Association of Vitamin E Levels with Metabolic Syndrome, and MRI-Derived Body Fat Volumes and Liver Fat Content
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sample
2.2. Physical Examination and Standardized Questionnaires
2.3. Assessment of SAT, VAT, and Liver Fat Using MRI
2.4. Definitions
2.5. Laboratory Analyses
2.6. Statistical Analyses
3. Results
3.1. General Characteristics
3.2. Association of α-Tocopherol/Cholesterol Ratio with Metabolic Traits
3.3. Association of γ-Tocopherol/Cholesterol Ratio with Metabolic Traits
3.4. Assessment of Interactions and Sensitivity Analyses
4. Discussion
4.1. Principal Observations
4.2. In the Context of the Published Literature
4.2.1. Vitamin E Levels and Measures of Adiposity and Adipose Tissue Volumes
4.2.2. Vitamin E Levels and the Metabolic Syndrome
4.2.3. Vitamin E Levels, Fatty Liver Disease, and Liver Fat Content
4.3. Potential Mechanisms for the Observed Associations
4.4. Strengths and Limitation
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Roberts, C.K.; Sindhu, K.K. Oxidative stress and metabolic syndrome. Life Sci. 2009, 84, 705–712. [Google Scholar] [CrossRef] [PubMed]
- Bonomini, F.; Rodella, L.F.; Rezzani, R. Metabolic syndrome, aging and involvement of oxidative stress. Aging Dis. 2015, 6, 109–120. [Google Scholar] [CrossRef] [PubMed]
- Polimeni, L.; Del Ben, M.; Baratta, F.; Perri, L.; Albanese, F.; Pastori, D.; Violi, F.; Angelico, F. Oxidative stress: New insights on the association of non-alcoholic fatty liver disease and atherosclerosis. World J. Hepatol. 2015, 7, 1325–1336. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Q. Natural forms of vitamin E: Metabolism, antioxidant, and anti-inflammatory activities and their role in disease prevention and therapy. Free Radic. Biol. Med. 2014, 72, 76–90. [Google Scholar] [CrossRef] [PubMed]
- Borel, P.; Preveraud, D.; Desmarchelier, C. Bioavailability of vitamin E in humans: An update. Nutr. Rev. 2013, 71, 319–331. [Google Scholar] [CrossRef] [PubMed]
- Sanyal, A.J.; Chalasani, N.; Kowdley, K.V.; McCullough, A.; Diehl, A.M.; Bass, N.M.; Neuschwander-Tetri, B.A.; Lavine, J.E.; Tonascia, J.; Unalp, A.; et al. Pioglitazone, vitamin E, or placebo for nonalcoholic steatohepatitis. N. Engl. J. Med. 2010, 362, 1675–1685. [Google Scholar] [CrossRef] [PubMed]
- Kabat, G.C.; Heo, M.; Ochs-Balcom, H.M.; LeBoff, M.S.; Mossavar-Rahmani, Y.; Adams-Campbell, L.L.; Nassir, R.; Ard, J.; Zaslavsky, O.; Rohan, T.E. Longitudinal association of measures of adiposity with serum antioxidant concentrations in postmenopausal women. Eur. J. Clin. Nutr. 2016, 70, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Chai, W.; Conroy, S.M.; Maskarinec, G.; Franke, A.A.; Pagano, I.S.; Cooney, R.V. Associations between obesity and serum lipid-soluble micronutrients among premenopausal women. Nutr. Res. 2010, 30, 227–232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wallstrom, P.; Wirfalt, E.; Lahmann, P.H.; Gullberg, B.; Janzon, L.; Berglund, G. Serum concentrations of beta-carotene and alpha-tocopherol are associated with diet, smoking, and general and central adiposity. Am. J. Clin. Nutr. 2001, 73, 777–785. [Google Scholar] [PubMed]
- Garcia, O.P.; Ronquillo, D.; Caamano Mdel, C.; Camacho, M.; Long, K.Z.; Rosado, J.L. Zinc, vitamin A, and vitamin C status are associated with leptin concentrations and obesity in Mexican women: Results from a cross-sectional study. Nutr. Metab. 2012, 9, 59. [Google Scholar] [CrossRef] [PubMed]
- Galan, P.; Viteri, F.E.; Bertrais, S.; Czernichow, S.; Faure, H.; Arnaud, J.; Ruffieux, D.; Chenal, S.; Arnault, N.; Favier, A.; et al. Serum concentrations of beta-carotene, vitamins C and E, zinc and selenium are influenced by sex, age, diet, smoking status, alcohol consumption and corpulence in a general French adult population. Eur. J. Clin. Nutr. 2005, 59, 1181–1190. [Google Scholar] [CrossRef] [PubMed]
- Beydoun, M.A.; Shroff, M.R.; Chen, X.; Beydoun, H.A.; Wang, Y.; Zonderman, A.B. Serum antioxidant status is associated with metabolic syndrome among U.S. Adults in recent national surveys. J. Nutr. 2011, 141, 903–913. [Google Scholar] [CrossRef] [PubMed]
- Ford, E.S.; Mokdad, A.H.; Giles, W.H.; Brown, D.W. The metabolic syndrome and antioxidant concentrations: Findings from the third national health and nutrition examination survey. Diabetes 2003, 52, 2346–2352. [Google Scholar] [CrossRef] [PubMed]
- Godala, M.M.; Materek-Kusmierkiewicz, I.; Moczulski, D.; Rutkowski, M.; Szatko, F.; Gaszynska, E.; Tokarski, S.; Kowalski, J. Lower plasma levels of antioxidant vitamins in patients with metabolic syndrome: A case control study. Adv. Clin. Exp. Med. 2016, 25, 689–700. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Guo, H.; Wu, M.; Liu, M. Serum and dietary antioxidant status is associated with lower prevalence of the metabolic syndrome in a study in Shanghai, China. Asia Pac. J. Clin. Nutr. 2013, 22, 60–68. [Google Scholar] [PubMed]
- Mah, E.; Sapper, T.N.; Chitchumroonchokchai, C.; Failla, M.L.; Schill, K.E.; Clinton, S.K.; Bobe, G.; Traber, M.G.; Bruno, R.S. Alpha-tocopherol bioavailability is lower in adults with metabolic syndrome regardless of dairy fat co-ingestion: A randomized, double-blind, crossover trial. Am. J. Clin. Nutr. 2015, 102, 1070–1080. [Google Scholar] [CrossRef] [PubMed]
- Machado, M.V.; Ravasco, P.; Jesus, L.; Marques-Vidal, P.; Oliveira, C.R.; Proenca, T.; Baldeiras, I.; Camilo, M.E.; Cortez-Pinto, H. Blood oxidative stress markers in non-alcoholic steatohepatitis and how it correlates with diet. Scand. J. Gastroenterol. 2008, 43, 95–102. [Google Scholar] [CrossRef] [PubMed]
- Erhardt, A.; Stahl, W.; Sies, H.; Lirussi, F.; Donner, A.; Haussinger, D. Plasma levels of vitamin E and carotenoids are decreased in patients with nonalcoholic steatohepatitis (NASH). Eur. J. Med. Res. 2011, 16, 76–78. [Google Scholar] [CrossRef] [PubMed]
- Bahcecioglu, I.H.; Yalniz, M.; Ilhan, N.; Ataseven, H.; Ozercan, I.H. Levels of serum vitamin A, alpha-tocopherol and malondialdehyde in patients with non-alcoholic steatohepatitis: Relationship with histopathologic severity. Int. J. Clin. Pract. 2005, 59, 318–323. [Google Scholar] [CrossRef] [PubMed]
- Nothlings, U.; Krawczak, M. PopGen. A population-based biobank with prospective follow-up of a control group. Bundesgesundhbl. Gesundheitsforsch. Gesundheitsschutz 2012, 55, 831–835. [Google Scholar]
- Krawczak, M.; Nikolaus, S.; Von Eberstein, H.; Croucher, P.J.; El Mokhtari, N.E.; Schreiber, S. Popgen: Population-based recruitment of patients and controls for the analysis of complex genotype-phenotype relationships. Community Genet. 2006, 9, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Barbaresko, J.; Siegert, S.; Koch, M.; Aits, I.; Lieb, W.; Nikolaus, S.; Laudes, M.; Jacobs, G.; Nothlings, U. Comparison of two exploratory dietary patterns in association with the metabolic syndrome in a northern German population. Br. J. Nutr. 2014, 112, 1364–1372. [Google Scholar] [CrossRef] [PubMed]
- Nothlings, U.; Hoffmann, K.; Bergmann, M.M.; Boeing, H. Fitting portion sizes in a self-administered food frequency questionnaire. J. Nutr. 2007, 137, 2781–2786. [Google Scholar] [PubMed]
- Dehne, L.I.; Klemm, C.; Henseler, G.; Hermann-Kunz, E. The German food code and nutrient data base (BLS II.2). Eur. J. Epidemiol. 1999, 15, 355–359. [Google Scholar] [CrossRef] [PubMed]
- Muller, H.P.; Raudies, F.; Unrath, A.; Neumann, H.; Ludolph, A.C.; Kassubek, J. Quantification of human body fat tissue percentage by MRI. NMR Biomed. 2011, 24, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Fischer, K.; Moewes, D.; Koch, M.; Muller, H.P.; Jacobs, G.; Kassubek, J.; Lieb, W.; Nothlings, U. Mri-determined total volumes of visceral and subcutaneous abdominal and trunk adipose tissue are differentially and sex-dependently associated with patterns of estimated usual nutrient intake in a northern German population. Am. J. Clin. Nutr. 2015, 101, 794–807. [Google Scholar] [CrossRef] [PubMed]
- Koch, M.; Borggrefe, J.; Barbaresko, J.; Groth, G.; Jacobs, G.; Siegert, S.; Lieb, W.; Muller, M.J.; Bosy-Westphal, A.; Heller, M.; et al. Dietary patterns associated with magnetic resonance imaging-determined liver fat content in a general population study. Am. J. Clin. Nutr. 2014, 99, 369–377. [Google Scholar] [CrossRef] [PubMed]
- Alberti, K.G.; Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z.; Cleeman, J.I.; Donato, K.A.; Fruchart, J.C.; James, W.P.; Loria, C.M.; Smith, S.C., Jr.; et al. Harmonizing the metabolic syndrome: A joint interim statement of the international diabetes federation task force on epidemiology and prevention; national heart, lung, and blood institute; American heart association; World heart federation; International atherosclerosis society; and International association for the study of obesity. Circulation 2009, 120, 1640–1645. [Google Scholar] [PubMed]
- Szczepaniak, L.S.; Nurenberg, P.; Leonard, D.; Browning, J.D.; Reingold, J.S.; Grundy, S.; Hobbs, H.H.; Dobbins, R.L. Magnetic resonance spectroscopy to measure hepatic triglyceride content: Prevalence of hepatic steatosis in the general population. Am. J. Physiol. Endocrinol. Metab. 2005, 288, E462–E468. [Google Scholar] [CrossRef] [PubMed]
- Haftenberger, M.; Schuit, A.J.; Tormo, M.J.; Boeing, H.; Wareham, N.; Bueno-de-Mesquita, H.B.; Kumle, M.; Hjartaker, A.; Chirlaque, M.D.; Ardanaz, E.; et al. Physical activity of subjects aged 50–64 years involved in the European prospective investigation into cancer and nutrition (EPIC). Public Health Nutr. 2002, 5, 1163–1176. [Google Scholar] [CrossRef] [PubMed]
- Ainsworth, B.E.; Haskell, W.L.; Herrmann, S.D.; Meckes, N.; Bassett, D.R., Jr.; Tudor-Locke, C.; Greer, J.L.; Vezina, J.; Whitt-Glover, M.C.; Leon, A.S. 2011 compendium of physical activities: A second update of codes and MET values. Med. Sci. Sports Exerc. 2011, 43, 1575–1581. [Google Scholar] [CrossRef] [PubMed]
- Augustin, K.; Blank, R.; Boesch-Saadatmandi, C.; Frank, J.; Wolffram, S.; Rimbach, G. Dietary green tea polyphenols do not affect vitamin E status, antioxidant capacity and meat quality of growing pigs. J. Anim. Physiol. Anim. Nutr. 2008, 92, 705–711. [Google Scholar] [CrossRef] [PubMed]
- Kayden, H.J.; Traber, M.G. Absorption, lipoprotein transport, and regulation of plasma concentrations of vitamin E in humans. J. Lipid Res. 1993, 34, 343–358. [Google Scholar] [PubMed]
- Thurnham, D.I.; Davies, J.A.; Crump, B.J.; Situnayake, R.D.; Davis, M. The use of different lipids to express serum tocopherol: Lipid ratios for the measurement of vitamin E status. Ann. Clin. Biochem. 1986, 23, 514–520. [Google Scholar] [CrossRef] [PubMed]
- Lim, U.; Turner, S.D.; Franke, A.A.; Cooney, R.V.; Wilkens, L.R.; Ernst, T.; Albright, C.L.; Novotny, R.; Chang, L.; Kolonel, L.N.; et al. Predicting total, abdominal, visceral and hepatic adiposity with circulating biomarkers in Caucasian and Japanese American women. PLoS ONE 2012, 7, e43502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Italian Association for the Study of the Liver. AISF position paper on nonalcoholic fatty liver disease (NAFLD): Updates and future directions. Dig. Liver Dis. 2017, 49, 471–483. [Google Scholar]
- Volzke, H. Multicausality in fatty liver disease: Is there a rationale to distinguish between alcoholic and non-alcoholic origin? World J. Gastroenterol. 2012, 18, 3492–3501. [Google Scholar] [CrossRef] [PubMed]
- Loria, P.; Marchesini, G.; Nascimbeni, F.; Ballestri, S.; Maurantonio, M.; Carubbi, F.; Ratziu, V.; Lonardo, A. Cardiovascular risk, lipidemic phenotype and steatosis. A comparative analysis of cirrhotic and non-cirrhotic liver disease due to varying etiology. Atherosclerosis 2014, 232, 99–109. [Google Scholar] [CrossRef] [PubMed]
- Pacana, T.; Sanyal, A.J. Vitamin E and nonalcoholic fatty liver disease. Curr. Opin. Clin. Nutr. Metab. Care 2012, 15, 641–648. [Google Scholar] [CrossRef] [PubMed]
- Schmolz, L.; Birringer, M.; Lorkowski, S.; Wallert, M. Complexity of vitamin E metabolism. World J. Biol. Chem. 2016, 7, 14–43. [Google Scholar] [CrossRef] [PubMed]
- Traber, M.G. Vitamin E regulatory mechanisms. Annu. Rev. Nutr. 2007, 27, 347–362. [Google Scholar] [CrossRef] [PubMed]
- Hosomi, A.; Arita, M.; Sato, Y.; Kiyose, C.; Ueda, T.; Igarashi, O.; Arai, H.; Inoue, K. Affinity for alpha-tocopherol transfer protein as a determinant of the biological activities of vitamin E analogs. FEBS Lett. 1997, 409, 105–108. [Google Scholar] [CrossRef]
- Traber, M.G. Mechanisms for the prevention of vitamin E excess. J. Lipid Res. 2013, 54, 2295–2306. [Google Scholar] [CrossRef] [PubMed]
- Etzl, R.P.; Vrekoussis, T.; Kuhn, C.; Schulze, S.; Poschl, J.M.; Makrigiannakis, A.; Jeschke, U.; Rotzoll, D.E. Oxidative stress stimulates alpha-tocopherol transfer protein in human trophoblast tumor cells bewo. J. Perinat. Med. 2012, 40, 373–378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ulatowski, L.; Dreussi, C.; Noy, N.; Barnholtz-Sloan, J.; Klein, E.; Manor, D. Expression of the alpha-tocopherol transfer protein gene is regulated by oxidative stress and common single-nucleotide polymorphisms. Free Radic. Biol. Med. 2012, 53, 2318–2326. [Google Scholar] [CrossRef] [PubMed]
- Usenko, C.Y.; Harper, S.L.; Tanguay, R.L. Fullerene C60 exposure elicits an oxidative stress response in embryonic zebrafish. Toxicol. Appl. Pharmacol. 2008, 229, 44–55. [Google Scholar] [CrossRef] [PubMed]
- Otulakowski, G.; Engelberts, D.; Arima, H.; Hirate, H.; Bayir, H.; Post, M.; Kavanagh, B.P. Alpha-tocopherol transfer protein mediates protective hypercapnia in murine ventilator-induced lung injury. Thorax 2017, 72, 538–549. [Google Scholar] [CrossRef] [PubMed]
- Traber, M.G.; Mah, E.; Leonard, S.W.; Bobe, G.; Bruno, R.S. Metabolic syndrome increases dietary alpha-tocopherol requirements as assessed using urinary and plasma vitamin E catabolites: A double-blind, crossover clinical trial. Am. J. Clin. Nutr. 2017, 105, 571–579. [Google Scholar] [CrossRef] [PubMed]
- Marseglia, L.; Manti, S.; D’Angelo, G.; Nicotera, A.; Parisi, E.; Di Rosa, G.; Gitto, E.; Arrigo, T. Oxidative stress in obesity: A critical component in human diseases. Int. J. Mol. Sci. 2014, 16, 378–400. [Google Scholar] [CrossRef] [PubMed]
- Fonseca-Alaniz, M.H.; Takada, J.; Alonso-Vale, M.I.; Lima, F.B. Adipose tissue as an endocrine organ: From theory to practice. J. Pediatr. 2007, 83, S192–S203. [Google Scholar] [CrossRef]
- Camhi, S.M.; Bray, G.A.; Bouchard, C.; Greenway, F.L.; Johnson, W.D.; Newton, R.L.; Ravussin, E.; Ryan, D.H.; Smith, S.R.; Katzmarzyk, P.T. The relationship of waist circumference and BMI to visceral, subcutaneous, and total body fat: Sex and race differences. Obesity 2011, 19, 402–408. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Tertiles α-Tocopherol/Cholesterol Ratio | p | |||||
---|---|---|---|---|---|---|---|
T1 (n = 213) | T2 (n = 214) | T3 (n = 214) | |||||
Median α-tocopherol/cholesterol ratio (IQR), µmol/mmol | 4.63 | (4.25–4.88) | 5.53 | (5.36–5.72) | 6.74 | (6.33–7.59) | |
Men, % | 55.9 | 61.7 | 60.8 | 0.422 | |||
Age, years | 63.0 | (56.0–70.0) | 61.5 | (54.0–71.0) | 62.0 | (51.0–71.0) | 0.411 |
Body mass index, kg/m2 | 26.6 | (23.3–29.8) | 26.7 | (24.8–29.4) | 26.7 | (24.6–29.2) | 0.633 |
Waist circumference, cm | |||||||
Men | 100.0 | (92.8–107.4) | 100.2 | (92.7–105.9) | 99.4 | (93.5–106.8) | 0.956 |
Women | 87.1 | (78.5–96.4) | 88.5 | (83.2–97.4) | 92.4 | (80.2–99.6) | 0.199 |
Systolic blood pressure, mm/Hg | 139.0 | (127.5–150.0) | 140.0 | (125.0–150.0) | 138.3 | (125.0–150.0) | 0.856 |
Diastolic blood pressure, mm/Hg | 85.0 | (80.0–90.0) | 85.0 | (80.0–90.0) | 82.3 | (80.0–90.0) | 0.341 |
Prevalent hypertension, % | 68.1 | 71.0 | 67.8 | 0.723 | |||
Current smokers, % | 10.1 | 9.8 | 12.2 | 0.640 | |||
Physical activity, MET-hour/week | 98.3 | (61.5–141.6) | 84.2 | (54.8–120.1)) | 90.0 | (59.3–131.7) | 0.074 |
High education (≥11 years), % | 29.1 | 40.7 | 37.9 | 0.143 | |||
Alcohol consumption, g/day | 8.67 | (2.76–17.0) | 8.58 | (4.09–17.95) | 10.96 | (4.15–20.05) | 0.114 |
Vitamin E supplementation, % | 5.6 | 6.5 | 10.3 | 0.154 | |||
Prevalent diabetes, % | 8.9 | 8.9 | 14.5 | 0.099 | |||
Metabolic syndrome, % | 36.6 | 36.0 | 48.1 | 0.016 | |||
C-reactive protein, mg/dL | 1.10 | (0.45–2.60) | 1.20 | (0.45–2.40) | 1.40 | (0.45–2.20) | 0.531 |
HDL-cholesterol, mg/dL | 67.0 | (56.0–82.0) | 63.5 | (54.0–76.0) | 57.5 | (49.0–72.0) | <0.0001 |
Triglycerides, mg/dL | 96.0 | (71.0–123.0) | 104.0 | (78.0–132.0) | 123.0 | (84.0–169.0) | <0.0001 |
Diabetes medication, % * | 3.6 | 7.1 | 14.6 | 0.015 | |||
Lipid-lowering medication, % * | 13.6 | 29.3 | 45.8 | <0.0001 | |||
Fatty liver disease, % † | 38.9 | 38.5 | 40.3 | 0.928 | |||
Liver signal intensity † | 18.6 | (14.9–23.4) | 18.2 | (15.0–22.1) | 18.0 | (14.5–24.7) | 0.925 |
Visceral adipose tissue, dm3 ‡ | 3.70 | (2.18–5.02) | 3.90 | (2.41–5.25) | 3.94 | (2.54–5.37) | 0.478 |
Subcutaneous adipose tissue, dm3 ‡ | 5.91 | (4.45–8.23) | 6.45 | (4.75–8.53) | 6.10 | (4.88–8.24) | 0.546 |
Characteristics | Tertiles (T) γ-Tocopherol/Cholesterol Ratio | p | |||||
---|---|---|---|---|---|---|---|
T1 (n = 213) | T2 (n = 214) | T3 (n = 214) | |||||
Median γ-tocopherol/cholesterol ratio (IQR), µmol/mmol | 0.16 | (0.13–0.18) | 0.24 | (0.22–0.26) | 0.35 | (0.31–0.42) | |
Men, % | 60.06 | 57.9 | 59.8 | 0.851 | |||
Age, years | 63.0 | (55.0–71.0) | 61.5 | (55.0–71.0) | 62.0 | (54.0–69.0) | 0.709 |
Body mass index, kg/m2 | 26.1 | (23.4–28.9) | 27.3 | (24.8–29.6) | 26.8 | (24.9–30.7) | 0.005 |
Waist circumference, cm | |||||||
Men | 98.9 | (91.5–105.3) | 100.8 | (93.5–108.3) | 100.7 | (94.6–106.9) | 0.271 |
Women | 85.3 | (77.4–93.6) | 89.0 | (82.4–98.0) | 91.8 | (80.2–103.5) | 0.002 |
Systolic blood pressure, mm/Hg | 139.0 | (126.5–150.0) | 140.0 | (125.0–150.0) | 139.0 | (127.5–150.0) | 0.858 |
Diastolic blood pressure, mm/Hg | 85.0 | (80.0–90.0) | 85.0 | (80.0–90.0) | 85.0 | (80.0–90.0) | 0.853 |
Prevalent hypertension, % | 67.1 | 71.5 | 68.2 | 0.598 | |||
Current smokers, % | 8.0 | 14.5 | 10.3 | 0.278 | |||
Physical activity, MET-hour/week | 86.3 | (58.8–130.0) | 89.5 | (59.8–138.2) | 90.8 | (56.8–125.4) | 0.932 |
High education (≥11 years), % | 40.9 | 31.3 | 35.5 | 0.168 | |||
Alcohol consumption, g/d | 8.87 | (3.20–16.79) | 10.18 | (3.82–20.3) | 9.74 | (4.0–20.13) | 0.504 |
Vitamin E supplementation, % | 14.6 | 2.8 | 5.1 | <0.0001 | |||
Prevalent diabetes, % | 8.0 | 8.9 | 15.4 | 0.026 | |||
Metabolic syndrome, % | 32.9 | 41.6 | 46.3 | 0.017 | |||
C-reactive protein, mg/dL | 1.0 | (0.45–1.90) | 1.30 | (0.45–2.80) | 1.40 | (0.45–2.60) | 0.009 |
HDL-cholesterol, mg/dL | 66.0 | (54.0–79.0) | 62.0 | (53.0–79.0) | 60.0 | (51.0–74.0) | 0.023 |
Triglycerides, mg/dL | 100.0 | (76.0–131.0) | 103.0 | (72.0–133.0) | 115.5 | (80.0–158.0) | 0.004 |
Diabetes medication, % * | 4.0 | 3.9 | 17.0 | 0.0005 | |||
Lipid-lowering medication, % * | 22.8 | 26.9 | 37.0 | 0.073 | |||
Fatty liver disease, % † | 37.4 | 36.7 | 43.7 | 0.303 | |||
Liver signal intensity † | 18.5 | (14.7–22.4) | 17.9 | (14.5–24.1) | 18.8 | (14.8–24.2) | 0.599 |
Visceral adipose tissue, dm3 ‡ | 3.55 | (2.26–4.95) | 3.82 | (2.46–5.16) | 4.15 | (2.71–5.77) | 0.013 |
Subcutaneous adipose tissue, dm3 ‡ | 5.85 | (4.33–7.70) | 6.33 | (4.81–8.46) | 6.30 | (4.89–9.09) | 0.018 |
Outcome | Tertiles (T) α-Tocopherol/Cholesterol Ratio | Ptrend | β Scaled by IQR and 95% CI | ||
---|---|---|---|---|---|
T1 | T2 | T3 | |||
N | 196 | 199 | 196 | ||
Median α-tocopherol/cholesterol ratio (IQR), µmol/mmol | 4.49 (4.41–4.57) | 5.53 (5.44–5.63) | 7.18 (7.05–7.30) | ||
VAT, dm3 (n = 591) | |||||
Model 1 | 2.99 (2.74–3.26) | 3.20 (2.94–3.48) | 3.29 (3.04–3.57) | 0.056 | 0.035 (−0.002; 0.071) |
Model 2 | 2.92 (2.63–3.26) | 3.13 (2.82–3.47) | 3.23 (2.93–3.57) | 0.043 | 0.036 (0.0003; 0.071) |
Model 3 | 3.09 (2.87–3.32) | 3.31 (3.09–3.32) | 3.34 (3.13–3.57) | 0.016 | 0.026 (0.002; 0.050) |
SAT, dm3 (n = 591) | |||||
Model 1 | 6.07 (5.78–6.61) | 6.38 (5.88–6.93) | 6.32 (5.83–6.84) | 0.437 | 0.025 (−0.011; 0.062) |
Model 2 | 5.98 (5.38–6.66) | 6.23 (5.62–6.91) | 6.22 (5.64–6.87) | 0.433 | 0.026 (−0.009; 0.062) |
Model 3 | 6.36 (6.00–6.74) | 6.64 (6.28–7.02) | 6.46 (6.12–6.81) | 0.572 | 0.015 (−0.004; 0.034) |
N | 190 | 191 | 190 | ||
Median α-tocopherol/cholesterol ratio (IQR), µmol/mmol | 4.50 (4.42–4.58) | 5.54 (5.44–5.64) | 7.19 (7.05–7.32) | ||
LSI (n = 571) | |||||
Model 1 | 16.86 (15.57–18.24) | 16.67 (15.43–18.01) | 17.70 (16.41–19.10) | 0.491 | 0.014 (−0.019; 0.047) |
Model 2 | 17.10 (15.47–18.90) | 16.91 (15.43–18.01) | 17.70 (16.41–19.10) | 0.486 | 0.011 (−0.023; 0.045) |
Outcome | Tertiles (T) γ-Tocopherol/Cholesterol Ratio | Ptrend | β Scaled by IQR and 95% CI | ||
---|---|---|---|---|---|
T1 | T2 | T3 | |||
N | 196 | 199 | 196 | ||
Median γ -tocopherol/cholesterol ratio (IQR), µmol/mmol | 0.14 (0.13–0.14) | 0.24 (0.23–0.25) | 0.37 (0.36–0.39) | ||
VAT, dm3 (n = 591) | |||||
Model 1 | 2.90 (2.68–3.15) | 3.17 (2.92–3.44) | 3.48 (3.21–3.78) | 0.0002 | 0.073 (0.034; 0.111) |
Model 2 | 2.92 (2.65–3.21) | 3.21 (2.88–3.57) | 3.45 (3.11–3.83) | 0.0006 | 0.066 (0.027; 0.104) |
Model 3 | 3.16 (2.97–3.37) | 3.25 (3.02–3.49) | 3.48 (3.24–3.73) | 0.0034 | 0.037 (0.011; 0.063) |
SAT, dm3 (n = 591) | |||||
Model 1 | 5.80 (5.35–6.29) | 6.40 (5.90–6.95) | 6.65 (6.13–7.21) | 0.006 | 0.059 (0.020; 0.099) |
Model 2 | 5.81 (5.28–6.39) | 6.51 (5.84–7.25) | 6.58 (5.92–7.30) | 0.011 | 0.048 (0.010; 0.087) |
Model 3 | 6.36 (6.04–6.70) | 6.61 (6.23–7.01) | 6.64 (6.27–7.03) | 0.103 | 0.015 (−0.006; 0.037) |
N | 190 | 191 | 190 | ||
Median γ-tocopherol/cholesterol ratio (IQR), µmol/mmol | 0.14 (0.14–0.15) | 0.24 (0.23–0.25) | 0.38 (0.36–0.39) | ||
LSI (n = 571) | |||||
Model 1 | 16.32 (15.00–17.61) | 17.41 (16.11–18.82) | 17.60 (16.30–19.00) | 0.193 | 0.017 (−0.020; 0.055) |
Model 2 | 16.80 (15.35–18.40) | 18.05 (16.30–20.00) | 17.96 (16.28–19.82) | 0.304 | 0.012 (−0.026; 0.051) |
Outcome | Tertiles (T) of α-Tocopherol/Cholesterol Ratio | Ptrend | ||
T1 | T2 | T3 | ||
Median α-tocopherol/cholesterol ratio (IQR), µmol/mmol | 4.63 (4.25–4.88) | 5.53 (5.36–5.72) | 6.74 (6.33–7.59) | |
MetS (yes/no) (258/383) | (78/135) | (77/137) | (103/111) | |
Model 1 | Reference | 1.01 (0.67–1.51) | 1.72 (1.15–2.58) | 0.006 |
Model 2 | Reference | 1.09 (0.72–1.65) | 1.83 (1.21–2.76) | 0.003 |
Median α-tocopherol/cholesterol ratio (IQR), µmol/mmol | 4.61 (4.25–4.87) | 5.52 (5.35–5.73) | 6.75 (6.29–7.57) | |
FLD (yes/no) (224/347) | (72/113) | (75/120) | (77/114) | |
Model 1 | Reference | 1.03 (0.67–1.58) | 1.11 (0.72–1.70) | 0.631 |
Model 2 | Reference | 1.01 (0.65–1.55) | 1.09 (0.70–1.68) | 0.694 |
Tertiles (T) of γ-Tocopherol/Cholesterol Ratio | Ptrend | |||
T1 | T2 | T3 | ||
Median γ-tocopherol/cholesterol ratio (IQR), µmol/mmol | 0.16 (0.13–0.18) | 0.24 (0.22–0.26) | 0.35 (0.31–0.41) | |
MetS (yes/no) (258/383) | (70/143) | (89/125) | (99/115) | |
Model 1 | Reference | 1.58 (1.05–2.39) | 1.92 (1.28–2.89) | 0.002 |
Model 2 | Reference | 1.50 (0.98–2.29) | 1.87 (1.23–2.84) | 0.004 |
Median γ-tocopherol/cholesterol ratio (IQR), µmol/mmol | 0.16 (0.13–0.18) | 0.24 (0.22–0.26) | 0.34 (0.31–0.42) | |
FLD (yes/no) (224/347) | (72/113) | (75/120) | (77/114) | |
Model 1 | Reference | 0.99 (0.65–1.52) | 1.38 (0.90–2.10) | 0.124 |
Model 2 | Reference | 0.97 (0.62–1.51) | 1.31 (0.85–2.02) | 0.204 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Waniek, S.; Di Giuseppe, R.; Plachta-Danielzik, S.; Ratjen, I.; Jacobs, G.; Koch, M.; Borggrefe, J.; Both, M.; Müller, H.-P.; Kassubek, J.; et al. Association of Vitamin E Levels with Metabolic Syndrome, and MRI-Derived Body Fat Volumes and Liver Fat Content. Nutrients 2017, 9, 1143. https://doi.org/10.3390/nu9101143
Waniek S, Di Giuseppe R, Plachta-Danielzik S, Ratjen I, Jacobs G, Koch M, Borggrefe J, Both M, Müller H-P, Kassubek J, et al. Association of Vitamin E Levels with Metabolic Syndrome, and MRI-Derived Body Fat Volumes and Liver Fat Content. Nutrients. 2017; 9(10):1143. https://doi.org/10.3390/nu9101143
Chicago/Turabian StyleWaniek, Sabina, Romina Di Giuseppe, Sandra Plachta-Danielzik, Ilka Ratjen, Gunnar Jacobs, Manja Koch, Jan Borggrefe, Marcus Both, Hans-Peter Müller, Jan Kassubek, and et al. 2017. "Association of Vitamin E Levels with Metabolic Syndrome, and MRI-Derived Body Fat Volumes and Liver Fat Content" Nutrients 9, no. 10: 1143. https://doi.org/10.3390/nu9101143
APA StyleWaniek, S., Di Giuseppe, R., Plachta-Danielzik, S., Ratjen, I., Jacobs, G., Koch, M., Borggrefe, J., Both, M., Müller, H. -P., Kassubek, J., Nöthlings, U., Esatbeyoglu, T., Schlesinger, S., Rimbach, G., & Lieb, W. (2017). Association of Vitamin E Levels with Metabolic Syndrome, and MRI-Derived Body Fat Volumes and Liver Fat Content. Nutrients, 9(10), 1143. https://doi.org/10.3390/nu9101143