Dietary Fiber and the Human Gut Microbiota: Application of Evidence Mapping Methodology
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Codex Alimentarius Commission. Codex Alimentarius Commission Report of the 30th Session of the Codex Committee on Nutrition and Foods for Special Dietary Uses; Codex Alimentarius Commission: Cape Town, South Africa, 2008. [Google Scholar]
- Jones, J.M. CODEX-aligned dietary fiber definitions help to bridge the “fiber gap”. Nutr. J. 2014, 13, 34. [Google Scholar] [CrossRef] [PubMed]
- Dahl, W.J.; Stewart, M.L. Position of the Academy of Nutrition and Dietetics: Health implications of dietary fiber. J. Acad. Nutr. Diet. 2015, 115, 1861–1870. [Google Scholar] [CrossRef] [PubMed]
- Slavin, J. Fiber and prebiotics: Mechanisms and health benefits. Nutrients 2013, 5, 1417–1435. [Google Scholar] [CrossRef] [PubMed]
- Conlon, M.A.; Bird, A.R. The impact of diet and lifestyle on gut microbiota and human health. Nutrients 2014, 7, 17–44. [Google Scholar] [CrossRef] [PubMed]
- O’Hara, A.M.; Shanahan, F. The gut flora as a forgotten organ. EMBO Rep. 2006, 7, 688–693. [Google Scholar] [CrossRef] [PubMed]
- Nicholson, J.K.; Holmes, E.; Kinross, J.; Burcelin, R.; Gibson, G.; Jia, W.; Pettersson, S. Host-gut microbiota metabolic interactions. Science 2012, 336, 1262–1267. [Google Scholar] [CrossRef] [PubMed]
- Hooper, L.V.; Littman, D.R.; Macpherson, A.J. Interactions between the microbiota and the immune system. Science 2012, 336, 1268–1273. [Google Scholar] [CrossRef] [PubMed]
- Clemente, J.C.; Ursell, L.K.; Parfrey, L.W.; Knight, R. The impact of the gut microbiota on human health: An integrative view. Cell 2012, 148, 1258–1270. [Google Scholar] [CrossRef] [PubMed]
- Flint, H.J.; Duncan, S.H.; Scott, K.P.; Louis, P. Links between diet, gut microbiota composition and gut metabolism. Proc. Nutr. Soc. 2015, 74, 13–22. [Google Scholar] [CrossRef] [PubMed]
- Blumberg, R.; Powrie, F. Microbiota, disease, and back to health: A metastable journey. Sci. Transl. Med. 2012, 4, 137rv7. [Google Scholar] [CrossRef] [PubMed]
- Flint, H.J. The impact of nutrition on the human microbiome. Nutr. Rev. 2012, 70 (Suppl. 1), S10–S13. [Google Scholar] [CrossRef] [PubMed]
- David, L.A.; Maurice, C.F.; Carmody, R.N.; Gootenberg, D.B.; Button, J.E.; Wolfe, B.E.; Ling, A.V.; Devlin, A.S.; Varma, Y.; Fischbach, M.A.; et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 2014, 505, 559–563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belenguer, A.; Duncan, S.H.; Calder, A.G.; Holtrop, G.; Louis, P.; Lobley, G.E.; Flint, H.J. Two routes of metabolic cross-feeding between Bifidobacterium adolescentis and butyrate-producing anaerobes from the human gut. Appl. Environ. Microbiol. 2006, 72, 3593–3599. [Google Scholar] [CrossRef] [PubMed]
- Falony, G.; Vlachou, A.; Verbrugghe, K.; De Vuyst, L. Cross-feeding between Bifidobacterium longum BB536 and acetate-converting, butyrate-producing colon bacteria during growth on oligofructose. Appl. Environ. Microbiol. 2006, 72, 7835–7841. [Google Scholar] [CrossRef] [PubMed]
- El Oufir, L.; Flourié, B.; Bruley des Varannes, S.; Barry, J.L.; Cloarec, D.; Bornet, F.; Galmiche, J.P. Relations between transit time, fermentation products, and hydrogen consuming flora in healthy humans. Gut 1996, 38, 870–877. [Google Scholar] [CrossRef] [PubMed]
- Stephen, A.M.; Wiggins, H.S.; Cummings, J.H. Effect of changing transit time on colonic microbial metabolism in man. Gut 1987, 28, 601–609. [Google Scholar] [CrossRef] [PubMed]
- Lewis, S.J.; Heaton, K.W. Increasing butyrate concentration in the distal colon by accelerating intestinal transit. Gut 1997, 41, 245–251. [Google Scholar] [CrossRef] [PubMed]
- Graf, D.; Di Cagno, R.; Fåk, F.; Flint, H.J.; Nyman, M.; Saarela, M.; Watzl, B. Contribution of diet to the composition of the human gut microbiota. Microb. Ecol. Health Dis. 2015, 26, 26164. [Google Scholar] [CrossRef] [PubMed]
- Den Besten, G.; van Eunen, K.; Groen, A.K.; Venema, K.; Reijngoud, D.-J.; Bakker, B.M. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J. Lipid Res. 2013, 54, 2325–2340. [Google Scholar] [CrossRef] [PubMed]
- Duncan, S.H.; Louis, P.; Thomson, J.M.; Flint, H.J. The role of pH in determining the species composition of the human colonic microbiota. Environ. Microbiol. 2009, 11, 2112–2122. [Google Scholar] [CrossRef] [PubMed]
- Samuel, B.S.; Shaito, A.; Motoike, T.; Rey, F.E.; Backhed, F.; Manchester, J.K.; Hammer, R.E.; Williams, S.C.; Crowley, J.; Yanagisawa, M.; et al. Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41. Proc. Natl. Acad. Sci. USA 2008, 105, 16767–16772. [Google Scholar] [CrossRef] [PubMed]
- Wong, J.M.W.; de Souza, R.; Kendall, C.W.C.; Emam, A.; Jenkins, D.J.A. Colonic health: Fermentation and short chain fatty acids. J. Clin. Gastroenterol. 2006, 40, 235–243. [Google Scholar] [CrossRef] [PubMed]
- Tan, J.; McKenzie, C.; Potamitis, M.; Thorburn, A.N.; Mackay, C.R.; Macia, L. The role of short-chain fatty acids in health and disease. Adv. Immunol. 2014, 121, 91–119. [Google Scholar] [PubMed]
- Birt, D.F.; Boylston, T.; Hendrich, S.; Jane, J.-L.; Hollis, J.; Li, L.; McClelland, J.; Moore, S.; Phillips, G.J.; Rowling, M.; et al. Resistant starch: Promise for improving human health. Adv. Nutr. Int. Rev. J. 2013, 4, 587–601. [Google Scholar] [CrossRef] [PubMed]
- Hamer, H.M.; Jonkers, D.; Venema, K.; Vanhoutvin, S.; Troost, F.J.; Brummer, R.-J. Review article: The role of butyrate on colonic function. Aliment. Pharmacol. Ther. 2008, 27, 104–119. [Google Scholar] [CrossRef] [PubMed]
- Flint, H.J.; Scott, K.P.; Louis, P.; Duncan, S.H. The role of the gut microbiota in nutrition and health. Nat. Rev. Gastroenterol. Hepatol. 2012, 9, 577–589. [Google Scholar] [CrossRef] [PubMed]
- Hamaker, B.R.; Tuncil, Y.E. A perspective on the complexity of dietary fiber structures and their potential effect on the gut microbiota. J. Mol. Biol. 2014, 426, 3838–3850. [Google Scholar] [CrossRef] [PubMed]
- Althuis, M.D.; Weed, D.L. Evidence mapping: Methodologic foundations and application to intervention and observational research on sugar-sweetened beverages and health outcomes. Am. J. Clin. Nutr. 2013, 98, 755–768. [Google Scholar] [CrossRef] [PubMed]
- Bragge, P.; Clavisi, O.; Turner, T.; Tavender, E.; Collie, A.; Gruen, R.L. The global evidence mapping initiative: Scoping research in broad topic areas. BMC Med. Res. Methodol. 2011, 11, 92. [Google Scholar] [CrossRef] [PubMed]
- Hetrick, S.E.; Parker, A.G.; Callahan, P.; Purcell, R. Evidence mapping: Illustrating an emerging methodology to improve evidence-based practice in youth mental health. J. Eval. Clin. Pract. 2010, 16, 1025–1030. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.D.; Shams-White, M.; Bright, O.J.M.; Parrott, J.S.; Chung, M. Creating a literature database of low-calorie sweeteners and health studies: Evidence mapping. BMC Med. Res. Methodol. 2016, 16, 1. [Google Scholar] [CrossRef] [PubMed]
- Livingston, K.A.; Chung, M.; Sawicki, C.M.; Lyle, B.J.; Wang, D.D.; Roberts, S.B.; McKeown, N.M. Development of a publicly available, comprehensive database of fiber and health outcomes: Rationale and methods. PLoS ONE 2016, 11, e0156961. [Google Scholar] [CrossRef] [PubMed]
- McKeown, N.M.; Chung, M.; Livingston, K.A.; Sawicki, C.M.; Wang, D.D.; Blakeley, C.; Jia, Y.; Baruch, N.; Karlsen, M.; Brown, C. Project: Diet-Related Fibers and Human Health Outcomes, Version 1 (Retired Version). Available online: http://srdr.ahrq.gov/projects/564 (accessed on 7 September 2015).
- Bouhnik, Y.; Flourié, B.; Riottot, M.; Bisetti, N.; Gailing, M.F.; Guibert, A.; Bornet, F.; Rambaud, J.C. Effects of fructo-oligosaccharides ingestion on fecal bifidobacteria and selected metabolic indexes of colon carcinogenesis in healthy humans. Nutr. Cancer 1996, 26, 21–29. [Google Scholar] [CrossRef] [PubMed]
- Bouhnik, Y.; Vahedi, K.; Achour, L.; Attar, A.; Salfati, J.; Pochart, P.; Marteau, P.; Flourié, B.; Bornet, F.; Rambaud, J.C. Short-chain fructo-oligosaccharide administration dose-dependently increases fecal bifidobacteria in healthy humans. J. Nutr. 1999, 129, 113–116. [Google Scholar] [PubMed]
- Tannock, G.W.; Munro, K.; Bibiloni, R.; Simon, M.A.; Hargreaves, P.; Gopal, P.; Harmsen, H.; Welling, G. Impact of consumption of oligosaccharide-containing biscuits on the fecal microbiota of humans. Appl. Environ. Microbiol. 2004, 70, 2129–2136. [Google Scholar] [CrossRef] [PubMed]
- Bouhnik, Y.; Raskine, L.; Simoneau, G.; Vicaut, E.; Neut, C.; Flourié, B.; Brouns, F.; Bornet, F.R. The capacity of nondigestible carbohydrates to stimulate fecal bifidobacteria in healthy humans: A double-blind, randomized, placebo-controlled, parallel-group, dose-response relation study. Am. J. Clin. Nutr. 2004, 80, 1658–1664. [Google Scholar] [PubMed]
- Clavel, T.; Fallani, M.; Lepage, P.; Levenez, F.; Mathey, J.; Rochet, V.; Sérézat, M.; Sutren, M.; Henderson, G.; Bennetau-Pelissero, C.; et al. Isoflavones and functional foods alter the dominant intestinal microbiota in postmenopausal women. J. Nutr. 2005, 135, 2786–2792. [Google Scholar] [PubMed]
- Ten Bruggencate, S.J.M.; Bovee-Oudenhoven, I.M.J.; Lettink-Wissink, M.L.G.; Katan, M.B.; van der Meer, R. Dietary fructooligosaccharides affect intestinal barrier function in healthy men. J. Nutr. 2006, 136, 70–74. [Google Scholar] [PubMed]
- Bouhnik, Y.; Raskine, L.; Simoneau, G.; Paineau, D.; Bornet, F. The capacity of short-chain fructo-oligosaccharides to stimulate faecal bifidobacteria: A dose-response relationship study in healthy humans. Nutr. J. 2006, 5, 8. [Google Scholar] [CrossRef] [PubMed]
- Depeint, F.; Tzortzis, G.; Vulevic, J.; I’anson, K.; Gibson, G.R. Prebiotic evaluation of a novel galactooligosaccharide mixture produced by the enzymatic activity of Bifidobacterium bifidum NCIMB 41171, in healthy humans: A randomized, double-blind, crossover, placebo-controlled intervention study. Am. J. Clin. Nutr. 2008, 87, 785–791. [Google Scholar] [PubMed]
- Vulevic, J.; Drakoularakou, A.; Yaqoob, P.; Tzortzis, G.; Gibson, G.R. Modulation of the fecal microflora profile and immune function by a novel trans-galactooligosaccharide mixture (B-GOS) in healthy elderly volunteers. Am. J. Clin. Nutr. 2008, 88, 1438–1446. [Google Scholar] [PubMed]
- Mitsou, E.K.; Turunen, K.; Anapliotis, P.; Zisi, D.; Spiliotis, V.; Kyriacou, A. Impact of a jelly containing short-chain fructo-oligosaccharides and Sideritis euboea extract on human faecal microbiota. Int. J. Food Microbiol. 2009, 135, 112–117. [Google Scholar] [CrossRef] [PubMed]
- Cloetens, L.; Broekaert, W.F.; Delaedt, Y.; Ollevier, F.; Courtin, C.M.; Delcour, J.A.; Rutgeerts, P.; Verbeke, K. Tolerance of arabinoxylan-oligosaccharides and their prebiotic activity in healthy subjects: A randomised, placebo-controlled cross-over study. Br. J. Nutr. 2010, 103, 703–713. [Google Scholar] [CrossRef] [PubMed]
- Walton, G.E.; van den Heuvel, E.G.H.M.; Kosters, M.H.W.; Rastall, R.A.; Tuohy, K.M.; Gibson, G.R. A randomised crossover study investigating the effects of galacto-oligosaccharides on the faecal microbiota in men and women over 50 years of age. Br. J. Nutr. 2012, 107, 1466–1475. [Google Scholar] [CrossRef] [PubMed]
- Lecerf, J.-M.; Dépeint, F.; Clerc, E.; Dugenet, Y.; Niamba, C.N.; Rhazi, L.; Cayzeele, A.; Abdelnour, G.; Jaruga, A.; Younes, H.; et al. Xylo-oligosaccharide (XOS) in combination with inulin modulates both the intestinal environment and immune status in healthy subjects, while XOS alone only shows prebiotic properties. Br. J. Nutr. 2012, 108, 1847–1858. [Google Scholar] [CrossRef] [PubMed]
- Damen, B.; Cloetens, L.; Broekaert, W.F.; François, I.; Lescroart, O.; Trogh, I.; Arnaut, F.; Welling, G.W.; Wijffels, J.; Delcour, J.A.; et al. Consumption of breads containing in situ-produced arabinoxylan oligosaccharides alters gastrointestinal effects in healthy volunteers. J. Nutr. 2012, 142, 470–477. [Google Scholar] [CrossRef] [PubMed]
- François, I.E.J.A.; Lescroart, O.; Veraverbeke, W.S.; Marzorati, M.; Possemiers, S.; Evenepoel, P.; Hamer, H.; Houben, E.; Windey, K.; Welling, G.W.; et al. Effects of a wheat bran extract containing arabinoxylan oligosaccharides on gastrointestinal health parameters in healthy adult human volunteers: A double-blind, randomised, placebo-controlled, cross-over trial. Br. J. Nutr. 2012, 108, 2229–2242. [Google Scholar] [CrossRef] [PubMed]
- Walton, G.E.; Lu, C.; Trogh, I.; Arnaut, F.; Gibson, G.R. A randomised, double-blind, placebo controlled cross-over study to determine the gastrointestinal effects of consumption of arabinoxylan-oligosaccharides enriched bread in healthy volunteers. Nutr. J. 2012, 11, 36. [Google Scholar] [CrossRef] [PubMed]
- Maki, K.C.; Gibson, G.R.; Dickmann, R.S.; Kendall, C.W.C.; Chen, C.-Y.O.; Costabile, A.; Comelli, E.M.; McKay, D.L.; Almeida, N.G.; Jenkins, D.; et al. Digestive and physiologic effects of a wheat bran extract, arabino-xylan-oligosaccharide, in breakfast cereal. Nutrition 2012, 28, 1115–1121. [Google Scholar] [CrossRef] [PubMed]
- Vulevic, J.; Juric, A.; Tzortzis, G.; Gibson, G.R. A mixture of trans-galactooligosaccharides reduces markers of metabolic syndrome and modulates the fecal microbiota and immune function of overweight adults. J. Nutr. 2013, 143, 324–331. [Google Scholar] [CrossRef] [PubMed]
- François, I.E.J.A.; Lescroart, O.; Veraverbeke, W.S.; Marzorati, M.; Possemiers, S.; Hamer, H.; Windey, K.; Welling, G.W.; Delcour, J.A.; Courtin, C.M.; et al. Effects of wheat bran extract containing arabinoxylan oligosaccharides on gastrointestinal parameters in healthy preadolescent children. J. Pediatr. Gastroenterol. Nutr. 2014, 58, 647–653. [Google Scholar] [CrossRef] [PubMed]
- Finegold, S.M.; Li, Z.; Summanen, P.H.; Downes, J.; Thames, G.; Corbett, K.; Dowd, S.; Krak, M.; Heber, D. Xylooligosaccharide increases bifidobacteria but not lactobacilli in human gut microbiota. Food Funct. 2014, 5, 436–445. [Google Scholar] [CrossRef] [PubMed]
- Morel, F.B.; Dai, Q.; Ni, J.; Thomas, D.; Parnet, P.; Fança-Berthon, P. α-Galacto-oligosaccharides dose-dependently reduce appetite and decrease inflammation in overweight adults. J. Nutr. 2015, 145, 2052–2059. [Google Scholar] [CrossRef] [PubMed]
- Vulevic, J.; Juric, A.; Walton, G.E.; Claus, S.P.; Tzortzis, G.; Toward, R.E.; Gibson, G.R. Influence of galacto-oligosaccharide mixture (B-GOS) on gut microbiota, immune parameters and metabonomics in elderly persons. Br. J. Nutr. 2015, 114, 586–595. [Google Scholar] [CrossRef] [PubMed]
- Hur, I.Y.; Reicks, M. Relationship between whole-grain intake, chronic disease risk indicators, and weight status among adolescents in the National Health and Nutrition Examination Survey, 1999–2004. J. Acad. Nutr. Diet. 2012, 112, 46–55. [Google Scholar] [CrossRef] [PubMed]
- Ley, R.E.; Bäckhed, F.; Turnbaugh, P.; Lozupone, C.A.; Knight, R.D.; Gordon, J.I. Obesity alters gut microbial ecology. Proc. Natl. Acad. Sci. USA 2005, 102, 11070–11075. [Google Scholar] [CrossRef] [PubMed]
- Kalliomäki, M.; Collado, M.C.; Salminen, S.; Isolauri, E. Early differences in fecal microbiota composition in children may predict overweight. Am. J. Clin. Nutr. 2008, 87, 534–538. [Google Scholar] [PubMed]
- Carbohydrates in Human Nutrition. Report of a Joint FAO/WHO Expert Consultation; Food and Agriculture Organization, World Health Organization (FAO/WHO): Rome, Italy, 1997; pp. 1–140. [Google Scholar]
- American Association of Cereal Chemists (AACC). The Definition of Dietary Fiber. Report of the Dietary Fiber Definition Committee to the Board of Directors of the American Association of Cereal Chemists. Cereal Foods World 2001, 46, 112–126. [Google Scholar]
- Valcheva, R.; Dieleman, L.A. Prebiotics: Definition and protective mechanisms. Best Pract. Res. Clin. Gastroenterol. 2016, 30, 27–37. [Google Scholar] [CrossRef] [PubMed]
- Bindels, L.B.; Delzenne, N.M.; Cani, P.D.; Walter, J. Towards a more comprehensive concept for prebiotics. Nat. Rev. Gastroenterol. Hepatol. 2015, 12, 303–310. [Google Scholar] [CrossRef] [PubMed]
- Cummings, J.H.; Antoine, J.-M.; Azpiroz, F.; Bourdet-Sicard, R.; Brandtzaeg, P.; Calder, P.C.; Gibson, G.R.; Guarner, F.; Isolauri, E.; Pannemans, D.; et al. PASSCLAIM—Gut health and immunity. Eur. J. Nutr. 2004, 43 (Suppl. 2), II118–II173. [Google Scholar] [CrossRef] [PubMed]
- Meyer, D. Inunlin, gut microbes, and health. In Dietary Fiber and Health; Cho, S.S., Almeida, N., Eds.; CRC Press Taylor & Francis Group: Boca Raton, FL, USA, 2012; pp. 169–183. [Google Scholar]
- Tojo, R.; Suárez, A.; Clemente, M.G.; de los Reyes-Gavilán, C.G.; Margolles, A.; Gueimonde, M.; Ruas-Madiedo, P. Intestinal microbiota in health and disease: Role of bifidobacteria in gut homeostasis. World J. Gastroenterol. 2014, 20, 15163–15176. [Google Scholar] [CrossRef] [PubMed]
- McRorie, J.W. Evidence-based approach to fiber supplements and clinically meaningful health benefits, part 1: What to look for and how to recommend an effective fiber therapy. Nutr. Today 2015, 50, 82–89. [Google Scholar] [CrossRef] [PubMed]
- McRorie, J.W. Evidence-based approach to fiber supplements and clinically meaningful health benefits, part 2: What to look for and how to recommend an effective fiber therapy. Nutr. Today 2015, 50, 90–97. [Google Scholar] [CrossRef] [PubMed]
- Mcrorie, J.W.; Fahey, G.C. A review of gastrointestinal physiology and the mechanisms underlying the health benefits of dietary fiber: Matching an effective fiber with specific patient needs. Clin. Nurs. Stud. 2013, 1, 82–92. [Google Scholar] [CrossRef]
- McRorie, J.W.; McKeown, N.M. Understanding the physics of functional fibers in the gastrointestinal tract: An evidence-based approach to resolving enduring misconceptions about insoluble and soluble fiber. J. Acad. Nutr. Diet. 2017, 17, 251–264. [Google Scholar] [CrossRef] [PubMed]
- 2015–2020 Dietary Guidelines—Health.gov. Available online: https://health.gov/dietaryguidelines/2015/guidelines/ (accessed on 15 December 2016).
- Okarter, N.; Liu, R.H. Health benefits of whole grain phytochemicals. Crit. Rev. Food Sci. Nutr. 2010, 50, 193–208. [Google Scholar] [CrossRef] [PubMed]
- Vitaglione, P.; Mennella, I.; Ferracane, R.; Rivellese, A.A.; Giacco, R.; Ercolini, D.; Gibbons, S.M.; La Storia, A.; Gilbert, J.A.; Jonnalagadda, S.; et al. Whole-grain wheat consumption reduces inflammation in a randomized controlled trial on overweight and obese subjects with unhealthy dietary and lifestyle behaviors: Role of polyphenols bound to cereal dietary fiber. Am. J. Clin. Nutr. 2015, 101, 251–261. [Google Scholar] [CrossRef] [PubMed]
Characteristic, n (% of Studies) | Total | Top Three Fiber Types | ||
---|---|---|---|---|
Oligosaccharides | Resistant Starch | Chemically Synthesized | ||
n | 188 | 38 | 30 | 28 |
Design | ||||
Randomized, parallel | 54 (29%) | 14 (37%) | 3 (10%) | 10 (36%) |
Randomized, crossover | 127 (67%) | 24 (63%) | 27 (3%) | 16 (57%) |
Randomized, combined parallel and crossover | 2 (1%) | 0 (0%) | 0 (0%) | 1 (4%) |
Non-Randomized | 2 (1%) | 0 (0%) | 0 (0%) | 0 (0%) |
Unspecified Randomization | 3 (2%) | 0 (0%) | 0 (0%) | 1 (4%) |
Sample size | ||||
Less than 10 | 19 (10%) | 1 (3%) | 6 (20%) | 2 (7%) |
10 to 49 | 145 (77%) | 29 (76%) | 23 (77%) | 23 (82%) |
50 to 100 | 20 (11%) | 6 (16%) | 0 (0%) | 2 (7%) |
More than 100 | 4 (2%) | 2 (5%) | 1 (3%) | 1 (4%) |
Duration | ||||
Acute (<1 week) | 36 (19%) | 4 (11%) | 9 (30%) | 6 (21%) |
1–4 weeks | 126 (67%) | 26 (68%) | 21 (70%) | 20 (71%) |
1–6 months | 25 (13%) | 8 (21%) | 0 (0%) | 2 (7%) |
More than 6 months | 1 (1%) | 0 (0%) | 0 (0%) | 0 (0%) |
Diet type | ||||
Acute | 36 (19%) | 4 (11%) | 9 (30%) | 6 (21%) |
Isocaloric/Maintenance | 115 (61%) | 26 (68%) | 17 (57%) | 12 (43%) |
Weight Loss | 2 (1%) | 0 (0%) | 0 (0%) | 0 (0%) |
Other/Unspecified | 35 (19%) | 8 (21%) | 4 (13%) | 10 (36%) |
Age | ||||
Adults (≥17 years *) | 185 (98%) | 37 (97%) | 30 (100%) | 27 (96%) |
Adolescents (12–17 years) | 1 (1%) | 0 (0%) | 0 (0%) | 1 (4%) |
Children (3–11 years) | 2 (1%) | 1 (3%) | 0 (0%) | 0 (0%) |
Baseline Health | ||||
Healthy | 153 (81%) | 34 (89%) | 26 (87%) | 27 (96%) |
Overweight or Obese | 7 (4%) | 1 (3%) | 0 (0%) | 1 (4%) |
Diabetic | 1 (1%) | 0 (0%) | 0 (0%) | 0 (0%) |
Metabolically at Risk | 8 (4%) | 1 (3%) | 2 (7%) | 0 (0%) |
Hyperlipidemia | 6 (3%) | 1 (3%) | 1 (3%) | 0 (0%) |
GI/Digestive Issues | 6 (3%) | 0 (0%) | 0 (0%) | 0 (0%) |
Other | 7 (4%) | 1 (1%) | 1 (3%) | 0 (0%) |
Region | ||||
Asia | 6 (3%) | 2 (5%) | 1 (3%) | 3 (11%) |
Australia/New Zealand | 16 (8%) | 1 (3%) | 7 (23%) | 1 (4%) |
Europe | 114 (61%) | 31 (81%) | 17 (57%) | 12 (43%) |
North America | 51 (27%) | 4 (11%) | 5 (17%) | 12 (43%) |
South America | 1 (1%) | 0 (0%) | 0 (0%) | 0 (0%) |
Group | Studies (%) | Fiber Types | n |
---|---|---|---|
Oligosaccharide | 38 (20%) | Fructooligosaccharide | 22 |
Galactooligosaccharide | 11 | ||
Arabinoxylan-oligosaccharides | 6 | ||
Xylo-oligosaccharide | 2 | ||
Soybean oligosaccharides | 1 | ||
Resistant Starch | 30 (16%) | Resistant starch type 1 | 1 |
Resistant starch type 2 a | 20 | ||
Resistant starch type 3 | 11 | ||
Resistant Starch, mixed or unspecified | 4 | ||
Chemically synthesized | 28 (15%) | Polydextrose | 12 |
Dextrin g | 9 | ||
Soluble corn fiber | 7 | ||
PolyGlycopleX (PGX) | 2 | ||
Resistant starch type 4 | 2 | ||
Microcrystalline cellulose | 1 | ||
Solubilized potato polysaccharide | 1 | ||
Pullulan | 1 | ||
Butyrylated high amylose maize starch | 1 | ||
Inulin | 25 (13%) | Inulin | 18 |
Oligofructose-enriched inulin (OF-IN) | 7 | ||
Bran | 24 (13%) | Wheat Bran | 12 |
Oat Bran | 9 | ||
Corn bran | 2 | ||
Barley bran | 1 | ||
Rye Bran | 1 | ||
Bran | 2 | ||
Cereal fiber | 21 (11%) | Cereal fiber, wheat b | 9 |
Cereal fiber, barley c | 8 | ||
Cereal fiber, oat d | 4 | ||
Cereal fiber, rye e | 4 | ||
Cereal fiber f | 3 | ||
Fruit/Vegetable/Plant fibers | 15 (8%) | Vegetable fiber | 6 |
Lupin Kernel Fiber | 3 | ||
Sugar cane fiber | 2 | ||
Sugar Beet fiber | 1 | ||
Bean fiber | 1 | ||
Citrus fiber | 2 | ||
Fruit fiber | 1 | ||
Combination | 13 (7%) | Combination/Mixture | 13 |
Gums and Mucilages | 10 (5%) | Gums h | 7 |
Psyllium i | 6 | ||
Other non-starch polysaccharides | 9 (5%) | Pectin | 4 |
Cellulose | 3 | ||
Hemicellulose j | 3 | ||
Beta-glucan, barley | 1 | ||
Polysaccharide, non-starch | 1 | ||
High fiber diet | 4 (2%) | Dietary fiber | 4 |
Outcome Group | Studies (%) |
---|---|
Fermentation | 142 (76%) |
SCFA concentration | 98 (52%) |
Breath gas excretion | 50 (27%) |
Bacterial enzyme activity | 18 (10%) |
Bile acids | 15 (8%) |
Fecal fiber/starch recovery | 13 (7%) |
Bacterial composition | 88 (47%) |
Colonic/fecal pH | 60 (32%) |
Reference | n | Design | Duration | Age, Mean (Range) | % Male | BL Health | BMI, Mean (Range) | Fiber Type (g/Day) | Form | Control | Method | Bacterial Composition Reported Measures |
---|---|---|---|---|---|---|---|---|---|---|---|---|
[35] | 20 | RCT, P, DB | 12 days | (22–39) | 50 | Healthy | NR | FOS (12.5) | NR (3 oral doses) | Saccharose placebo | Stool (whole), Wilkins-Chalgren agar, Beerens’ medium | ↑ Bifidobacteria |
NS Total anaerobes | ||||||||||||
[36] | 40 | RCT, P | 7 days | 29.6 (18–47) | 45 | Healthy | NR | FOS (2.5, 5, 10, 20) | Powder | Saccharose powder | Stool (whole), Wilkins-Chalgren, Beeren’s medium | ↑ Bifidobacteria (at doses 5–20 g) |
NS Total anaerobes | ||||||||||||
[37] | 15 | RCT, C, DB | 3 weeks | NR | ~47 | Healthy | NR | FOS (2.5) | Biscuits | Matched biscuits without FOS | Stool (partial), PCR-DGGE (denaturing gradient gel electrophoresis), fluorescent in situ hybridization (FISH) | NS Bifidobacteria |
NS Lactobaccilli | ||||||||||||
NS Lactose-fermenting enterobacteria | ||||||||||||
NS Total enterobacteria | ||||||||||||
NS Enterococci | ||||||||||||
GOS (2.5) | Biscuits | NS Bifidobacteria | ||||||||||
NS Lactobaccilli | ||||||||||||
NS Lactose-fermenting enterobacteria | ||||||||||||
NS Total enterobacteria | ||||||||||||
NS Enterococci | ||||||||||||
[38] | 136 | RCT, P, DB | 7 days | ~30 (~18–54) | ~41 | Healthy | NR | FOS (2.5, 5.0, 7.5, 10) | NR (2 oral doses) | Sucrose and fully digestible maltodextrin placebo | Stool (partial), Wilkins-Chalgren agar. Beerens’s medium, Bacteroides Bile Esculin agar, Lactobacillus agar, MRS agar, and McConkey agar | ↑ Bifidobacteria |
NS Total anaerobes | ||||||||||||
NS Lactobacillus | ||||||||||||
NS Baceroides | ||||||||||||
NS Enterobacteria | ||||||||||||
GOS (2.5, 5.0, 7.5, 10) | NR (2 oral doses) | ↑ Bifidobacteria | ||||||||||
NS Total anaerobes | ||||||||||||
NS Lactobacillus | ||||||||||||
NS Baceroides | ||||||||||||
NS Enterobacteria | ||||||||||||
SB-OS (2.5, 5.0, 7.5, 10) | NR (2 oral doses) | ↑ Bifidobacteria | ||||||||||
NS Total anaerobes | ||||||||||||
NS Lactobacillus | ||||||||||||
NS Baceroides | ||||||||||||
NS Enterobacteria | ||||||||||||
[39] | 39 | RCT, P, DB | 30 days | 60.4 | 0 | Healthy | NR | FOS (7) | Cereal bars and gelified milk | Matched cereal bars and gelified milk without FOS | Stool (partial), temperature-gradient gel electrophoresis (TTGE), FISH | ↑ Bifidobacterium spp. |
↑ Bifidobacterium Animalis and related species | ||||||||||||
NS Bacteroides and relatives | ||||||||||||
NS Clostridium coccoides-Eubacterium rectale cluster | ||||||||||||
NS Faecalibacterium prausnitzi subgroup | ||||||||||||
NS Lactobacillus-Enterocococcus group | ||||||||||||
NS Atopobium group | ||||||||||||
[40] | 34 | RCT, C, DB | 2 weeks | 27.7 | 100 | Healthy | 23.2 | FOS (20) | Beverage (lemonade) | Matched lemonade with sucrose placebo | Stool (whole), RT-qPCR | ↑ Bifidobacteria |
↑ Lactobacilli | ||||||||||||
NS E. coli | ||||||||||||
[41] | 40 | RCT, P | 7 days | 29 | ~45 | Healthy | NR | FOS (2.5, 5.0, 7.5, 10) | Tablet | Sucrose and fully digestible maltodextrin placebo | Stool (partial), Wilkins-Chalgren agar, Beerens‘ medium, MRS agar, BBE agar, McConkey agar | ↑ Bifidobacteria (all doses) |
↑ Total Anaerobes (10 g only) | ||||||||||||
NS Lactobacilli | ||||||||||||
NS Bacteroides | ||||||||||||
NS Enterobacteria | ||||||||||||
[42] | 30 | RCT, C, DB | 7 days | 36.3 (21–59) | ~40 | Healthy | NR | GOS (3.6, 7) | Powder, mixed with water | Matched sucrose placebo powder | Stool (whole), FISH | ↑ Bifidobacterium |
↑ Clostridium perfringens- histolyticum subgroup (3.6 g only) | ||||||||||||
NS Lactobacillus-Enterococcus spp. | ||||||||||||
NS Bacteroides-prevotella | ||||||||||||
29 | 32.5 (19–55) | ~45 | Healthy | NR | GOS (7) | Powder, mixed with water | Matched powder without GOS | ↑ Bifidobacterium | ||||
↓ Bacteroides-prevotella | ||||||||||||
NS Lactobacillus-Enterococcus spp. | ||||||||||||
NS Clostridium perfringens-histolyticum subgroup | ||||||||||||
[43] | 44 | RCT, C, DB | 10 weeks | 69.3 (64–79) | ~36 | Healthy | (22–31) | GOS (5.5) | Powder, mixed with water | Matched maltodextrin placebo | Stool (partial), FISH | ↑ Bifidobacterium spp. |
↑ Lactobacillus-Enterococcus spp. | ||||||||||||
↑ Clostridium coccoides-Eubacterium rectale group | ||||||||||||
↓ Bacteroides spp. | ||||||||||||
↓ Clostridium histolyticum group | ||||||||||||
↓ Escherchia coli | ||||||||||||
↓ Desulfovibrio spp. | ||||||||||||
[44] | 64 | RCT, P, DB | 30 days | 33 (22–51) | ~41 | Healthy | NR | FOS (5) | Powder, used to prepare a jelly | Commercial dessert (jelly, lemon flavored) | Stool (partial), Beerens’ agar, Chromocult Coliform agar, Slanetz and Bartley medium, Rogosa agar, Wilkins-Chalgren anaerobe agar with 5% (v/v) defibrinated horse blood and G-N anaerobe selective supplement (OXOID), Perfringens agar with d-cycloserine. | ↑ Bifidobacterium spp. |
↓ Total coliforms | ||||||||||||
↓ Escherichia coli | ||||||||||||
NS Total aerobes | ||||||||||||
NS Enterococcus spp. | ||||||||||||
NS Total anaerobes | ||||||||||||
NS Bacteroides spp. | ||||||||||||
NS Lactobacillus spp. | ||||||||||||
NS Clostridium perfringens | ||||||||||||
[45] | 20 | RCT, C | 3 weeks | 24 | 30 | Healthy | 20.9 | AX-OS (10) | Beverage (orange juice drink) | Matched maltodextrin placebo beverage | Stool (partial), real-time PCR, real-time PCR TaqMan, real-time PCR SYBR Green technology | ↑ Bifidobacteria |
↑ Bifidobacterium adolescentis | ||||||||||||
↓ Lactobacilli | ||||||||||||
NS Total bacteria | ||||||||||||
NS Roseburia-Eubacterium rectale | ||||||||||||
NS Enterobacteria | ||||||||||||
[46] | 39 | RCT, C, DB | 3 weeks | 58.9 (50–81) | ~46 | Healthy | 26.1 (19.7–38.4) | GOS (~8) | Beverage (orange juice drink) | Matched placebo beverage | Stool (partial), quantitative PCR, FISH | ↑ Bifidobacterium |
↓ Bacteroides | ||||||||||||
NS Total bacteria | ||||||||||||
NS Lactobacillus | ||||||||||||
NS Escherichia coli | ||||||||||||
NS Eubacterium rectales group | ||||||||||||
NS Clostridium histolyticum group | ||||||||||||
[47] | 60 | RCT, P, DB | 4 weeks | ~20 (18–24) | ~43 | Healthy | ~21.3 | X-OS (5) | Beverage (orange juice drink) | Matched wheat maltodextrin placebo beverage | Stool (partial), quantitative PCR | ↑ Bifidobacterium |
NS Lactobacillus | ||||||||||||
NS Peptostreptococcus | ||||||||||||
NS Clostridium | ||||||||||||
NS Firmicutes | ||||||||||||
NS Bacteroidetes | ||||||||||||
NS Faecalibacterium prausnitzii | ||||||||||||
NS Roseburia spp. | ||||||||||||
[48] | 27 | RCT, C, DB | 3 weeks | 25 | ~37 | Healthy | 20.9 | AX-OS (2.14) | Wheat/rye bread | Matched wheat/rye or refined wheat bread, no AX-OS | Stool (partial), FISH | ↑ Bifidobacterium |
NS Total bacteria | ||||||||||||
NS Lactobacillus | ||||||||||||
NS Lactobacillus rods | ||||||||||||
NS Enterobacteriaceae | ||||||||||||
NS Clostridium histolyticym/lituburiense | ||||||||||||
[49] | 63 | RCT, C, DB | 3 weeks | 42 | ~52 | Healthy | 23.3 | AX-OS (2.4, 8) | Beverage (non-carbonated soft drink) | Placebo beverage with 0.25 g tricalcium phosphate, no AX-OS | Stool (partial), FISH, 4′-6-diamidino-2-phenylindole (DAPI) | ↑ Bifidobacterium (8 g only) |
NS Total bacteria | ||||||||||||
NS Lactobacilli | ||||||||||||
NS Faecalibacterium prausnitzii | ||||||||||||
NS Clostridium histolyticum-lituseburense | ||||||||||||
NS Roseburia-Eubacterium rectale | ||||||||||||
[50] | 40 | RCT, C, DB | 21 days | 31.4 (18–55) | 50 | Healthy | 23.3 (18.5–30.0) | AX-OS (2.2) | Wheat/rye bread | Matched wheat/rye bread without AX-OS | Stool (whole), FISH | ↑ Bifidobacterium spp. |
↑ Escherichia coli | ||||||||||||
↑ Lactobacillus-Enterococcus | ||||||||||||
↑ Total bacteria | ||||||||||||
↑ Bacteroides | ||||||||||||
NS Clostridium histolyticum group | ||||||||||||
NS Atopobium-Coriobacterium group | ||||||||||||
NS Eubacterium rectale group | ||||||||||||
NS Roseburia-Eubacteria | ||||||||||||
NS Faecalibacterium prausnitzii cluster | ||||||||||||
[51] | 65 | RCT, C, DB | 21 days | 53.1 (18–75) | 46 | Healthy | 27.8 (18.5–35.0) | AX-OS (2.2, 4.8) | Wheat-based ready-to-eat cereal | Wheat-based ready-to-eat cereal without AXOS | Stool (partial), FISH | ↑ Bifidobacterium (4.8 g only, significant dose trend) |
NS Total bacteria | ||||||||||||
NS Lactobacillus spp. | ||||||||||||
NS Bacertoides | ||||||||||||
NS Clostridium coccoides | ||||||||||||
NS Roseburia intestinalis- Eubacterium rectale group | ||||||||||||
NS Faecalibacterium prausnitzii | ||||||||||||
NS Clostridium clusters I and II | ||||||||||||
[52] | 48 | RCT, C, DB | 12 weeks | ~44.6 | 36 | OW, metabolic syndrome | ~31.4 | GOS (5.5) | Powder, mixed with water | Maltodextrin placebo | Stool (partial), FISH | ↑ Bifidobacteria |
↓ Bacteroides spp. | ||||||||||||
↓ Clostridium histolyticum group | ||||||||||||
↓ Desulfovibrio spp. | ||||||||||||
NS Total bacteria | ||||||||||||
NS Lactobacillus-Enterococcus spp. | ||||||||||||
NS Clostridium coccoides-Eubacterium rectale group | ||||||||||||
NS Atopobium cluster | ||||||||||||
NS Eubacterium cylindroides | ||||||||||||
NS Eubacterium hallii | ||||||||||||
NS Beta-proteobacteria | ||||||||||||
NS Clostridium cluster IX | ||||||||||||
NS Faecalibacterium prausnizii cluster | ||||||||||||
[53] | 28 | RCT, C, DB | 3 weeks | 9.8 (8–12) | 64 | Healthy | NR | AX-OS (5.0) | Beverage | Placebo beverage with 0.25 g tricalcium phosphate, no AX-OS | Stool (partial), FISH | ↑ Bifidobacteria |
NS Clostridium histolyticum/lituseburense | ||||||||||||
NS Faecalibacterium prausnitzii | ||||||||||||
NS Lactobacillus/Enterococcus | ||||||||||||
NS Roseburia/Eubacterium rectale | ||||||||||||
NS Total bacteria | ||||||||||||
[54] | 32 | RCT, P, DB | 8 weeks | ~32.4 (21–49) | ~34.4 | Healthy | ~24.6 | XOS (1.4, 2.8) | Tablet | Maltodextrin placebo | Stool (partial), 16 rRNA gene sequencing, pyrosequencing | ↑ Bifidobacterium |
↑ Total anaerobic flora | ||||||||||||
↑ Bacteroides fragilis (2.8 g only) | ||||||||||||
↑ Faecalibacterium (2.8 g only) | ||||||||||||
↑ Akkermansia (2.8 g only) | ||||||||||||
↓ Enterobacteriaceae (placebo only) | ||||||||||||
NS Lactobacillus | ||||||||||||
NS Clostridium | ||||||||||||
NS Clustering | ||||||||||||
[55] | 44 | RCT, P, DB | 14 d | ~37 (18–60) | 50 | OW | ~26.5 (25–28) | GOS (12.0) | Beverage (oolong tea) | Matched beverage with glucose | Stool, real-time quantitative PCR | ↑ Bifidobacteria |
NS Total bacteria | ||||||||||||
[56] | 40 | RCT, C, DB | 10 weeks | 70 (65–80) | 38 | Healthy | NR | GOS (5.5) | Powder, mixed with water | Maltodextrin placebo | Stool (partial), FISH | ↑ Bifidobacterium spp. |
↑ Bacteroides spp. | ||||||||||||
NS Atopobium cluster | ||||||||||||
NS Clostridium coccoides/E. rectale | ||||||||||||
NS Clostridium histolyticum group | ||||||||||||
NS Desulfovibrio spp. | ||||||||||||
NS Escherichia coli | ||||||||||||
NS Lactobacillus/Enterococcus spp. | ||||||||||||
NS Faecalibacterium prausnitzii | ||||||||||||
NS Roseburia/Eubacterium rectale | ||||||||||||
NS Total bacteria |
Reference | Fiber Type | Evidence of Fermentation | Evidence of Fecal Bulking | Evidence of Changes in Transit Time | Evidence of Other Changes in Host Physiology |
---|---|---|---|---|---|
[35] | FOS | S | NS | -- | S: GI symptoms (mild bloating) |
NS: Fecal pH | |||||
[36] | FOS | NS | -- | -- | S: GI symptoms (excess flatus) |
NS: Fecal pH | |||||
[37] | FOS | S | -- | -- | NS: GI symptoms |
GOS | S | -- | -- | NS: GI symptoms | |
[38] | FOS | -- | -- | NS | NS: GI symptoms, fecal pH |
GOS | -- | -- | NS | NS: GI symptoms, fecal pH | |
SB-OS | -- | -- | NS | NS: GI symptoms, fecal pH | |
[39] | FOS | -- | -- | -- | -- |
[40] | FOS | S | S | -- | S: GI symptoms (flatulence and intestinal bloating) |
NS: fecal water pH | |||||
[41] | FOS | -- | -- | -- | S: GI symptoms |
NS: fecal pH | |||||
[42] | GOS | -- | -- | -- | -- |
GOS | -- | -- | -- | -- | |
[43] | GOS | -- | -- | -- | NS: Total and HDL cholesterol# |
[44] | FOS | -- | -- | -- | S: GI symptoms |
[45] | AX-OS | -- | NS | -- | NS: Total, LDL, and HDL cholesterol # |
[46] | GOS | -- | -- | -- | NS: GI symptoms, stool consistency # |
[47] | X-OS | S | -- | -- | NS: Stool consistency # |
[48] | AX-OS | S | -- | S | NS: Stool consistency # |
[49] | AX-OS | S | -- | NS | NS: Total energy intake, total and LDL cholesterol #, stool consistency |
[50] | AX-OS | S | -- | -- | -- |
[51] | AX-OS | S | NS | NS | NS: LDL cholesterol #, fasting insulin and glucose, stool consistency |
[52] | GOS | -- | -- | -- | S: Total cholesterol and insulin |
NS: LDL, and HDL cholesterol, triglycerides, or fasting glucose | |||||
[53] | AX-OS | S | -- | NS | NS: GI symptoms |
[54] | X-OS | NS | -- | NS | NS: Fecal pH, GI symptoms |
[55] | GOS | -- | NS | S | S: Satiety, total energy intake |
NS: Weight/Adiposity | |||||
[56] | GOS | S | NS | NS | -- |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sawicki, C.M.; Livingston, K.A.; Obin, M.; Roberts, S.B.; Chung, M.; McKeown, N.M. Dietary Fiber and the Human Gut Microbiota: Application of Evidence Mapping Methodology. Nutrients 2017, 9, 125. https://doi.org/10.3390/nu9020125
Sawicki CM, Livingston KA, Obin M, Roberts SB, Chung M, McKeown NM. Dietary Fiber and the Human Gut Microbiota: Application of Evidence Mapping Methodology. Nutrients. 2017; 9(2):125. https://doi.org/10.3390/nu9020125
Chicago/Turabian StyleSawicki, Caleigh M., Kara A. Livingston, Martin Obin, Susan B. Roberts, Mei Chung, and Nicola M. McKeown. 2017. "Dietary Fiber and the Human Gut Microbiota: Application of Evidence Mapping Methodology" Nutrients 9, no. 2: 125. https://doi.org/10.3390/nu9020125
APA StyleSawicki, C. M., Livingston, K. A., Obin, M., Roberts, S. B., Chung, M., & McKeown, N. M. (2017). Dietary Fiber and the Human Gut Microbiota: Application of Evidence Mapping Methodology. Nutrients, 9(2), 125. https://doi.org/10.3390/nu9020125