Individuals with Metabolically Healthy Overweight/Obesity Have Higher Fat Utilization than Metabolically Unhealthy Individuals
Abstract
:1. Introduction
2. Methods
2.1. Blood Pressure Measurement
2.2. Biochemical Evaluation
2.3. Anthropometric Measurements
2.4. Dietary Intake Assessment
2.5. RQ Assessment—Indirect Calorimetry
2.6. Carotid Arteries Assessment
3. Statistical Analysis
4. Results
5. Discussion
Variables | Overweight/Obese (OO) (n = 80) | Metabolic Syndrome (MS) (n = 58) | T2 Diabetes (T2DM) (n = 34) | P ANOVA | p Post-Hoc Analysis |
---|---|---|---|---|---|
Females (%) | 31.3 | 34.5 | 35.3 | 0.63 | / |
Age (years) | 56 ± 10 | 58 ± 9 | 62 ± 10 | 0.016 | OO vs. T2DM 0.004 |
Weight (Kg) | 83 ± 17 | 87 ± 21 | 85 ± 20 | 0.505 | / |
BMI (Kg/m2) | 33 ± 6 | 34 ± 7 | 34 ± 6 | 0.514 | / |
WC (cm) | 102 ± 14 | 106 ± 15 | 108 ± 13 | 0.120 | / |
HC (cm) | 109 ± 15 | 110 ± 12 | 110 ± 11 | 0.905 | / |
SBP (mmHg) | 122 ± 11 | 133 ± 15 | 130 ± 13 | <0.001 | OO vs. MS < 0.001 |
OO vs. T2DM 0.003 | |||||
DBP (mmHg) | 78 ± 8 | 80 ± 11 | 77 ± 9 | 0.161 | / |
Glucose-mg/dL (mmol/L) | 91 ± 9 (5.06 ± 0.5) | 100 ± 10 (5.56 ± 0.5) | 130 ± 45 (7.22 ± 2.5) | <0.001 | OO vs. MS 0.019 |
OO vs. T2DM < 0.001 | |||||
MS vs. T2DM < 0.001 | |||||
Insulin-mU/L (pmol/L) | 16 ± 8 (114.7 ± 57) | 23 ± 20 (164.9 ± 143) | 35 ± 26 (250.9 ± 186) | 0.039 | OO vs. T2D 0.012 |
HOMA-IR | 3.7 ± 2 | 6 ± 5 | 12 ± 11 | 0.004 | OO vs. T2DM 0.001 |
MS vs. T2DM 0.017 | |||||
TotCholesterol-mg/dL (mmol/L) | 199 ± 38 (5.14 ± 0.98) | 213 ± 42 (5.5 ± 1.09) | 195 ± 47 (5.04 ± 1.2) | 0.055 | OO vs. MS 0.042 |
MS vs. T2DM 0.037 | |||||
HDL (mmol/L) | 1.52 ± 0.41 | 1.16 ± 0.36 | 1.37 ± 0.44 | <0.001 | OO vs. MS < 0.001 |
OO vs. T2DM 0.017 | |||||
MS vs. T2DM 0.046 | |||||
LDL (mmol/L) | 3.18 ± 0.83 | 3.39 ± 0.96 | 2.97 ± 1.06 | 0.141 | / |
Triglycerides (mmol/L) | 91 ± 28 (1.03 ± 0.32) | 201 ± 81 (2.27 ± 0.91) | 151 ± 85 (1.70 ± 0.96) | <0.001 | OO vs. MS < 0.001 |
OO vs. T2D < 0.001 | |||||
MS vs. T2D < 0.001 | |||||
Prevalence | |||||
Hypertension (%) | 12 | 26 | 52 | 0.001 | / |
Dyslipidemia (%) | 19 | 29 | 30 | 0.129 | / |
Smokers (%) | 38 | 46 | 24 | 0.390 | / |
Antidiabetic agents (%) | 0 | 0 | 56 | <0.001 | / |
Antihypertensive agents (%) | 0 | 0 | 56 | <0.001 | / |
Lipid lowering agents (%) | 0 | 0 | 44 | <0.001 | / |
Variables | Overweight/Obese (OO) (n = 80) | Metabolic Syndrome (MS) (n = 58) | T2 Diabetes (T2DM) (n = 34) | P ANOVA | p Post-Hoc Analysis |
---|---|---|---|---|---|
REE (FFM adjusted; kcal) | 1371 ± 33 | 1392 ± 42 | 1383 ± 45 | 0.93 | / |
RQ | 0.85 ± 0.05 | 0.87 ± 0.06 | 0.88 ± 0.05 | 0.042 | OO vs. MS 0.044 |
OO vs. T2DM 0.033 | |||||
TBW (%) | 45 ± 10 | 47 ± 9 | 47 ± 8 | 0.596 | / |
ECW (%) | 31 ± 15 | 32 ± 14 | 37 ± 14 | 0.272 | / |
FFM (%) | 59 ± 12 | 61 ± 12 | 61 ± 10 | 0.707 | / |
MM (%) | 38 ± 8 | 40 ± 8 | 39 ± 9 | 0.665 | / |
FM (%) | 36 ± 9 | 36 ± 8 | 36 ± 8 | 0.943 | / |
FFM (%) | 59 ± 12 | 61 ± 12 | 61 ± 10 | 0.707 | / |
FFM(kg) | 50.4 ± 18 | 52.4 ± 25 | 51.8 ± 18 | 0.92 | / |
CIMT (mm) | 0.7 ± 0.2 | 0.7 ± 0.2 | 0.8 ± 0.2 | 0.054 | OO vs. T2D 0.024 |
MS vs. T2D 0.038 |
Variable | Correlation Parameters | Age | REE | BMI | WC | FFM | HOMA-IR | Glucose | LDL | Triglycerides | HDL | SBP | DBP |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RQ | r | 0.07 | 0.04 | −0.03 | 0.02 | 0.92 | 0.42 | 0.16 | −0.03 | 0.19 | −0.11 | 0.18 | 0.08 |
p | 0.35 | 0.53 | 0.65 | 0.79 | 0.27 | 0.005 | 0.03 | 0.62 | 0.01 | 0.13 | 0.01 | 0.25 |
Dependent Variable RQ | B | SE | β | t | p | 95% C.I. | |
---|---|---|---|---|---|---|---|
Lower Limit | Upper Limit | ||||||
HOMA-IR | 0.004 | 0.001 | 0.42 | 2.98 | 0.005 | 0.001 | 0.006 |
Triglycerides | 0.001 | 0.001 | 0.20 | 1.37 | 0.17 | −0.002 | 0.002 |
SBP | 0.001 | 0.001 | 0.05 | 0.34 | 0.73 | −0.001 | 0.001 |
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Calori, G.; Lattuada, G.; Piemonti, L.; Garancini, M.P.; Ragogna, F.; Villa, M.; Mannino, S.; Crosignani, P.; Bosi, E.; Luzi, L.; et al. Prevalence, metabolic features, and prognosis of metabolically healthy obese Italian individuals: The cremona study. Diabetes Care 2011, 34, 210–215. [Google Scholar] [CrossRef] [PubMed]
- Kip, K.E.; Marroquin, O.C.; Kelley, D.E.; Johnson, B.D.; Kelsey, S.F.; Shaw, L.J.; Rogers, W.J.; Reis, S.E. Clinical importance of obesity versus the metabolic syndrome in cardiovascular risk in women: A report from the Women’s Ischemia Syndrome Evaluation (WISE) study. Circulation 2004, 109, 706–713. [Google Scholar] [CrossRef] [PubMed]
- Stefan, N.; Haring, H.U.; Hu, F.B.; Schulze, M.B. Metabolically healthy obesity: Epidemiology, mechanisms, and clinical implications. Lancet Diabetes Endocrinol. 2013, 1, 152–162. [Google Scholar] [CrossRef]
- Meigs, J.B.; Wilson, P.W.F.; Fox, C.S.; Vasan, R.S.; Nathan, D.M.; Sullivan, L.M.; D’Agostino, R.B. Body mass index, metabolic syndrome, and risk of type 2 diabetes or cardiovascular disease. J. Clin. Endocrinol. Metab. 2006, 91, 2906–2912. [Google Scholar] [CrossRef] [PubMed]
- Appleton, S.L.; Seaborn, C.J.; Visvanathan, R.; Hill, C.L.; Gill, T.K.; Taylor, A.W.; Adams, R.J. North West Adelaide Health Study Team. Diabetes and cardiovascular disease outcomes in the metabolically healthy obese phenotype: A cohort study. Diabetes Care 2013, 36, 2388–2394. [Google Scholar] [CrossRef] [PubMed]
- DeBoer, M.D. Obesity, systemic inflammation, and increased risk for cardiovascular disease and diabetes among adolescents: A need for screening tools to target interventions. Nutrition 2013, 29, 379–386. [Google Scholar] [CrossRef] [PubMed]
- Arner, P. Regional differences in protein production by human adipose tissue. Biochem. Soc. Trans. 2001, 29, 72–75. [Google Scholar] [CrossRef] [PubMed]
- Koves, T.R.; Ussher, J.R.; Noland, R.C.; Slentz, D.; Mosedale, M.; Ilkayeva, O.; Bain, J.; Stevens, R.; Dyck, J.R.; Newgard, C.B.; et al. Mitochondrial overload and incomplete fatty acid oxidation contribute to skeletal muscle insulin resistance. Cell Metab. 2008, 7, 45–56. [Google Scholar] [CrossRef] [PubMed]
- Bandyopadhyay, G.K.; Yu, J.G.; Ofrecio, J.; Olefsky, J.M. Increased malonyl-CoA levels in muscle from obese and type 2 diabetic subjects lead to decreased fatty acid oxidation and increased lipogenesis; thiazolidinedione treatment reverses these defects. Diabetes 2006, 55, 2277–2285. [Google Scholar] [CrossRef] [PubMed]
- Kelley, D.E.; Goodpaster, B.; Wing, R.R.; Simoneau, J.A. Skeletal muscle fatty acid metabolism in association with insulin resistance, obesity, and weight loss. Am. J. Physiol. 1999, 277, E1130–E1141. [Google Scholar] [PubMed]
- Blaak, E.E. Basic disturbances in skeletal muscle fatty acid metabolism in obesity and type 2 diabetes mellitus. Proc. Nutr. Soc. 2004, 63, 323–330. [Google Scholar] [CrossRef] [PubMed]
- Toft-Nielsen, M.B.; Damholt, M.B.; Madsbad, S.; Hilsted, L.M.; Hughes, T.E.; Michelsen, B.K.; Holst, J.J. Determinants of the impaired secretion of glucagon-like peptide-1 in type 2 diabetic patients. J. Clin. Endocrinol. Metab. 2001, 86, 3717–3723. [Google Scholar] [CrossRef] [PubMed]
- Vilsbøll, T.; Krarup, T.; Deacon, C.F.; Madsbad, S.; Holst, J.J. Reduced postprandial concentrations of intact biologically active glucagon-like peptide 1 in type 2 diabetic patients. Diabetes 2001, 50, 609–613. [Google Scholar] [CrossRef] [PubMed]
- De León, D.D.; Crutchlow, M.F.; Ham, J.Y.; Stoffers, D.A. Role of glucagon-like peptide-1 in the pathogenesis and treatment of diabetes mellitus. Int. J. Biochem. Cell Biol. 2006, 38, 845–859. [Google Scholar] [CrossRef] [PubMed]
- Pannacciulli, N.; Bunt, J.C.; Koska, J.; Bogardus, C.; Krakoff, J. Higher fasting plasma concentrations of glucagon-like peptide 1 are associated with higher resting energy expenditure and fat oxidation rates in humans. Am. J. Clin. Nutr. 2006, 84, 556–560. [Google Scholar] [PubMed]
- Conarello, S.L.; Li, Z.; Ronan, J.; Roy, R.S.; Zhu, L.; Jiang, G.; Liu, F.; Woods, J.; Zycband, E.; Moller, D.E.; et al. Mice lacking dipeptidyl peptidase IV are protected against obesity and insulin resistance. Proc. Natl. Acad. Sci. USA 2003, 100, 6825–6830. [Google Scholar] [CrossRef] [PubMed]
- McNeill, G.; Bruce, A.C.; Ralph, A.; James, W.P. Inter-individual differences in fasting nutrient oxidation and the influence of diet composition. Int. J. Obes. 1988, 12, 455–463. [Google Scholar] [PubMed]
- Schutz, Y. Abnormalities of fuel utilization as predisposing to the development of obesity in humans. Obes. Res. 1995, 3 (Suppl. 2), S173–S178. [Google Scholar] [CrossRef]
- Schutz, Y.; Flatt, J.P.; Jéquier, E. Failure of dietary fat intake to promote fat oxidation: A factor favoring the development of obesity. Am. J. Clin. Nutr. 1989, 50, 307–314. [Google Scholar] [PubMed]
- Zurlo, F.; Lillioja, S.; Esposito-Del Puente, A.; Nyomba, B.L.; Raz, I.; Saad, M.F.; Swinburn, B.A.; Knowler, W.C.; Bogardus, C.; Ravussin, E. Low ratio of fat to carbohydrate oxidation as predictor of weight gain: Study of 24-h RQ. Am. J. Physiol. 1990, 259, E650–E657. [Google Scholar] [PubMed]
- Ferro, Y.; Gazzaruso, C.; Coppola, A.; Romeo, S.; Migliaccio, V.; Giustina, A.; Pujia, A.; Montalcini, T. Fat utilization and arterial hypertension in overweight/obese subjects. J. Transl. Med. 2013, 11, 159. [Google Scholar] [CrossRef] [PubMed]
- Lorenz, M.W.; Markus, H.S.; Bots, M.L.; Rosvall, M.; Sitzer, M. Prediction of clinical cardiovascular events with carotid intima-media thickness: A systematic review and meta-analysis. Circulation 2007, 115, 459–467. [Google Scholar] [CrossRef] [PubMed]
- Di Bello, V.; Carerj, S.; Perticone, F.; Benedetto, F.; Palombo, C.; Talini, E.; Giannini, D.; la Carrubba, S.; Antonini-Canterin, F.; di Salvo, G.; et al. Carotid intima-media thickness in asymptomatic patients with arterial hypertension without clinical cardiovascular disease: Relation with left ventricular geometry and mass and coexisting risk factors. Angiology 2009, 60, 705–713. [Google Scholar] [CrossRef] [PubMed]
- Montalcini, T.; Gazzaruso, C.; Ferro, Y.; Migliaccio, V.; Rotundo, S.; Castagna, A.; Pujia, A. Metabolic fuel utilization and subclinical atherosclerosis in overweight/obese subjects. Endocrine 2013, 44, 380–385. [Google Scholar] [CrossRef] [PubMed]
- Montalcini, T.; Lamprinoudi, T.; Morrone, A.; Mazza, E.; Gazzaruso, C.; Romeo, S.; Pujia, A. Nutrients utilization in obese individuals with and without hypertriglyceridemia. Nutrients 2014, 21, 790–798. [Google Scholar] [CrossRef] [PubMed]
- Montalcini, T.; Lamprinoudi, T.; Gorgone, G.; Ferro, Y.; Romeo, S.; Pujia, A. Subclinical cardiovascular damage and fat utilization in overweight/obese individuals receiving the same dietary and pharmacological interventions. Nutrients 2014, 6, 5560–5571. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention. Tobacco use among adults—United States. MMWR 2006, 55, 1145–1148. [Google Scholar]
- Psaty, B.M.; Furberg, C.D.; Kuller, L.H.; Bild, D.E.; Rautaharju, P.M.; Polak, J.F.; Bovill, E.; Gottdiener, J.S. Traditional risk factors and subclinical disease measures as predictors of first myocardial infarction in older adults: The cardiovascular health study. Arch. Intern. Med. 1999, 59, 1339–1347. [Google Scholar] [CrossRef]
- Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults. Executive summary of The Third Report of The National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). JAMA 2001, 285, 2486–2497. [Google Scholar]
- Montalcini, T.; Gorgone, G.; Fava, A.; Romeo, S.; Gazzaruso, C.; Pujia, A. Carotid and brachial arterial enlargement in postmenopausal women with hypertension. Menopause 2012, 9, 145–149. [Google Scholar] [CrossRef] [PubMed]
- Montalcini, T.; Gorgone, G.; Garzaniti, A.; Gazzaruso, C.; Pujia, A. Artery remodelling and abdominal adiposity in nonobese postmenopausal women. Eur. J. Clin. Nutr. 2010, 64, 1022–1024. [Google Scholar] [CrossRef] [PubMed]
- Talluri, T.; Lietdke, R.J.; Evangelisti, A.; Talluri, J.; Maggia, G. Fat-free mass qualitative assessment with bioelectric impedance analysis (BIA). Ann. N. Y. Acad. Sci. 1999, 873, 94–98. [Google Scholar] [CrossRef] [PubMed]
- Zemel, M.B.; Bruckbauer, A. Effects of a leucine and pyridoxine-containing nutraceutical on fat oxidation, and oxidative and inflammatory stress in overweight and obese subjects. Nutrients 2012, 4, 529–541. [Google Scholar] [CrossRef] [PubMed]
- Mazumder, P.K.; O’Neill, B.T.; Roberts, M.W.; Buchanan, J.; Yun, U.J.; Cooksey, R.C.; Boudina, S.; Abel, E.D. Impaired cardiac efficiency and increased fatty acid oxidation in insulin-resistant ob/ob mouse hearts. Diabetes 2004, 53, 2366–2374. [Google Scholar] [CrossRef] [PubMed]
- Young, M.E.; Guthrie, P.H.; Razeghi, P.; Leighton, B.; Abbasi, S.; Patil, S.; Youker, K.A.; Taegtmeyer, H. Impaired long-chain fatty acid oxidation and contractile dysfunction in the obese Zucker rat heart. Diabetes 2002, 51, 2587–2595. [Google Scholar] [CrossRef] [PubMed]
- Choi, C.S.; Savage, D.B.; Abu-Elheiga, L.; Liu, Z.X.; Kim, S.; Kulkarni, A.; Distefano, A.; Hwang, Y.J.; Reznick, R.M.; Codella, R.; et al. Continuous fat oxidation in acetyl-CoA carboxylase 2 knockout mice increases total energy expenditure, reduces fat mass, and improves insulin sensitivity. Proc. Natl. Acad. Sci. USA 2007, 104, 16480–16485. [Google Scholar] [CrossRef] [PubMed]
- Turner, N.; Bruce, C.R.; Beale, S.M.; Hoehn, K.L.; So, T.; Rolph, M.S.; Cooney, G.J. Excess lipid availability increases mitochondrial fatty acid oxidative capacity in muscle: Evidence against a role for reduced fatty acid oxidation in lipid-induced insulin resistance in rodents. Diabetes 2007, 56, 2085–2092. [Google Scholar] [CrossRef] [PubMed]
- Aasum, E.; Belke, D.D.; Severson, D.L.; Riemersma, R.A.; Cooper, M.; Andreassen, M.; Larsen, T.S. Cardiac function and metabolism in Type 2 diabetic mice after treatment with BM 17.0744, a novel PPAR-alpha activator. Am. J. Physiol. Heart Circ. Physiol. 2002, 283, H949–H957. [Google Scholar] [CrossRef] [PubMed]
- Belke, D.D.; Larsen, T.S.; Gibbs, E.M.; Severson, D.L. Altered metabolism causes cardiac dysfunction in perfused hearts from diabetic (db/db) mice. Am. J. Physiol. Endocrinol. Metab. 2000, 279, E1104–E1113. [Google Scholar] [PubMed]
- An, J.; Muoio, D.M.; Shiota, M.; Fujimoto, Y.; Cline, G.W.; Shulman, G.I.; Koves, T.R.; Stevens, R.; Millington, D.; Newgard, C.B. Hepatic expression of malonyl-CoA decarboxylase reverses muscle, liver and whole-animal insulin resistance. Nat. Med. 2004, 10, 268–274. [Google Scholar] [CrossRef] [PubMed]
- Yechoor, V.K.; Patti, M.E.; Saccone, R.; Kahn, C.R. Coordinated patterns of gene expression for substrate and energy metabolism in skeletal muscle of diabetic mice. Proc. Natl. Acad. Sci. USA 2002, 99, 10587–10592. [Google Scholar] [CrossRef] [PubMed]
- Roden, M. Muscle triglycerides and mitochondrial function: Possible mechanisms for the development of type 2 diabetes. Int. J. Obes. (Lond.) 2005, 2 (Suppl. 2), S111–S115. [Google Scholar] [CrossRef]
- Ma, Z.A.; Zhao, Z.; Turk, J. Mitochondrial dysfunction and β-cell failure in type 2 diabetes mellitus. Exp. Diabetes Res. 2012, 2012. [Google Scholar] [CrossRef] [PubMed]
- Robitaille, J.; Houde, A.; Lemieux, S.; Pérusse, L.; Gaudet, D. Variants within the muscle and liver isoforms of the carnitine palmitoyltransferase I (CPT1) gene interact with fat intake to modulate indices of obesity in French-Canadians. J. Mol. Med. 2007, 85, 129–137. [Google Scholar] [PubMed]
- Wolfgang, M.J.; Kurama, T.; Dai, Y.; Suwa, A.; Asaumi, M.; Matsumoto, S.I.; Cha, S.H.; Shimokawa, T.; Lane, M.D. The brain-specific carnitine palmitoyltransferase-1c regulates energy homeostasis. Proc. Natl. Acad. Sci. USA 2006, 103, 7282–7287. [Google Scholar] [PubMed]
- Kim, T.; Moore, J.F.; Sharer, J.D.; Yang, K.; Wood, P.A.; Yang, Q. Carnitine Palmitoyltransferase 1b Deficient Mice Develop Severe Insulin Resistance after Prolonged High Fat Diet Feeding. J. Diabetes Metab. 2014, 5, 1000401. [Google Scholar] [CrossRef] [PubMed]
- Bergman, M. Inadequacies of current approaches to prediabetes and diabetes prevention. Endocrine 2013, 44, 623–633. [Google Scholar] [PubMed]
- Den Besten, G.; Bleeker, A.; Gerding, A.; van Eunen, K.; Havinga, R.; van Dijk, T.H.; Oosterveer, M.H.; Jonker, J.W.; Groen, A.K.; Reijngoud, D.J.; et al. Short-Chain Fatty Acids Protect against High-Fat Diet-Induced Obesity via a PPARγ-Dependent Switch from Lipogenesis to Fat Oxidation. Diabetes 2015, 64, 2398–2408. [Google Scholar] [CrossRef] [PubMed]
- Hinnouho, G.M.; Czernichow, S.; Dugravot, A.; Batty, G.D.; Kivimaki, M.; Singh-Manoux, A. Metabolically healthy obesity and risk of mortality: Does the definition of metabolic health matter? Diabetes Care 2013, 36, 2294–2300. [Google Scholar] [PubMed]
- Rey-López, J.P.; de Rezende, L.F.; Pastor-Valero, M.; Tess, B.H. The prevalence of metabolically healthy obesity: A systematic review and critical evaluation of the definitions used. Obes. Rev. 2014, 15, 781–790. [Google Scholar] [CrossRef] [PubMed]
- Phillips, C.M. Metabolically healthy obesity: Definitions, determinants and clinical implications. Rev. Endocr. Metab. Disord. 2013, 14, 219–227. [Google Scholar] [PubMed]
- Blüher, M. Are there still healthy obese patients? Curr. Opin. Endocrinol. Diabetes Obes. 2012, 19, 341–346. [Google Scholar] [CrossRef] [PubMed]
- Katzmarzyk, P.T.; Church, T.S.; Janssen, I.; Ross, R.; Blair, S.N. Metabolic syndrome, obesity, and mortality: Impact of cardiorespiratory fitness. Diabetes Care 2005, 28, 391–397. [Google Scholar] [CrossRef] [PubMed]
- Voulgari, C.; Tentolouris, N.; Dilaveris, P.; Tousoulis, D.; Katsilambros, N.; Stefanadis, C. Increased heart failure risk in normal-weight people with metabolic syndrome compared with metabolically healthy obese individuals. J. Am. Coll. Cardiol. 2011, 58, 1343–1350. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Manson, J.E.; Meigs, J.B.; Ridker, P.M.; Buring, J.E.; Liu, S. Comparison of usefulness of body mass index versus metabolic risk factors in predicting 10-year risk of cardiovascular events in women. Am. J. Cardiol. 2007, 100, 1654–1658. [Google Scholar] [CrossRef] [PubMed]
- Di Sarra, D.; Tosi, F.; Bonin, C.; Fiers, T.; Kaufman, J.M.; Signori, C.; Zambotti, F.; Dall’Alda, M.; Caruso, B.; Zanolin, M.E.; et al. Metabolic inflexibility is a feature of women with polycystic ovary syndrome and is associated with both insulin resistance and hyperandrogenism. J. Clin. Endocrinol. Metab. 2013, 98, 2581–2588. [Google Scholar] [CrossRef] [PubMed] [Green Version]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pujia, A.; Gazzaruso, C.; Ferro, Y.; Mazza, E.; Maurotti, S.; Russo, C.; Lazzaro, V.; Romeo, S.; Montalcini, T. Individuals with Metabolically Healthy Overweight/Obesity Have Higher Fat Utilization than Metabolically Unhealthy Individuals. Nutrients 2016, 8, 2. https://doi.org/10.3390/nu8010002
Pujia A, Gazzaruso C, Ferro Y, Mazza E, Maurotti S, Russo C, Lazzaro V, Romeo S, Montalcini T. Individuals with Metabolically Healthy Overweight/Obesity Have Higher Fat Utilization than Metabolically Unhealthy Individuals. Nutrients. 2016; 8(1):2. https://doi.org/10.3390/nu8010002
Chicago/Turabian StylePujia, Arturo, Carmine Gazzaruso, Yvelise Ferro, Elisa Mazza, Samantha Maurotti, Cristina Russo, Veronica Lazzaro, Stefano Romeo, and Tiziana Montalcini. 2016. "Individuals with Metabolically Healthy Overweight/Obesity Have Higher Fat Utilization than Metabolically Unhealthy Individuals" Nutrients 8, no. 1: 2. https://doi.org/10.3390/nu8010002
APA StylePujia, A., Gazzaruso, C., Ferro, Y., Mazza, E., Maurotti, S., Russo, C., Lazzaro, V., Romeo, S., & Montalcini, T. (2016). Individuals with Metabolically Healthy Overweight/Obesity Have Higher Fat Utilization than Metabolically Unhealthy Individuals. Nutrients, 8(1), 2. https://doi.org/10.3390/nu8010002