) | 13.6 (1.7) | <0.0001 |
Apple | 7.7 (1.3) | 29.1 (2.5) | 28.4 (2.3) | 25.0 (2.7) | <0.0001 |
Vegetables & vegetable products | 122.0 (3.6) | 158.8 (7.9) | 183.6 (6.8) | 196.8 (18.0) | <0.0001 |
Vegetable mixture 2 | 31.0 (2.4) | 57.8 (3.2) | 72.0 (5.0) | 86.0 (16.4) | <0.0001 |
Tomatoes | 24.6 (1.7) | 33.3 (3.5) | 38.2 (3.1) | 38.2 (2.8) | 0.0025 |
Dark-green vegetables | 4.6 (1.1) | 10.2 (1.1) | 14.8 (1.4) | 14.9 (1.2) | <0.0001 |
Tea, coffee & other beverages 3 | 1138.7 (41.9) | 957.3 (35.8) | 943.8 (30.4) | 1222.3 (30.1) | 0.0017 |
Tea | 23.0 (8.0) | 29.5 (6.2) | 110.8 (8.1) | 526.2 (23.9) | <0.0001 |
Wine | 4.9 (1.5) | 11.3 (2.0) | 31.8 (4.9) | 34.7 (5.4) | <0.0001 |
Coffee | 326.4 (21.5) | 303.3 (18.9) | 313.8 (15.9) | 276.4 (12.0) | 0.2556 |
Fruit drinks | 80.3 (9.9) | 104.9 (10.5) | 105.2 (11.7) | 56.5 (6.1) | 0.2599 |
Risk Factors | Total Antioxidant Capacity (mg VCE/day) (Range, Median) | p-Value for Linear Trend 1 | |||
---|---|---|---|---|---|
Q1 (n = 975) | Q2 (n = 1001) | Q3 (n = 1035) | Q4 (n = 1028) | ||
(0.5–216.6, 74.1) | (65.6–466.8, 188.9) | (142.3–1199.8, 428.9) | (379.7–9362.9, 1219.4) | ||
Mean (SEM) | Mean (SEM) | Mean (SEM) | Mean (SEM) | ||
Waist circumference (cm) | 99.1 (0.8) | 96.8 (0.8) | 97.4 (0.8) | 97.5 (0.8) | 0.4363 |
BMI (kg/m2) | 29.0 (0.3) | 28.0 (0.3) | 28.0 (0.3) | 28.1 (0.3) | 0.0544 |
Blood pressure (mm Hg) | |||||
Systolic | 118.4 (0.7) | 120.0 (0.8) | 120.2 (0.8) | 119.9 (0.5) | 0.4755 |
Diastolic | 69.3 (0.6) | 69.1 (0.7) | 69.3 (0.5) | 68.7 (0.5) | 0.9460 |
HDL-C (mg/dL) | 51.1 (0.6) | 53.3 (0.6) | 54.8 (0.6) | 55.5 (0.8) | 0.0289 |
LDL-C (mg/dL) | 116.6 (1.5) | 117.5 (1.5) | 114.2 (1.8) | 118.8 (1.5) | 0.7873 |
TC (mg/dL) | 194.1 (1.9) | 197.9 (1.7) | 193.6 (2.1) | 198.5 (1.8) | 0.8711 |
Triglycerides (mg/dL) | 134.1 (3.5) | 137.7 (4.7) | 126.5 (4.2) | 123.0 (3.8) | 0.0045 |
TG/HDL-C ratio | 3.1 (0.1) | 3.1 (0.2) | 2.7 (0.1) | 2.7 (0.1) | 0.0019 |
TC/HDL-C ratio | 4.0 (0.1) | 4.0 (0.1) | 3.8 (0.1) | 3.8 (0.1) | 0.1055 |
Fasting glucose (mg/dL) | 105.4 (0.9) | 104.2 (1.2) | 102.8 (0.8) | 103.4 (0.8) | 0.1158 |
Insulin (pmol/L) | 82.4 (2.6) | 75.4 (2.2) | 73.1 (2.5) | 74.1 (3.6) | 0.0781 |
HOMA-IR | 3.7 (0.1) | 3.5 (0.1) | 3.2 (0.1) | 3.3 (0.2) | 0.0617 |
Q1 (n = 681) | Q2 (n = 694) | Q3 (n = 710) | Q4 (n = 709) | ||
(2.3–216.6, 75.3) | (65.6–466.8, 186.8) | (162.6–1199.8, 416.8) | (379.7–9362.9, 1237.3) | ||
CRP 3 (mg/L) | 1.9 (0.1) | 1.4 (0.1) | 1.4 (0.1) | 1.5 (0.1) | 0.0092 |
Risk Factors | % Change Predicted in CVD Risk Factor with a 100% Increase Total Antioxidant Capacity (95% CI) | |||||
---|---|---|---|---|---|---|
TACdiet | p-Value | TACsupplements | p-Value | TACdiet + supplement | ||
%Δ (95% CI) | %Δ (95% CI) | %Δ (95% CI) | p-Value | |||
Waist circumference 2 | −0.12 (−0.26, 0.03) | 0.1150 | −0.02 (−0.08, 0.04) | 0.5452 | −0.12 (−0.25, 0.01) | 0.0664 |
BMI 2 | −0.05 (−0.64, 0.54) | 0.8623 | −0.63 (−0.86, −0.39) | <0.0001 | −0.42 (−1.03, 0.20) | 0.1883 |
Blood Pressure 2 | ||||||
Systolic | −0.06 (−0.37, 0.25) | 0.7071 | −0.07 (−0.20, 0.06) | 0.2674 | −0.04 (−0.33, 0.26) | 0.8106 |
Diastolic | 0.13 (−0.39, 0.66) | 0.6149 | −0.11 (−0.32, 0.10) | 0.2988 | 0.13 (−0.39, 0.65) | 0.6315 |
HDL-C 3 | 0.60 (0.05, 1.15) | 0.0368 | 0.31 (−0.03, 0.65) | 0.0835 | 0.65 (0.07, 1.23) | 0.0315 |
LDL-C 3 | 0.09 (−0.66, 0.84) | 0.8142 | −0.29 (−0.59, 0.00) | 0.0595 | 0.07 (−0.67, 0.81) | 0.8594 |
TC 3 | 0.02 (−0.55, 0.60) | 0.9404 | −0.09 (−0.29, 0.12) | 0.4145 | 0.05 (−0.51, 0.61) | 0.8675 |
TG 3 | −1.55 (−2.60, −0.50) | 0.0059 | −0.17 (−0.66, 0.33) | 0.5144 | −1.39 (−2.56, −0.21) | 0.0251 |
TG/HDL-C ratio 3 | −2.14 (−3.43, −0.83) | 0.0025 | −0.47 (−1.19, 0.25) | 0.2025 | −2.03 (−3.45, −0.60) | 0.0079 |
TC/HDL-C ratio 3 | −0.57 (−1.22, 0.08) | 0.0929 | −0.39 (−0.71, −0.08) | 0.0186 | −0.60 (−1.30, 0.10) | 0.0982 |
Fasting glucose 2 | −0.12 (−0.41, 0.18) | 0.4403 | −0.12 (−0.26, 0.02) | 0.1095 | −0.20 (−0.51, 0.12) | 0.2297 |
Insulin 2 | −0.57 (−1.96, 0.83) | 0.4262 | −0.98 (−1.58, −0.37) | 0.0028 | −1.37 (−2.64, −0.09) | 0.0415 |
HOMA-IR 2 | −0.71 (−2.27, 0.88) | 0.3851 | −1.09 (−1.72, −0.45) | 0.0017 | −1.57 (−3.02, −0.09) | 0.0428 |
CRP 2 | −0.68 (−1.15, −0.20) | 0.0090 | −0.18 (−0.50, 0.15) | 0.2892 | −0.83 (−1.29, −0.38) | 0.0012 |
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
BMI | body mass index |
CRP | C-reactive protein |
CVD | cardiovascular disease |
EPIC | European Prospective Investigation into Cancer and Nutrition |
FRAP | ferric reducing antioxidant power |
HDL | high-density lipoprotein |
HDL-C | high-density lipoprotein cholesterol |
HOMA-IR | homeostasis model assessment of insulin resistance |
LDL | low-density lipoprotein |
LDL-C | low-density lipoprotein cholesterol |
METs | metabolic equivalence of tasks |
ORAC | oxygen radical absorbance capacity |
PA | proanthocyanidin |
PIR | poverty-income-ratio |
ROS | reactive oxygen species |
TAC | total antioxidant capacity |
TC | total cholesterol |
TEAC | Trolox equivalent antioxidant capacity |
TG | triglycerides |
VCE | vitamin C equivalents |
VCEAC | vitamin C equivalent antioxidant capacity |
References
- Steinberg, D. Low density lipoprotein oxidation and its pathobiological significance. J. Biol. Chem. 1997, 272, 20963–20966. [Google Scholar] [CrossRef] [PubMed]
- Bhupathiraju, S.N.; Wedick, N.M.; Pan, A.; Manson, J.E.; Rexrode, K.M.; Willett, W.C.; Rimm, E.B.; Hu, F.B. Quantity and variety in fruit and vegetable intake and risk of coronary heart disease. Am. J. Clin. Nutr. 2013, 98, 1514–1523. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.H. Health benefits of fruit and vegetables are from additive and synergistic combinations of phytochemicals. Am. J. Clin. Nutr. 2003, 78, 517S–520S. [Google Scholar] [PubMed]
- McCullough, M.L.; Peterson, J.J.; Patel, R.; Jacques, P.F.; Shah, R.; Dwyer, J.T. Flavonoid intake and cardiovascular disease mortality in a prospective cohort of us adults. Am. J. Clin. Nutr. 2012, 95, 454–464. [Google Scholar] [CrossRef] [PubMed]
- Osganian, S.K.; Stampfer, M.J.; Rimm, E.; Spiegelman, D.; Manson, J.E.; Willett, W.C. Dietary carotenoids and risk of coronary artery disease in women. Am. J. Clin. Nutr. 2003, 77, 1390–1399. [Google Scholar] [PubMed]
- Cook, N.R.; Albert, C.M.; Gaziano, J.M.; Zaharris, E.; MacFadyen, J.; Danielson, E.; Buring, J.E.; Manson, J.E. A randomized factorial trial of vitamins C and E and beta carotene in the secondary prevention of cardiovascular events in women: Results from the women’s antioxidant cardiovascular study. Arch. Intern. Med. 2007, 167, 1610–1618. [Google Scholar] [CrossRef] [PubMed]
- Hennekens, C.H.; Buring, J.E.; Manson, J.E.; Stampfer, M.; Rosner, B.; Cook, N.R.; Belanger, C.; LaMotte, F.; Gaziano, J.M.; Ridker, P.M.; et al. Lack of effect of long-term supplementation with beta carotene on the incidence of malignant neoplasms and cardiovascular disease. N. Engl. J. Med. 1996, 334, 1145–1149. [Google Scholar] [CrossRef] [PubMed]
- Harasym, J.; Oledzki, R. Effect of fruit and vegetable antioxidants on total antioxidant capacity of blood plasma. Nutrition 2014, 30, 511–517. [Google Scholar] [CrossRef] [PubMed]
- Barron, B.A. The effects of misclassification on the estimation of relative risk. Biometrics 1977, 33, 414–418. [Google Scholar] [CrossRef] [PubMed]
- Serafini, M.; del Rio, D. Understanding the association between dietary antioxidants, redox status and disease: Is the total antioxidant capacity the right tool? Redox Rep. 2004, 9, 145–152. [Google Scholar] [CrossRef] [PubMed]
- Puchau, B.; Zulet, M.A.; de Echavarri, A.G.; Hermsdorff, H.H.; Martinez, J.A. Dietary total antioxidant capacity: A novel indicator of diet quality in healthy young adults. J. Am. Coll. Nutr. 2009, 28, 648–656. [Google Scholar] [CrossRef] [PubMed]
- Rautiainen, S.; Larsson, S.; Virtamo, J.; Wolk, A. Total antioxidant capacity of diet and risk of stroke: A population-based prospective cohort of women. Stroke 2012, 43, 335–340. [Google Scholar] [CrossRef] [PubMed]
- Del Rio, D.; Agnoli, C.; Pellegrini, N.; Krogh, V.; Brighenti, F.; Mazzeo, T.; Masala, G.; Bendinelli, B.; Berrino, F.; Sieri, S.; et al. Total antioxidant capacity of the diet is associated with lower risk of ischemic stroke in a large Italian cohort. J. Nutr. 2011, 141, 118–123. [Google Scholar] [CrossRef] [PubMed]
- Rautiainen, S.; Levitan, E.B.; Mittleman, M.A.; Wolk, A. Total antioxidant capacity of diet and risk of heart failure: A population-based prospective cohort of women. Am. J. Med. 2013, 126, 494–500. [Google Scholar] [CrossRef] [PubMed]
- Franzini, L.; Ardigo, D.; Valtuena, S.; Pellegrini, N.; del Rio, D.; Bianchi, M.A.; Scazzina, F.; Piatti, P.M.; Brighenti, F.; Zavaroni, I. Food selection based on high total antioxidant capacity improves endothelial function in a low cardiovascular risk population. Nutr. Metab. Cardiovasc. Dis. 2012, 22, 50–57. [Google Scholar] [CrossRef] [PubMed]
- Valtuena, S.; Pellegrini, N.; Franzini, L.; Bianchi, M.A.; Ardigo, D.; del Rio, D.; Piatti, P.; Scazzina, F.; Zavaroni, I.; Brighenti, F. Food selection based on total antioxidant capacity can modify antioxidant intake, systemic inflammation, and liver function without altering markers of oxidative stress. Am. J. Clin. Nutr. 2008, 87, 1290–1297. [Google Scholar] [PubMed]
- Hermsdorff, H.H.; Puchau, B.; Volp, A.C.; Barbosa, K.B.; Bressan, J.; Zulet, M.A.; Martinez, J.A. Dietary total antioxidant capacity is inversely related to central adiposity as well as to metabolic and oxidative stress markers in healthy young adults. Nutr. Metab. 2011, 8, 59. [Google Scholar] [CrossRef] [PubMed]
- Bailey, R.L.; Gahche, J.J.; Lentino, C.V.; Dwyer, J.T.; Engel, J.S.; Thomas, P.R.; Betz, J.M.; Sempos, C.T.; Picciano, M.F. Dietary supplement use in the United States, 2003–2006. J. Nutr. 2011, 141, 261–266. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Chung, S.J.; Chung, C.E.; Kim, D.O.; Song, W.O.; Koo, S.I.; Chun, O.K. Estimation of total antioxidant capacity from diet and supplements in USA adults. Br. J. Nutr. 2011, 106, 254–263. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Chung, S.J.; Floegel, A.; Song, W.O.; Koo, S.I.; Chun, O.K. Dietary antioxidant capacity is associated with improved serum antioxidant status and decreased serum C-reactive protein and plasma homocysteine concentrations. Eur. J. Nutr. 2013, 52, 1901–1911. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yang, M.; Lee, S.G.; Davis, C.G.; Koo, S.I.; Fernandez, M.L.; Volek, J.S.; Chun, O.K. Diets high in total antioxidant capacity improve risk biomarkers of cardiovascular disease: A 9-month observational study among overweight/obese postmenopausal women. Eur. J. Nutr. 2014, 53, 1363–1369. [Google Scholar] [CrossRef] [PubMed]
- National Center for Health Statistics. National Health and Nutrition Examination Survey Questionnaire, 2007–2008 Data Files; CDC: Hyattsville, MD, USA, 2010.
- National Center for Health Statistics. National Health and Nutrition Examination Survey Questionnaire, 2009–2010 Data Files; CDC: Hyattsville, MD, USA, 2012.
- National Center for Health Statistics. National Health and Nutrition Examination Survey Questionnaire, 2011–2012 Data Files; CDC: Hyattsville, MD, USA, 2014.
- Agricultural Research Service. USDA Database for the Flavonoid Content of Selected Foods, Release 3.1; U.S. Department of Agriculture: Washington, DC, USA, 2013.
- Agricultural Research Service. USDA Database for the Isoflavone Content of Selected Foods, Release 2.0; United States Department of Agriculture: Washington, DC, USA, 2008.
- Agricultural Research Service. USDA Database for the Proanthocyanidin Content of Selected Foods; United States Department of Agriculture: Washington, DC, USA, 2004.
- Chun, O.K.; Chung, S.J.; Song, W.O. Estimated dietary flavonoid intake and major food sources of USA adults. J. Nutr. 2007, 137, 1244–1252. [Google Scholar] [PubMed]
- Floegel, A.; Kim, D.O.; Chung, S.J.; Song, W.O.; Fernandez, M.L.; Bruno, R.S.; Koo, S.I.; Chun, O.K. Development and validation of an algorithm to establish a total antioxidant capacity database of the USA diet. Int. J. Food. Sci. Nutr. 2010, 61, 600–623. [Google Scholar] [CrossRef] [PubMed]
- Sinha, S.K.; Ghaskadbi, S.S. Thearubigins rich black tea fraction reveals strong antioxidant activity. Int. J. Green Pharm. 2013, 7, 336–344. [Google Scholar]
- Ahuja, J.K.C.; Montville, J.B.; Omolewa-Tomobi, G.; Heendeniya, K.Y.; Martin, C.L.; Steinfeldt, L.C.; Anand, J.; Adler, M.E.; LaComb, R.P.; Moshfegh, A.J. USDA Food and Nutrient Database for Dietary Studies, 5.0; United States Department of Agriculture, Agricultural Research Service: Beltsville, MD, USA, 2012.
- National Center for Health Statistics. 2009–2010 National Health and Nutrition Examination Survey, Anthropometry Procedures Manual; CDC: Hyattsville, MD, USA, 2009.
- National Center for Health Statistics. 2009–2010 National Health and Nutrition Examination Survey, Laboratory Procedures Manual; CDC: Hyattsville, MD, USA, 2009.
- Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis model assessment: Insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985, 28, 412–419. [Google Scholar] [CrossRef] [PubMed]
- Lemieux, I.; Lamarche, B.; Couillard, C.; Pascot, A.; Cantin, B.; Bergeron, J.; Dagenais, G.R.; Despres, J.P. Total cholesterol/HDL cholesterol ratio vs. LDL cholesterol/HDL cholesterol ratio as indices of ischemic heart disease risk in men: The Quebec Cardiovascular Study. Arch. Intern. Med. 2001, 161, 2685–2692. [Google Scholar] [CrossRef] [PubMed]
- Da Luz, P.L.; Favarato, D.; Faria-Neto, J.R., Jr.; Lemos, P.; Chagas, A.C. High ratio of triglycerides to HDL-cholesterol predicts extensive coronary disease. Clinics 2008, 63, 427–432. [Google Scholar] [PubMed]
- Willett, W.C.; Howe, G.R.; Kushi, L.H. Adjustment for total energy intake in epidemiologic studies. Am. J. Clin. Nutr. 1997, 65, 1220S–1228S. [Google Scholar] [PubMed]
- Krauss, R.M.; Eckel, R.H.; Howard, B.; Appel, L.J.; Daniels, S.R.; Deckelbaum, R.J.; Erdman, J.W., Jr.; Kris-Etherton, P.; Goldberg, I.J.; Kotchen, T.A.; et al. AHA dietary guidelines: Revision 2000: A statement for healthcare professionals from the nutrition committee of the American Heart Association. Circulation 2000, 102, 2284–2299. [Google Scholar] [CrossRef] [PubMed]
- Ainsworth, B.E.; Haskell, W.L.; Herrmann, S.D.; Meckes, N.; Bassett, D.R., Jr.; Tudor-Locke, C.; Greer, J.L.; Vezina, J.; Whitt-Glover, M.C.; Leon, A.S. 2011 compendium of physical activities: A second update of codes and met values. Med. Sci. Sports Exerc. 2011, 43, 1575–1581. [Google Scholar] [PubMed]
- Jenkins, D.J.; Wolever, T.M.; Rao, A.V.; Hegele, R.A.; Mitchell, S.J.; Ransom, T.P.; Boctor, D.L.; Spadafora, P.J.; Jenkins, A.L.; Mehling, C.; et al. Effect on blood lipids of very high intakes of fiber in diets low in saturated fat and cholesterol. N. Engl. J. Med. 1993, 329, 21–26. [Google Scholar] [CrossRef] [PubMed]
- Anderson, J.W. Dietary fiber prevents carbohydrate-induced hypertriglyceridemia. Curr. Atheroscler. Rep. 2000, 2, 536–541. [Google Scholar] [CrossRef] [PubMed]
- Parsaeyan, N.; Mozaffari-Khosravi, H.; Absalan, A.; Mozayan, M.R. Beneficial effects of cocoa on lipid peroxidation and inflammatory markers in type 2 diabetic patients and investigation of probable interactions of cocoa active ingredients with prostaglandin synthase-2 (PTGS-2/COX-2) using virtual analysis. J. Diabetes Metab. Disord. 2014, 13, 30. [Google Scholar] [PubMed]
- Kurowska, E.M.; Spence, J.D.; Jordan, J.; Wetmore, S.; Freeman, D.J.; Piche, L.A.; Serratore, P. HDL-cholesterol-raising effect of orange juice in subjects with hypercholesterolemia. Am. J. Clin. Nutr. 2000, 72, 1095–1100. [Google Scholar] [PubMed]
- Mursu, J.; Voutilainen, S.; Nurmi, T.; Rissanen, T.H.; Virtanen, J.K.; Kaikkonen, J.; Nyyssonen, K.; Salonen, J.T. Dark chocolate consumption increases HDL cholesterol concentration and chocolate fatty acids may inhibit lipid peroxidation in healthy humans. Free Radic. Biol. Med. 2004, 37, 1351–1359. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Zhu, Y.; Zhang, Y.; Lang, J.; Chen, Y.; Ling, W. Estimated daily flavonoid and stilbene intake from fruits, vegetables, and nuts and associations with lipid profiles in Chinese adults. J. Acad. Nutr. Diet. 2013, 113, 786–794. [Google Scholar] [CrossRef] [PubMed]
- Virtamo, J.; Rapola, J.M.; Ripatti, S.; Heinonen, O.P.; Taylor, P.R.; Albanes, D.; Huttunen, J.K. Effect of vitamin E and beta carotene on the incidence of primary nonfatal myocardial infarction and fatal coronary heart disease. Arch. Intern. Med. 1998, 158, 668–675. [Google Scholar] [PubMed]
- Sesso, H.D.; Buring, J.E.; Christen, W.G.; Kurth, T.; Belanger, C.; MacFadyen, J.; Bubes, V.; Manson, J.E.; Glynn, R.J.; Gaziano, J.M. Vitamins E and C in the prevention of cardiovascular disease in men: The physicians’ health study II randomized controlled trial. JAMA 2008, 300, 2123–2133. [Google Scholar] [CrossRef] [PubMed]
- Pocobelli, G.; Peters, U.; Kristal, A.R.; White, E. Use of supplements of multivitamins, vitamin C, and vitamin E in relation to mortality. Am. J. Epidemiol. 2009, 170, 472–483. [Google Scholar] [CrossRef] [PubMed]
- Buijsse, B.; Feskens, E.J.; Kwape, L.; Kok, F.J.; Kromhout, D. Both alpha- and beta-carotene, but not tocopherols and vitamin C, are inversely related to 15-year cardiovascular mortality in Dutch elderly men. J. Nutr. 2008, 138, 344–350. [Google Scholar] [PubMed]
- Zhang, P.Y.; Xu, X.; Li, X.C. Cardiovascular diseases: Oxidative damage and antioxidant protection. Eur. Rev. Med. Pharmacol. Sci. 2014, 18, 3091–3096. [Google Scholar] [PubMed]
- Mekary, R.A.; Wu, K.; Giovannucci, E.; Sampson, L.; Fuchs, C.; Spiegelman, D.; Willett, W.C.; Smith-Warner, S.A. Total antioxidant capacity intake and colorectal cancer risk in the health professionals follow-up study. Cancer Causes Control 2010, 21, 1315–1321. [Google Scholar] [CrossRef] [PubMed]
- Halvorsen, B.L.; Carlsen, M.H.; Phillips, K.M.; Bohn, S.K.; Holte, K.; Jacobs, D.R., Jr.; Blomhoff, R. Content of redox-active compounds (i.e., antioxidants) in foods consumed in the United States. Am. J. Clin. Nutr. 2006, 84, 95–135. [Google Scholar] [PubMed]
- Halvorsen, B.L.; Holte, K.; Myhrstad, M.C.; Barikmo, I.; Hvattum, E.; Remberg, S.F.; Wold, A.B.; Haffner, K.; Baugerod, H.; Andersen, L.F.; et al. A systematic screening of total antioxidants in dietary plants. J. Nutr. 2002, 132, 461–471. [Google Scholar] [PubMed]
- Pellegrini, N.; Serafini, M.; Colombi, B.; del Rio, D.; Salvatore, S.; Bianchi, M.; Brighenti, F. Total antioxidant capacity of plant foods, beverages and oils consumed in Italy assessed by three different in vitro assays. J. Nutr. 2003, 133, 2812–2819. [Google Scholar] [PubMed]
- Pellegrini, N.; Serafini, M.; Salvatore, S.; del Rio, D.; Bianchi, M.; Brighenti, F. Total antioxidant capacity of spices, dried fruits, nuts, pulses, cereals and sweets consumed in Italy assessed by three different in vitro assays. Mol. Nutr. Food Res. 2006, 50, 1030–1038. [Google Scholar] [CrossRef] [PubMed]
- Salvatore, S.; Pellegrini, N.; Brenna, O.V.; del Rio, D.; Frasca, G.; Brighenti, F.; Tumino, R. Antioxidant characterization of some Sicilian edible wild greens. J. Agric. Food Chem. 2005, 53, 9465–9471. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Chung, S.J.; McCullough, M.L.; Song, W.O.; Fernandez, M.L.; Koo, S.I.; Chun, O.K. Dietary carotenoids are associated with cardiovascular disease risk biomarkers mediated by serum carotenoid concentrations. J. Nutr. 2014, 144, 1067–1074. [Google Scholar] [CrossRef] [PubMed]
- Chun, O.K.; Chung, S.J.; Song, W.O. Urinary isoflavones and their metabolites validate the dietary isoflavone intakes in USA adults. J. Am. Diet. Assoc. 2009, 109, 245–254. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yang, M.; Davis, C.G.; Koo, S.I.; Chun, O.K. Dietary total antioxidant capacity reflects dietary and plasma antioxidant status in healthy college students. FASEB J. 2011, 25, 17. [Google Scholar]
- Wang, Y.; Yang, M.; Lee, S.-G.; Davis, C.; Masterjohn, C.; Kenny, A.; Bruno, R.S.; Chun, O.K. Total antioxidant capacity: A useful tool in assessing antioxidant intake status. In Natural Compounds as Inducers of Cell Death; Diederich, M., Noworyta, K., Eds.; Springer: New York, NY, USA, 2012; pp. 265–292. [Google Scholar]
- Wang, Y.; Yang, M.; Lee, S.G.; Davis, C.G.; Kenny, A.; Koo, S.I.; Chun, O.K. Plasma total antioxidant capacity is associated with dietary intake and plasma level of antioxidants in postmenopausal women. J. Nutr. Biochem. 2012, 23, 1725–1731. [Google Scholar] [CrossRef] [PubMed]
- Paolisso, G.; Balbi, V.; Volpe, C.; Varricchio, G.; Gambardella, A.; Saccomanno, F.; Ammendola, S.; Varricchio, M.; D’Onofrio, F. Metabolic benefits deriving from chronic vitamin C supplementation in aged non-insulin dependent diabetics. J. Am. Coll. Nutr. 1995, 14, 387–392. [Google Scholar] [CrossRef] [PubMed]
- Ting, H.H.; Timimi, F.K.; Boles, K.S.; Creager, S.J.; Ganz, P.; Creager, M.A. Vitamin C improves endothelium-dependent vasodilation in patients with non-insulin-dependent diabetes mellitus. J. Clin. Investig. 1996, 97, 22–28. [Google Scholar] [CrossRef] [PubMed]
- Hung, H.C.; Joshipura, K.J.; Jiang, R.; Hu, F.B.; Hunter, D.; Smith-Warner, S.A.; Colditz, G.A.; Rosner, B.; Spiegelman, D.; Willett, W.C. Fruit and vegetable intake and risk of major chronic disease. J. Natl. Cancer Inst. 2004, 96, 1577–1584. [Google Scholar] [CrossRef] [PubMed]
- Yuan, C.; Lee, H.J.; Shin, H.J.; Stampfer, M.J.; Cho, E. Fruit and vegetable consumption and hypertriglyceridemia: Korean national health and nutrition examination surveys (KNHANES) 2007–2009. Eur. J. Clin. Nutr. 2015, 69, 1193–1199. [Google Scholar] [CrossRef] [PubMed]
- O’Neil, C.E.; Nicklas, T.A.; Rampersaud, G.C.; Fulgoni, V.L., 3rd. 100% orange juice consumption is associated with better diet quality, improved nutrient adequacy, decreased risk for obesity, and improved biomarkers of health in adults: National health and nutrition examination survey, 2003–2006. Nutr. J. 2012, 11, 107. [Google Scholar]
- Lee, I.T.; Chan, Y.C.; Lin, C.W.; Lee, W.J.; Sheu, W.H. Effect of cranberry extracts on lipid profiles in subjects with type 2 diabetes. Diabet. Med. 2008, 25, 1473–1477. [Google Scholar] [CrossRef] [PubMed]
- Vafa, M.R.; Haghighatjoo, E.; Shidfar, F.; Afshari, S.; Gohari, M.R.; Ziaee, A. Effects of apple consumption on lipid profile of hyperlipidemic and overweight men. Int. J. Prev. Med. 2011, 2, 94–100. [Google Scholar] [PubMed]
- Takahashi, K.; Kamada, C.; Yoshimura, H.; Okumura, R.; Iimuro, S.; Ohashi, Y.; Araki, A.; Umegaki, H.; Sakurai, T.; Yoshimura, Y.; et al. Effects of total and green vegetable intakes on glycated hemoglobin A1c and triglycerides in elderly patients with type 2 diabetes mellitus: The Japanese elderly intervention trial. Geriatr. Gerontol. Int. 2012, 12 (Suppl. 1), 50–58. [Google Scholar] [CrossRef] [PubMed]
- Bogdanski, P.; Suliburska, J.; Szulinska, M.; Stepien, M.; Pupek-Musialik, D.; Jablecka, A. Green tea extract reduces blood pressure, inflammatory biomarkers, and oxidative stress and improves parameters associated with insulin resistance in obese, hypertensive patients. Nutr. Res. 2012, 32, 421–427. [Google Scholar] [CrossRef] [PubMed]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, K.; Vance, T.M.; Chun, O.K. Greater Total Antioxidant Capacity from Diet and Supplements Is Associated with a Less Atherogenic Blood Profile in U.S. Adults. Nutrients 2016, 8, 15. https://doi.org/10.3390/nu8010015
Kim K, Vance TM, Chun OK. Greater Total Antioxidant Capacity from Diet and Supplements Is Associated with a Less Atherogenic Blood Profile in U.S. Adults. Nutrients. 2016; 8(1):15. https://doi.org/10.3390/nu8010015
Chicago/Turabian StyleKim, Kijoon, Terrence M. Vance, and Ock K. Chun. 2016. "Greater Total Antioxidant Capacity from Diet and Supplements Is Associated with a Less Atherogenic Blood Profile in U.S. Adults" Nutrients 8, no. 1: 15. https://doi.org/10.3390/nu8010015
APA StyleKim, K., Vance, T. M., & Chun, O. K. (2016). Greater Total Antioxidant Capacity from Diet and Supplements Is Associated with a Less Atherogenic Blood Profile in U.S. Adults. Nutrients, 8(1), 15. https://doi.org/10.3390/nu8010015