Dietary Intake of Protein from Different Sources and Weight Regain, Changes in Body Composition and Cardiometabolic Risk Factors after Weight Loss: The DIOGenes Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Study Design
2.3. Procedures
2.4. Clinical Examinations, Oral Glucose Tolerance Test (OGTT) and Blood Analysis
2.5. Dietary Records
2.6. Dietary Analysis
2.7. Statistical Analysis
3. Results
3.1. Total Protein Intake
3.2. Substituting Plant Proteins for Animal Proteins
3.3. Substituting Cereal Protein for Non-Cereal Plant Proteins
3.4. Substituting Meat Protein for Proteins from Other Animal Sources
4. Discussion
4.1. Animal vs. Plant Protein
4.2. Substituting Cereal for Non-Cereal Plant Proteins
4.3. Substituting Meat for Other Animal Proteins
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Santesso, N.; Akl, E.A.; Bianchi, M.; Mente, A.; Mustafa, R.; Heels-Ansdell, D.; Schunemann, H.J. Effects of higher- versus lower-protein diets on health outcomes: A systematic review and meta-analysis. Eur. J. Clin. Nutr. 2012, 66, 780–788. [Google Scholar] [CrossRef] [PubMed]
- Wycherley, T.P.; Moran, L.J.; Clifton, P.M.; Noakes, M.; Brinkworth, G.D. Effects of energy-restricted high-protein, low-fat compared with standard-protein, low-fat diets: A meta-analysis of randomized controlled trials. Am. J. Clin. Nutr. 2012, 96, 1281–1298. [Google Scholar] [CrossRef] [PubMed]
- Halkjaer, J.; Olsen, A.; Overvad, K.; Jakobsen, M.U.; Boeing, H.; Buijsse, B.; Palli, D.; Tognon, G.; Du, H.; van der, A.D.; et al. Intake of total, animal and plant protein and subsequent changes in weight or waist circumference in European men and women: The diogenes project. Int. J. Obes. (Lond.) 2011, 35, 1104–1113. [Google Scholar] [CrossRef] [PubMed]
- Vergnaud, A.C.; Norat, T.; Mouw, T.; Romaguera, D.; May, A.M.; Bueno-de-Mesquita, H.B.; van der, A.D.; Agudo, A.; Wareham, N.; Khaw, K.T.; et al. Macronutrient composition of the diet and prospective weight change in participants of the epic-panacea study. PLoS ONE 2013, 8, e57300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gilbert, J.A.; Bendsen, N.T.; Tremblay, A.; Astrup, A. Effect of proteins from different sources on body composition. Nutr. Metab. Cardiovasc. Dis. 2011, 21, B16–B31. [Google Scholar] [CrossRef] [PubMed]
- Bujnowski, D.; Xun, P.; Daviglus, M.L.; Van Horn, L.; He, K.; Stamler, J. Longitudinal association between animal and vegetable protein intake and obesity among men in the United States: The Chicago western electric study. J. Am. Diet. Assoc. 2011, 111, 1150–1155. [Google Scholar] [CrossRef] [PubMed]
- Clifton, P.M. Protein and coronary heart disease: The role of different protein sources. Curr. Atheroscler. Rep. 2011, 13, 493–498. [Google Scholar] [CrossRef] [PubMed]
- Bernstein, A.M.; Pan, A.; Rexrode, K.M.; Stampfer, M.; Hu, F.B.; Mozaffarian, D.; Willett, W.C. Dietary protein sources and the risk of stroke in men and women. Stroke 2012, 43, 637–644. [Google Scholar] [CrossRef] [PubMed]
- Bernstein, A.M.; Sun, Q.; Hu, F.B.; Stampfer, M.J.; Manson, J.E.; Willett, W.C. Major dietary protein sources and risk of coronary heart disease in women. Circulation 2010, 122, 876–883. [Google Scholar] [CrossRef] [PubMed]
- Altorf-van der Kuil, W.; Engberink, M.F.; Brink, E.J.; van Baak, M.A.; Bakker, S.J.; Navis, G.; van’t Veer, P.; Geleijnse, J.M. Dietary protein and blood pressure: A systematic review. PLoS ONE 2010, 5, e12102. [Google Scholar] [CrossRef] [PubMed]
- Sluijs, I.; Beulens, J.W.; van der, A.D.; Spijkerman, A.M.; Grobbee, D.E.; van der Schouw, Y.T. Dietary intake of total, animal, and vegetable protein and risk of type 2 diabetes in the European prospective investigation into cancer and nutrition (epic)-nl study. Diabetes Care 2010, 33, 43–48. [Google Scholar] [CrossRef] [PubMed]
- Larsen, T.M.; Dalskov, S.M.; van Baak, M.; Jebb, S.A.; Papadaki, A.; Pfeiffer, A.F.; Martinez, J.A.; Handjieva-Darlenska, T.; Kunesova, M.; Pihlsgard, M.; et al. Diets with high or low protein content and glycemic index for weight-loss maintenance. N. Engl. J. Med. 2010, 363, 2102–2113. [Google Scholar] [CrossRef] [PubMed]
- Larsen, T.M.; Dalskov, S.; van Baak, M.; Jebb, S.; Kafatos, A.; Pfeiffer, A.; Martinez, J.A.; Handjieva-Darlenska, T.; Kunesova, M.; Holst, C.; et al. The diet, obesity and genes (diogenes) dietary study in eight European countries—A comprehensive design for long-term intervention. Obes. Rev. 2010, 11, 76–91. [Google Scholar] [CrossRef] [PubMed]
- Moore, C.S.; Lindroos, A.K.; Kreutzer, M.; Larsen, T.M.; Astrup, A.; van Baak, M.A.; Handjieva-Darlenska, T.; Hlavaty, P.; Kafatos, A.; Kohl, A.; et al. Dietary strategy to manipulate ad libitum macronutrient intake, and glycaemic index, across eight European countries in the diogenes study. Obes. Rev. 2010, 11, 67–75. [Google Scholar] [CrossRef] [PubMed]
- Matsuda, M.; DeFronzo, R.A. Insulin sensitivity indices obtained from oral glucose tolerance testing: Comparison with the euglycemic insulin clamp. Diabetes Care 1999, 22, 1462–1470. [Google Scholar] [CrossRef] [PubMed]
- Wallace, T.M.; Levy, J.C.; Matthews, D.R. Use and abuse of Homa modeling. Diabetes Care 2004, 27, 1487–1495. [Google Scholar] [CrossRef] [PubMed]
- Gogebakan, O.; Kohl, A.; Osterhoff, M.A.; van Baak, M.A.; Jebb, S.A.; Papadaki, A.; Martinez, J.A.; Handjieva-Darlenska, T.; Hlavaty, P.; Weickert, M.O.; et al. Effects of weight loss and long-term weight maintenance with diets varying in protein and glycemic index on cardiovascular risk factors. Circulation 2011, 124, 2829–2838. [Google Scholar] [CrossRef] [PubMed]
- Aston, L.M.; Jackson, D.; Monsheimer, S.; Whybrow, S.; Handjieva-Darlenska, T.; Kreutzer, M.; Kohl, A.; Papadaki, A.; Martinez, J.A.; Kunova, V.; et al. Developing a methodology for assigning glycaemic index values to foods consumed across Europe. Obes. Rev. 2010, 11, 92–100. [Google Scholar] [CrossRef] [PubMed]
- McCance and Widdowson’s Composition of Foods integrated dataset (CoF IDS). Food Standards Agency, 2002. Available online: http://www.food.gov.uk/science/dietarysurveys/dietsurveys (accessed on 5 December 2017).
- DTU Food, National Food Institute. The Danish Food Composition Databank; revision 5.0; Technical University of Denmark: Copenhagen, Denmark, 2002. [Google Scholar]
- Ministry of Health, Welfare and Sports. NEVO-Tabel; RIVM: Bilthoven, The Netherlands, 2009.
- Nutri-Science. PRODI®; Version 4.5 (Based on the Bundeslebensmittelschlüssel); Nutri-Science: Hausach, Germany, 2001. [Google Scholar]
- Czech Centre for Food Composition Database. Czech Food Composition Database; Version 4.0; Institute of Agricultural Economics and Information: Prague, Czech Republic, 2001. [Google Scholar]
- Hu, F.B.; Stampfer, M.J.; Manson, J.E.; Rimm, E.; Colditz, G.A.; Rosner, B.A.; Hennekens, C.H.; Willett, W.C. Dietary fat intake and the risk of coronary heart disease in women. N. Engl. J. Med. 1997, 337, 1491–1499. [Google Scholar] [CrossRef] [PubMed]
- Aller, E.E.; Larsen, T.M.; Claus, H.; Lindroos, A.K.; Kafatos, A.; Pfeiffer, A.; Martinez, J.A.; Handjieva-Darlenska, T.; Kunesova, M.; Stender, S.; et al. Weight loss maintenance in overweight subjects on ad libitum diets with high or low protein content and glycemic index: The diogenes trial 12-month results. Int. J. Obes. (Lond.) 2014, 38, 1511–1517. [Google Scholar] [CrossRef] [PubMed]
- Hill, A.M.; Harris Jackson, K.A.; Roussell, M.A.; West, S.G.; Kris-Etherton, P.M. Type and amount of dietary protein in the treatment of metabolic syndrome: A randomized controlled trial. Am. J. Clin. Nutr. 2015, 102, 757–770. [Google Scholar] [CrossRef] [PubMed]
- Kjolbaek, L.; Sorensen, L.B.; Sondertoft, N.B.; Rasmussen, C.K.; Lorenzen, J.K.; Serena, A.; Astrup, A.; Larsen, L.H. Protein supplements after weight loss do not improve weight maintenance compared with recommended dietary protein intake despite beneficial effects on appetite sensation and energy expenditure: A randomized, controlled, double-blinded trial. Am. J. Clin. Nutr. 2017, 106, 684–697. [Google Scholar] [CrossRef] [PubMed]
- Baer, D.J.; Stote, K.S.; Paul, D.R.; Harris, G.K.; Rumpler, W.V.; Clevidence, B.A. Whey protein but not soy protein supplementation alters body weight and composition in free-living overweight and obese adults. J. Nutr. 2011, 141, 1489–1494. [Google Scholar] [CrossRef] [PubMed]
- Teunissen-Beekman, K.F.; van Baak, M.A. The role of dietary protein in blood pressure regulation. Curr. Opin. Lipidol. 2013, 24, 65–70. [Google Scholar] [CrossRef] [PubMed]
- Wofford, M.R.; Rebholz, C.M.; Reynolds, K.; Chen, J.; Chen, C.S.; Myers, L.; Xu, J.; Jones, D.W.; Whelton, P.K.; He, J. Effect of soy and milk protein supplementation on serum lipid levels: A randomized controlled trial. Eur. J. Clin. Nutr. 2012, 66, 419–425. [Google Scholar] [CrossRef] [PubMed]
- Preis, S.R.; Stampfer, M.J.; Spiegelman, D.; Willett, W.C.; Rimm, E.B. Lack of association between dietary protein intake and risk of stroke among middle-aged men. Am. J. Clin. Nutr. 2010, 91, 39–45. [Google Scholar] [CrossRef] [PubMed]
- Preis, S.R.; Stampfer, M.J.; Spiegelman, D.; Willett, W.C.; Rimm, E.B. Dietary protein and risk of ischemic heart disease in middle-aged men. Am. J. Clin. Nutr. 2010, 92, 1265–1272. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Manson, J.E.; Buring, J.E.; Liu, S. A prospective study of red meat consumption and type 2 diabetes in middle-aged and elderly women: The women’s health study. Diabetes Care 2004, 27, 2108–2115. [Google Scholar] [CrossRef] [PubMed]
- Shang, X.; Scott, D.; Hodge, A.M.; English, D.R.; Giles, G.G.; Ebeling, P.R.; Sanders, K.M. Dietary protein intake and risk of type 2 diabetes: Results from the melbourne collaborative cohort study and a meta-analysis of prospective studies. Am. J. Clin. Nutr. 2016, 104, 1352–1365. [Google Scholar] [CrossRef] [PubMed]
- Song, M.; Fung, T.T.; Hu, F.B.; Willett, W.C.; Longo, V.D.; Chan, A.T.; Giovannucci, E.L. Association of animal and plant protein intake with all-cause and cause-specific mortality. JAMA Intern Med. 2016, 176, 1453–1463. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.J.; de Souza, R.J.; Choo, V.L.; Ha, V.; Cozma, A.I.; Chiavaroli, L.; Mirrahimi, A.; Blanco Mejia, S.; Di Buono, M.; Bernstein, A.M.; et al. Effects of dietary pulse consumption on body weight: A systematic review and meta-analysis of randomized controlled trials. Am. J. Clin. Nutr. 2016, 103, 1213–1223. [Google Scholar] [CrossRef] [PubMed]
- Mozaffarian, D. Dietary and policy priorities for cardiovascular disease, diabetes, and obesity: A comprehensive review. Circulation 2016, 133, 187–225. [Google Scholar] [CrossRef] [PubMed]
- Comerford, K.B.; Pasin, G. Emerging evidence for the importance of dietary protein source on glucoregulatory markers and type 2 diabetes: Different effects of dairy, meat, fish, egg, and plant protein foods. Nutrients 2016, 8, 446. [Google Scholar] [CrossRef] [PubMed]
- Melanson, K.; Gootman, J.; Myrdal, A.; Kline, G.; Rippe, J.M. Weight loss and total lipid profile changes in overweight women consuming beef or chicken as the primary protein source. Nutrition 2003, 19, 409–414. [Google Scholar] [CrossRef]
- Mahon, A.K.; Flynn, M.G.; Stewart, L.K.; McFarlin, B.K.; Iglay, H.B.; Mattes, R.D.; Lyle, R.M.; Considine, R.V.; Campbell, W.W. Protein intake during energy restriction: Effects on body composition and markers of metabolic and cardiovascular health in postmenopausal women. J. Am. Coll. Nutr. 2007, 26, 182–189. [Google Scholar] [CrossRef] [PubMed]
- Murphy, K.J.; Parker, B.; Dyer, K.A.; Davis, C.R.; Coates, A.M.; Buckley, J.D.; Howe, P.R. A comparison of regular consumption of fresh lean pork, beef and chicken on body composition: A randomized cross-over trial. Nutrients 2014, 6, 682–696. [Google Scholar] [CrossRef] [PubMed]
Variable 2 | CID1 | CID2 | CID3 | p Value 3 | p Value 4 |
---|---|---|---|---|---|
Body weight (kg) | 99.5 ± 0.8 | 88.3 ± 0.7 | 88.8 ± 0.7 | <0.001 | 0.031 |
Body fat (%) | 40.3 ± 0.4 | 36.2 ± 0.5 | 35.2 ± 0.4 | <0.001 | <0.001 |
BMI (kg/m2) | 34.3 ± 0.2 | 30.5 ± 0.2 | 30.6 ± 0.2 | <0.001 | 0.039 |
Waist circumference (cm) | 107.4 ± 0.6 | 97.1 ± 0.6 | 97.7 ± 0.6 | <0.001 | 0.048 |
SBP (mm Hg) | 125.4 ± 0.7 | 117.5 ± 0.6 | 122.2 ± 0.6 | <0.001 | <0.001 |
DBP (mm Hg) | 77.6 ± 0.5 | 72.3 ± 0.4 | 74.5 ± 0.5 | <0.001 | <0.001 |
Totalcholesterol (mmol/L) | 4.85 ± 0.05 | 4.15 ± 0.04 | 4.90 ± 0.04 | <0.001 | <0.001 |
HDL cholesterol (mmol/L) | 1.23 ± 0.02 | 1.15 ± 0.01 | 1.38 ± 0.02 | <0.001 | <0.001 |
LDL cholesterol (mmol/L) | 3.01 ± 0.04 | 2.52 ± 0.04 | 2.98 ± 0.04 | <0.001 | <0.001 |
Glucose (mmol/L) | 5.09 ± 0.03 | 4.80 ± 0.02 | 4.93 ± 0.02 | <0.001 | <0.001 |
Insulin (mIU/L) | 12.42 ± 0.59 | 8.33 ± 0.49 | 9.49 ± 0.50 | <0.001 | 0.001 |
HOMA IR index | 3.36 ± 0.17 | 2.13 ± 0.14 | 2.50 ± 0.14 | <0.001 | 0.001 |
Matsuda index | 4.87 ± 0.15 | 7.23 ± 0.19 | 6.80 ± 0.19 | <0.001 | 0.011 |
CRP (mg/L) | 3.65 ± 0.15 | 2.65 ± 0.12 | 2.37 ± 0.11 | <0.001 | 0.009 |
Adiponectin (mg/L) | 9.18 ± 0.20 | 9.38 ± 0.18 | 10.87 ± 0.21 | 0.230 | <0.001 |
Variable | Baseline | Weight Maintenance | p Value 2 |
---|---|---|---|
Energy intake (kJ/day) | 9380 ± 143 | 6668 ± 101 | <0.001 |
Total protein intake (% energy) | 16.9 ± 0.2 | 19.9 ± 0.2 | <0.001 |
GI (GI units) | 61.1 ± 0.2 | 58.5 ± 0.2 | <0.001 |
CHO intake (% energy) | 44.6 ± 0.4 | 48.1 ± 0.4 | <0.001 |
Fat intake (% energy) | 36.2 ± 0.3 | 30.5 ± 0.3 | <0.001 |
Fiber intake (g/1000 kJ) | 2.14 ± 0.04 | 3.12 ± 0.05 | <0.001 |
Animal protein intake (% of total protein intake) | 61.2 ± 0.6 | 62.3 ± 0.6 | 0.036 |
Plant protein intake (% of total protein intake) | 38.8 ± 0.6 | 37.7 ± 0.6 | 0.035 |
Cereal protein intake (% of plant protein intake) | 68.9 ± 0.9 | 61.3 ± 0.8 | <0.001 |
Red meat protein intake (% of animal protein intake) | 37.0 ± 1.0 | 28.0 ± 0.9 | <0.001 |
Dairy protein intake (% of animal protein intake) | 31.1 ± 0.8 | 34.0 ± 0.8 | 0.003 |
Poultry meat protein intake (% of animal protein intake) | 12.7 ± 0.8 | 14.8 ± 0.6 | 0.092 |
Fish protein intake (% of animal protein intake) | 8.1 ± 0.6 | 14.0 ± 0.7 | <0.001 |
Variable | B | SE | Beta | p Value |
---|---|---|---|---|
Body weight (kg) | −0.169 | 0.053 | −0.142 | 0.001 |
Body fat (%) | −0.076 | 0.049 | −0.084 | 0.120 |
Waist circumference (cm) | −0.027 | 0.065 | −0.019 | 0.676 |
Systolic BP (mm Hg) | −0.178 | 0.114 | −0.066 | 0.120 |
Diastolic BP (mm Hg) | −0.136 | 0.076 | −0.078 | 0.074 |
Total cholesterol (mmol/L) | −0.018 | 0.007 | −0.109 | 0.005 |
HDL cholesterol (mmol/L) | −0.004 | 0.002 | −0.084 | 0.050 |
LDL cholesterol (mmol/L) | −0.011 | 0.006 | −0.078 | 0.045 |
Triglycerides (mmol/L) | −0.009 | 0.004 | −0.091 | 0.031 |
Fasting glucose (mmol/L) | −0.014 | 0.004 | −0.136 | 0.001 * |
Fasting insulin (mIU/L) | −0.132 | 0.072 | −0.098 | 0.069 |
HOMA-IR | −0.037 | 0.023 | −0.080 | 0.107 |
Matsuda index | 0.035 | 0.030 | 0.052 | 0.245 |
CRP (mg/L) | −0.005 | 0.021 | −0.010 | 0.826 |
Adiponectin (mg/L) | −0.033 | 0.034 | −0.040 | 0.327 |
Variable | B | SE | Beta | p Value |
---|---|---|---|---|
Body weight (kg) | 0.040 | 0.032 | 0.086 | 0.213 |
Body fat (%) | 0.075 | 0.029 | 0.216 | 0.011 |
Waist circumference (cm) | 0.040 | 0.041 | 0.073 | 0.321 |
Systolic BP (mm Hg) | −0.012 | 0.070 | −0.011 | 0.866 |
Diastolic BP (mm Hg) | 0.081 | 0.046 | 0.121 | 0.081 |
Total cholesterol (mmol/L) | 0.008 | 0.004 | 0.126 | 0.043 |
HDL cholesterol (mmol/L) | 0.000 | 0.001 | 0.021 | 0.766 |
LDL cholesterol (mmol/L) | 0.008 | 0.003 | 0.142 | 0.021 |
Triglycerides (mmol/L) | −0.001 | 0.003 | −0.021 | 0.759 |
Fasting glucose (mmol/L) | 0.000 | 0.003 | 0.006 | 0.933 |
Fasting insulin (mIU/L) | 0.004 | 0.046 | 0.007 | 0.939 |
HOMA-IR | 0.002 | 0.015 | 0.010 | 0.898 |
Matsuda index | −0.005 | 0.019 | −0.019 | 0.790 |
CRP (mg/L) | −0.013 | 0.013 | −0.069 | 0.335 |
Adiponectin (mg/L) | −0.035 | 0.021 | −0.112 | 0.088 |
Variable | B | SE | Beta | p Value |
---|---|---|---|---|
Body weight (kg) | 0.045 | 0.014 | 0.150 | 0.001 |
Body fat (%) | 0.031 | 0.013 | 0.146 | 0.014 |
Waist circumference (cm) | 0.045 | 0.017 | 0.127 | 0.011 |
Systolic BP (mm Hg) | 0.113 | 0.030 | 0.166 | 0.000 * |
Diastolic BP (mm Hg) | 0.040 | 0.020 | 0.092 | 0.049 |
Total cholesterol (mmol/L) | −0.001 | 0.002 | −0.030 | 0.475 |
HDL cholesterol (mmol/L) | 0.000 | 0.001 | −0.016 | 0.731 |
LDL cholesterol (mmol/L) | −0.002 | 0.002 | −0.062 | 0.143 |
Triglycerides (mmol/L) | 0.003 | 0.001 | 0.108 | 0.018 |
Fasting glucose (mmol/L) | 0.001 | 0.001 | 0.040 | 0.389 |
Fasting insulin (mIU/L) | −0.022 | 0.020 | −0.065 | 0.267 |
HOMA-IR | −0.005 | 0.006 | −0.048 | 0.380 |
Matsuda index | 0.003 | 0.008 | 0.016 | 0.745 |
CRP (mg/L) | −0.012 | 0.006 | −0.106 | 0.032 |
Adiponectin (mg/L) | −0.018 | 0.009 | −0.090 | 0.046 |
Variable | B | SE | Beta | p Value |
---|---|---|---|---|
Body weight (kg) | 0.023 | 0.014 | 0.073 | 0.105 |
Body fat (%) | 0.015 | 0.013 | 0.065 | 0.260 |
Waist circumference (cm) | 0.015 | 0.017 | 0.042 | 0.382 |
Systolic BP (mm Hg) | −0.035 | 0.030 | −0.050 | 0.247 |
Diastolic BP (mm Hg) | −0.035 | 0.020 | −0.079 | 0.081 |
Total cholesterol (mmol/L) | 0.001 | 0.002 | 0.021 | 0.596 |
HDL cholesterol (mmol/L) | 0.000 | 0.001 | −0.005 | 0.908 |
LDL cholesterol (mmol/L) | 0.001 | 0.001 | 0.026 | 0.512 |
Triglycerides (mmol/L) | 0.000 | 0.001 | −0.001 | 0.980 |
Fasting glucose (mmol/L) | 0.001 | 0.001 | 0.029 | 0.507 |
Fasting insulin (mIU/L) | 0.064 | 0.019 | 0.178 | 0.001 * |
HOMA-IR | 0.017 | 0.006 | 0.138 | 0.006 * |
Matsuda index | −0.010 | 0.008 | −0.057 | 0.207 |
CRP (mg/L) | −0.007 | 0.006 | −0.059 | 0.201 |
Adiponectin (mg/L) | 0.012 | 0.009 | 0.056 | 0.185 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Van Baak, M.A.; Larsen, T.M.; Jebb, S.A.; Martinez, A.; Saris, W.H.M.; Handjieva-Darlenska, T.; Kafatos, A.; Pfeiffer, A.F.H.; Kunešová, M.; Astrup, A. Dietary Intake of Protein from Different Sources and Weight Regain, Changes in Body Composition and Cardiometabolic Risk Factors after Weight Loss: The DIOGenes Study. Nutrients 2017, 9, 1326. https://doi.org/10.3390/nu9121326
Van Baak MA, Larsen TM, Jebb SA, Martinez A, Saris WHM, Handjieva-Darlenska T, Kafatos A, Pfeiffer AFH, Kunešová M, Astrup A. Dietary Intake of Protein from Different Sources and Weight Regain, Changes in Body Composition and Cardiometabolic Risk Factors after Weight Loss: The DIOGenes Study. Nutrients. 2017; 9(12):1326. https://doi.org/10.3390/nu9121326
Chicago/Turabian StyleVan Baak, Marleen A., Thomas M. Larsen, Susan A. Jebb, Alfredo Martinez, Wim H. M. Saris, Teodora Handjieva-Darlenska, Anthony Kafatos, Andreas F. H. Pfeiffer, Marie Kunešová, and Arne Astrup. 2017. "Dietary Intake of Protein from Different Sources and Weight Regain, Changes in Body Composition and Cardiometabolic Risk Factors after Weight Loss: The DIOGenes Study" Nutrients 9, no. 12: 1326. https://doi.org/10.3390/nu9121326
APA StyleVan Baak, M. A., Larsen, T. M., Jebb, S. A., Martinez, A., Saris, W. H. M., Handjieva-Darlenska, T., Kafatos, A., Pfeiffer, A. F. H., Kunešová, M., & Astrup, A. (2017). Dietary Intake of Protein from Different Sources and Weight Regain, Changes in Body Composition and Cardiometabolic Risk Factors after Weight Loss: The DIOGenes Study. Nutrients, 9(12), 1326. https://doi.org/10.3390/nu9121326