Quantification of α-Thujone and Its Metabolites in Human Urine after Consumption of a Sage Infusion Using Stable Isotope Dilution Assays
Abstract
:1. Introduction
2. Results
2.1. Development of SIDAs for α-Thujone by SPME-GC-MS
2.2. Development of SIDAs for Hydroxythujones by LC-MS/MS
2.3. Validation
2.3.1. Precision
2.3.2. Recovery
2.3.3. Limit of Detection and Limit of Quantification (LOD and LOQ)
2.4. Human Study
3. Discussion
4. Conclusions
5. Material and Methods
5.1. Chemicals
5.2. Sage and Sage Infusion
5.3. Design of the Human Study
5.4. Analysis of Hydroxythujones in Urine
5.4.1. Urine Sample Preparation
5.4.2. SPE
5.4.3. LC-MS/MS
5.4.4. Calibration and Calculation
5.4.5. Precision
5.4.6. Stability
5.4.7. LOD and LOQ
5.4.8. Recoveries of Analytes during Workup
5.5. Analysis of α-Thujone in Urine
5.5.1. Urine Sample Preparation
5.5.2. SPME-GC-MS
5.5.3. Calibration and Calculation
5.5.4. Precision
5.5.5. Stability
5.5.6. Determination of Detection and Quantification Limits
Author Contributions
Funding
Conflicts of Interest
References
- Lachenmeier, D.W.; Emmert, J.; Kuballa, T.; Sartor, G. Thujone—Cause of absinthism? Forensic Sci. Int. 2006, 158, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Hold, K.M.; Sirisoma, N.S.; Ikeda, T.; Narahashi, T.; Casida, J.E. Alpha-thujone (the active component of absinthe): Gamma-aminobutyric acid type A receptor modulation and metabolic detoxification. Proc. Natl. Acad. Sci. USA 2000, 97, 3826–3831. [Google Scholar] [CrossRef] [PubMed]
- Hold, K.M.; Sirisoma, N.S.; Casida, J.E. Detoxification of alpha- and beta-thujones (the active ingredients of absinthe): Site specificity and species differences in cytochrome P450 oxidation in vitro and in vivo. Chem. Res. Toxicol. 2001, 14, 589–595. [Google Scholar] [CrossRef] [PubMed]
- Thamm, I.; Richers, J.; Rychlik, M.; Tiefenbacher, K. A six-step total synthesis of alpha-thujone and d6-α-thujone, enabling facile access to isotopically labelled metabolites. Chem. Commun. 2016, 52, 11701–11703. [Google Scholar] [CrossRef] [PubMed]
- Zeller, A.; Horst, K.; Rychlik, M. Study of the metabolism of estragole in humans consuming fennel tea. Chem. Res. Toxicol. 2009, 22, 1929–1937. [Google Scholar] [CrossRef] [PubMed]
- Horst, K.; Rychlik, M. Quantification of 1,8-cineole and of its metabolites in humans using stable isotope dilution assays. Mol. Nutr. Food Res. 2010, 54, 1515–1529. [Google Scholar] [CrossRef] [PubMed]
- Hädrich, J.; Vogelgesang, J. Konzept 2000-Ein statistischer Anatz für die analytische Praxis. Dtsch. Lebensmitt. Rundsch. 1999, 10, 428. [Google Scholar]
- Sur, S.V.; Tuljupa, F.M.; Sur, L.I. Gas chromatographic determination of monoterpenes in essential oil medicinal plants. J. Chromatogr. 1991, 542, 451–458. [Google Scholar] [CrossRef]
- Pelkonen, O.; Abass, K.; Wiesner, J. Thujone and thujone-containing herbal medicinal and botanical products: Toxicological assessment. Regulatory Toxicol. Pharmacol. 2013, 65, 100–107. [Google Scholar] [CrossRef] [PubMed]
- Abass, K.; Reponen, P.; Mattila, S.; Pelkonen, O. Metabolism of alpha-thujone in human hepatic preparations in vitro. Xenobiotica 2011, 41, 101–111. [Google Scholar] [CrossRef] [PubMed]
- ACD/labs Software, version 11.02; Advanced Chemistry Development, Inc.: Toronto, ON, Canada, 2018; Available online: www.acdlabs.com (accessed on 25 January 2018).
- Jonas, M. Charakterisierung Geruchsaktiver und Physiologisch Aktiver Aromastoffe in Salbei und Rosmarin. Ph.D. Thesis, Technische Universität München, München, Germany, 2017. [Google Scholar]
- Vogelgesang, J.H.J. Limits of detection, identification and determination: A statistical approach for practitioners. Accred. Qual. Assur. 1998, 3, 242–255. [Google Scholar] [CrossRef]
Concentration Range (µg/L) | 93.3–173.4 | 17.8–49.2 | ||||
---|---|---|---|---|---|---|
Recovery (%) | After Step | After Step | ||||
I | II | III | I | II | III | |
7-OH | 97 | 95 | 91 | 80 | 80 | 78 |
4-OH | 94 | 92 | 91 | 106 | 98 | 100 |
2-OH | 93 | 91 | 88 | 106 | 109 | 72 |
Test Person | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
---|---|---|---|---|---|---|---|
4-OH (µg) | 13.9 | 17.9 | 14.6 | 11.8 | 16.5 | 17.0 | 26.3 |
7-OH (µg) | 15.6 | 20.9 | 8.6 | 4.0 | 7.8 | 6.9 | 5.9 |
α-Thujone (ng) | 45.1 | 8.0 | 36.1 | 16.3 | 10.7 | 25.0 | 35.1 |
excretion/bw (µg/kg) | 0.6 | 0.7 | 0.3 | 0.2 | 0.3 | 0.2 | 0.5 |
dose/bw (µg/kg) | 14.3 | 11.4 | 8.2 | 6.7 | 8.9 | 4.6 | 7.6 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thamm, I.; Tiefenbacher, K.; Rychlik, M. Quantification of α-Thujone and Its Metabolites in Human Urine after Consumption of a Sage Infusion Using Stable Isotope Dilution Assays. Toxins 2018, 10, 511. https://doi.org/10.3390/toxins10120511
Thamm I, Tiefenbacher K, Rychlik M. Quantification of α-Thujone and Its Metabolites in Human Urine after Consumption of a Sage Infusion Using Stable Isotope Dilution Assays. Toxins. 2018; 10(12):511. https://doi.org/10.3390/toxins10120511
Chicago/Turabian StyleThamm, Irene, Konrad Tiefenbacher, and Michael Rychlik. 2018. "Quantification of α-Thujone and Its Metabolites in Human Urine after Consumption of a Sage Infusion Using Stable Isotope Dilution Assays" Toxins 10, no. 12: 511. https://doi.org/10.3390/toxins10120511
APA StyleThamm, I., Tiefenbacher, K., & Rychlik, M. (2018). Quantification of α-Thujone and Its Metabolites in Human Urine after Consumption of a Sage Infusion Using Stable Isotope Dilution Assays. Toxins, 10(12), 511. https://doi.org/10.3390/toxins10120511