AbobotulinumtoxinA (Dysport®), OnabotulinumtoxinA (Botox®), and IncobotulinumtoxinA (Xeomin®) Neurotoxin Content and Potential Implications for Duration of Response in Patients
Abstract
:1. Introduction
- We anticipated that the concentration of BoNT-A in the samples would be high enough that a sample enrichment would not be necessary.
- The matrix of the samples is relatively clean, making an extra clean-up step redundant.
- The isolation of BoNT-A with antibodies introduces another possible source for variation, as it is unknown whether the affinity of the antibody for BoNT-A in the different samples is affected by the different compositions of the product formulations, and an additional sample manipulation.
2. Results
2.1. Quantity of 150 kDa BoNT-A
2.2. Light Chain Activity of BoNT-A Products
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. General Methods
5.2. BoLISA® Procedure
5.3. Standard Curve of the Sandwich ELISA
5.4. ELISA Accuracy and Specificity
5.5. EndoPep Assay
5.5.1. Chemicals
5.5.2. EndoPep Procedure
5.5.3. Capillary Electrophoresis
5.6. Statistical Assessment of the Ratio of BoNT-A Quantity Obtained by ELISA and EndoPep Assays
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Simpson, D.M.; Hallett, M.; Ashman, E.J.; Comella, C.L.; Green, M.W.; Gronseth, G.S.; Armstrong, M.J.; Gloss, D.; Potrebic, S.; Jankovic, J.; et al. Practice guideline update summary: Botulinum neurotoxin for the treatment of blepharospasm, cervical dystonia, adult spasticity, and headache. Neurology 2016, 86, 1818–1826. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carruthers, J.; Fournier, N.; Kerscher, M.; Ruiz-Avila, J.; Trinindade de Almeida, A.R.; Kaeuper, G. The convergence of medicine and neurotoxins: A focus on botulinum toxin type A and its application in aesthetic medicine—A global, evidence-based botulinum toxin consensus education initiative: Part II: Incorporating botulinum toxin into aesthetic clinical practice. Dermatol. Surg. 2013, 39, 510–525. [Google Scholar] [PubMed]
- Ashford, S.; Turner-Stokes, L. Spasticity in Adults: Management Using Botulinum Toxin: National Guidelines; Royal College of Physicians of London: London, UK, 2018. [Google Scholar]
- Foster, K.A. Overview and history of botulinum neurotoxin clinical exploitation. In Clinical Applications of Botulinum Neurotoxin; Foster, K.A., Ed.; Springer: New York, NY, USA, 2014; pp. 1–5. [Google Scholar]
- Kukreja, R.; Singh, B.R. The botulinum toxin as a therapeutic agent: Molecular and pharmacological insights. Res. Rep. Biochem. 2015, 5, 173–183. [Google Scholar]
- Pirazzini, M.; Rossetto, O.; Eleopra, R.; Montecucco, C. Botulinum neurotoxins: Biology, pharmacology and toxicology. Pharmacol. Rev. 2017, 69, 200–235. [Google Scholar] [CrossRef] [PubMed]
- Naumann, M.; So, Y.; Argoff, C.E.; Childers, M.K.; Dykstra, D.D.; Gronseth, G.S.; Jabbari, B.; Kaufmann, H.C.; Schurch, B.; Silberstein, S.D.; et al. Assessment: Botulinum neurotoxin in the treatment of autonomic disorders and pain (an evidence-based review): Report of the therapeutics and technology assessment subcommittee of the american academy of neurology. Neurology 2008, 70, 1707–1714. [Google Scholar] [CrossRef] [PubMed]
- Pickett, A. Botulinum toxin as a clincial product: Manufacture and pharmacology. In Clinical Applications of Botulinum Neurotoxin; Foster, K.A., Ed.; Springer: New York, NY, USA, 2014; pp. 7–49. [Google Scholar]
- Montal, M. Botulinum neurotoxin: A marvel of protein design. Annu. Rev. Biochem. 2010, 79, 591–617. [Google Scholar] [CrossRef] [PubMed]
- Sesardic, T. Bioassays for evaluation of medical products derived from bacterial toxins. Curr. Opin. Microbiol. 2012, 15, 310–316. [Google Scholar] [CrossRef] [PubMed]
- Hambleton, P.; Pickett, A.M. Potency equivalence of botulinum toxin preparations. J. R. Soc. Med. 1994, 87, 719. [Google Scholar]
- Omary, M.B.; Cohen, D.E.; El-Omar, E.M.; Jalan, R.; Low, M.J.; Nathanson, M.H.; Peek, R.M.; Turner, J.R. Not all mice are the same: Standardization of animal research data presentation. Cell Mol. Gastroenterol. Hepatol. 2016, 65, 391–393. [Google Scholar] [CrossRef] [PubMed]
- Allergan‚ Inc. Prescribing Information: Botox®. Available online: https://www.allergan.com/assets/pdf/botox_pi.pdf (accessed on 9 October 2018).
- Ipsen Biopharmaceuticals‚ Inc. Prescribing Information: Dysport®. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/125274s109lbl.pdf (accessed on 9 October 2018).
- Merz Pharmaceuticals, L. Prescribing Information: Xeomin®. Available online: http://www.xeomin.com/wp-content/uploads/xeomin-full-prescribing-information.pdf (accessed on 9 October 2018).
- Esquenazi, A.; Novak, I.; Sheean, G.; Singer, B.J.; Ward, A.B. International consensus statement for the use of botulinum toxin treatment in adults and children with neurological impairments–introduction. Eur. J. Neurol. 2010, 17, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Grigoriu, A.I.; Dinomais, M.; Remy-Neris, O.; Brochard, S. Impact of injection-guiding techniques on the effectiveness of botulinum toxin for the treatment of focal spasticity and dystonia: A systematic review. Arch. Phys. Med. Rehabil. 2015, 96, 2067–2078. [Google Scholar] [CrossRef] [PubMed]
- Prazeres, A.; Lira, M.; Aguiar, P.; Monteiro, L.; Vilasboas, I.; Melo, A. Efficacy of physical therapy associated with botulinum toxin type a on functional performance in post-stroke spasticity: A randomized, double-blinded, placebo-controlled trial. Neurol. Int. 2018, 10, 7385. [Google Scholar] [CrossRef] [PubMed]
- Mathevon, L.; Bonan, I.; Barnais, J.L.; Boyer, F.; Dinomais, M. Adjunct therapies to improve outcomes after botulinum toxin injection in children: A systematic review. Ann. Phys. Rehabil. Med. 2018. [CrossRef] [PubMed]
- Giordano, C.N.; Matarasso, S.L.; Ozog, D.M. Injectable and topical neurotoxins in dermatology: Indications, adverse events, and controversies. Am. Acad. Dermatol. 2017, 76, 1027–1042. [Google Scholar] [CrossRef] [PubMed]
- Gardner, A.P.; Barbieri, J.T. Light chain diversity among the botulinum neurotoxins. Toxins 2018. [CrossRef] [PubMed]
- Panjwani, N.; O’Keeffe, R.; Pickett, A. Biochemical, functional and potency characteristics of type A botulinum toxin in clinical use. Botulinum J. 2008, 1, 153–166. [Google Scholar] [CrossRef]
- Jost, W.H.; Blumel, J.; Grafe, S. Botulinum neurotoxin type A free of complexing proteins (XEOMIN) in focal dystonia. Drugs 2007, 67, 669–683. [Google Scholar] [CrossRef]
- Frevert, J. Content of botulinum neurotoxin in botox®/vistabel®, dysport®/azzalure®, and xeomin®/bocouture®. Drugs R D 2010, 10, 67–73. [Google Scholar] [CrossRef]
- Kalb, S.R.; Moura, H.; Boyer, A.E.; McWilliams, L.G.; Pirkle, J.L.; Barr, J.R. The use of endopep-ms for the detection of botulinum toxins a, b, e, and f in serum and stool samples. Anal. Biochem. 2006, 351, 84–92. [Google Scholar] [CrossRef]
- Kalb, S.R.; Krilich, J.C.; Dykes, J.K.; Luquez, C.; Maslanka, S.E.; Barr, J.R. Detection of botulinum toxins a, b, e, and f in foods by endopep-ms. J. Agric. Food Chem. 2015, 63, 1133–1141. [Google Scholar] [CrossRef]
- Van Uhm, J.I.; Visser, G.W.; van der Schans, M.J.; Geldof, A.A.; Meuleman, E.J.; Nieuwenhuijzen, J.A. The ultimate radiochemical nightmare: Upon radio-iodination of Botulinum neurotoxin A, the introduced iodine atom itself seems to be fatal for the bioactivity of this macromolecule. EJNMMI Res. 2015. [CrossRef] [PubMed]
- Keller, J.E. Recovery from botulinum neurotoxin poisoning in vivo. Neuroscience 2006, 139, 629–637. [Google Scholar] [CrossRef] [PubMed]
- Hooker, A.; Palan, S.; Beard, M. Recombinant botulinum neurotoxin serotype A1 (SXN102342): Protein engineering and process development. Toxicon 2016. [CrossRef]
- Kalinichev, M.; Perier, C.; Favre-Guilmard, C.; Cornet, S.; Baudet, S.; Briffaux, J.-P.; Anderson, D.; Beard, M. SXN102342, a novel, recombinant botulinum neurotoxin type A1: In vivo characterization. Toxicon 2016, 123, 46–47. [Google Scholar] [CrossRef]
- Merz Pharmaceuticals GmbH. Efficacy and Safety Study of Botulinum Toxin Type A against Placebo to Treat Spasticity in the Leg After a Stroke (Plus). Available online: https://clinicaltrials.gov/ct2/show/NCT01464307 (accessed on 3 September 2018).
- Wang, D.; Baudys, J.; Hoyt, K.M.; Barr, J.R.; Kalb, S.R. Further optimization of peptide substrate enhanced assay performance for BoNT/A detection by MALDI-TOF mass spectrometry. Anal. Biochem. 2017, 409, 4779–4786. [Google Scholar] [Green Version]
- Gracies, J.-M.; Esquenazi, A.; Brashear, A.; Banach, M.; Kocer, S.; Jech, R.; Khatkova, S.; Benetin, J.; Vecchio, M.; McAllister, P.; et al. Efficacy and safety of abobotulinumtoxinA in spastic lower limb: Randomized trial and extension. Neurology 2017, 89, 2245–2253. [Google Scholar] [CrossRef] [PubMed]
- Gracies, J.M.; Brashear, A.; Jech, R.; McAllister, P.; Banach, M.; Valkovic, P.; Walker, H.; Marciniak, C.; Deltombe, T.; Skoromets, A.; et al. Safety and efficacy of abobotulinumtoxinA for hemiparesis in adults with upper limb spasticity after stroke or traumatic brain injury: A double-blind randomised controlled trial. Lancet Neurol. 2015, 14, 992–1001. [Google Scholar] [CrossRef]
- Gracies, J.M.; O’Dell, M.; Vecchio, M.; Hedera, P.; Kocer, S.; Rudzinska-Bar, M.; Rubin, B.; Timerbaeva, S.L.; Lusakowska, A.; Boyer, F.C.; et al. Effects of repeated abobotulinumtoxina injections in upper limb spasticity. Muscle Nerve 2017. [CrossRef]
- Delgado, M.R.; Bonikowski, M.; Carranza, J.; Dabrowski, E.; Matthews, D.; Russman, B.; Tilton, A.; Velez, J.C.; Grandoulier, A.S.; Picaut, P. Safety and efficacy of repeat open-label abobotulinumtoxina treatment in pediatric cerebral palsy. J. Child Neurol. 2017, 32, 1058–1064. [Google Scholar] [CrossRef]
- Delgado, M.R.; Tilton, A.; Russman, B.; Benavides, O.; Bonikowski, M.; Carranza, J.; Dabrowski, E.; Dursun, N.; Gormley, M.; Jozwiak, M.; et al. Abobotulinumtoxina for equinus foot deformity in cerebral palsy: A randomized controlled trial. Pediatrics 2016, 137, e20152830. [Google Scholar] [CrossRef]
- Lacroix-Desmazesa, S.; Moulyd, S.; Popoffe, M.-R.; Colosimo, C. Systematic analysis of botulinum neurotoxin type A immunogenicity in clinical studies. Basal Ganglia 2017, 9, 12–17. [Google Scholar] [CrossRef]
- Sheean, G.; Lannin, N.A.; Turner-Stokes, L.; Rawicki, B.; Snow, B.J.; Cerebral Palsy, I. Botulinum toxin assessment, intervention and after-care for upper limb hypertonicity in adults: International consensus statement. Eur. J. Neurol. 2010, 17, 74–93. [Google Scholar] [CrossRef] [PubMed]
- O’Dell, M.W.; Brashear, A.; Jech, R.; Lejeune, T.; Marque, P.; Bensmail, D.; Ayyoub, Z.; Simpson, D.M.; Volteau, M.; Vilain, C.; et al. Dose-dependent effects of abobotulinumtoxina (dysport) on spasticity and active movements in adults with upper limb spasticity: Secondary analysis of a phase 3 study. PMR 2017. [CrossRef] [PubMed]
- Joseph, J.H.; Eaton, L.L.; Robinson, J.; Pontius, A.; Williams, E.F., III. Does Increasing the Dose of Abobotulinumtoxina Impact the Duration of Effectiveness for the Treatment of Moderate to Severe Glabellar Lines? J. Drugs Dermatol. 2016, 15, 1544–1549. [Google Scholar] [PubMed]
- Carruthers, A.; Carruthers, J.; Cohen, J. A prospective, double-blind, randomized, parallel-group, dose-ranging study of botulinum toxin type a in female subjects with horizontal forehead rhytides. Dermatol. Surg. 2003, 29, 461–467. [Google Scholar] [PubMed]
- Carruthers, A.; Carruthers, J.; Said, S. Dose-ranging study of botulinum toxin type A in the treatment of glabellar rhytids in females. Dermatol. Surg. 2005, 31, 414–422. [Google Scholar] [CrossRef] [PubMed]
- Eisele, K.H.; Fink, K.; Vey, M.; Taylor, H.V. Studies on the dissociation of botulinum neurotoxin type a complexes. Toxicon 2011, 57, 555–565. [Google Scholar] [CrossRef] [PubMed]
Product | Batch | Expiry Date | Quantity of BoNT-A (ng/vial) | |
---|---|---|---|---|
Batch, Mean (SD) | Product, Mean (SD) | |||
Dysport® 500 U | M00405 | Dec. 2018 | 2.73 (0.20) | 2.69 (0.03) |
L24950 | Dec. 2018 | 2.66 (0.20) | ||
L22072 | Oct. 2018 | 2.68 (0.23) | ||
Botox® 100 U | C4321C3 | Sep. 2019 | 0.89 (0.12) | 0.90 (0.03) |
C4289C3 | Sep. 2019 | 0.89 (0.10) | ||
C4270C3 | Aug. 2019 | 0.94 (0.09) | ||
Xeomin® 100 U | 694458 | Jul. 2019 | 0.41 (0.07) | 0.40 (0.01) |
696232 | Sep. 2019 | 0.40 (0.05) | ||
694788 | Sep. 2019 | 0.40 (0.05) |
Product | Batch | Expiry Date | Quantity of BoNT-A per Product Unit (pg/unit) | |
---|---|---|---|---|
Calculated for Batch | Product, Mean (SD) | |||
Dysport® 500 U | M00405 | Dec. 2018 | 5.45 | 5.38 (0.07) |
L24950 | Dec. 2018 | 5.32 | ||
L22072 | Oct. 2018 | 5.36 | ||
Botox® 100 U | C4321C3 | Sep. 2019 | 8.86 | 9.04 (0.30) |
C4289C3 | Sep. 2019 | 8.88 | ||
C4270C3 | Aug. 2019 | 9.38 | ||
Xeomin® 100 U | 694458 | Jul. 2019 | 4.09 | 4.03 (0.06) |
696232 | Sep. 2019 | 4.01 | ||
694788 | Sep. 2019 | 3.97 |
Indication | Product | A—Total Recommended Dosage a, Product Units | B—Amount of Neurotoxin Per Product Unit, pg | C—Total Amount of Active BoNT-A (ng) Injected at the Recommended Dose, C = A × B |
---|---|---|---|---|
AUL | Dysport® | 1000 | 5.38 | 5.38 |
Botox® | 400 | 9.04 | 3.62 | |
Xeomin® | 400 | 4.03 | 1.61 | |
ALL | Dysport® | 1500 | 5.38 | 8.07 |
Botox® | 400 | 9.04 | 3.62 | |
Xeomin® | 4.03 | |||
GL | Dysport® | 50 | 5.38 | 0.27 |
Botox® * | 20 | 9.04 | 0.18 | |
Xeomin® | 20 | 4.03 | 0.08 |
Product | Vial | Quantity of BoNT-A (ng/Vial) ELISA | Quantity of BoNT-A (ng/Vial) EndoPep | ||
---|---|---|---|---|---|
Per Vial | Product, Mean (SD) | Per Vial | Product, Mean (SD) | ||
Dysport® 300 U | 1 | 1.87 | 1.81 (0.12) | 1.45 | 1.42 (0.05) |
2 | 1.88 | 1.45 | |||
3 | 1.67 | 1.37 | |||
Botox® 100 U | 1 | 0.97 | 0.89 (0.10) | 0.85 | 0.96 (0.10) |
2 | 0.92 | 0.98 | |||
3 | 0.78 | 1.05 | |||
Xeomin® 100 U | 1 | 0.46 | 0.44 (0.02) | 0.39 | 0.35 (0.04) |
2 | 0.44 | 0.33 | |||
3 | 0.41 | 0.32 |
Product | Comparator | Difference in LC Activity, Mean (SE) | Z Score | p value | p value Adjusted | Significance |
---|---|---|---|---|---|---|
Dysport® | Botox® | 0.293 (0.285) | 1.0304 | 0.3028 | 0.6611 | NS |
Dysport® | Xeomin® | 0.000 (0.176) | 0.0014 | 0.9989 | 1.0000 | NS |
Xeomin® | Botox® | 0.293 (0.237) | 1.2375 | 0.2159 | 0.5179 | NS |
Product | Serum Albumin (mg/mL) | Sucrose (mg/mL) | Lactose (mg/mL) | NaCl (mg/mL) |
---|---|---|---|---|
Xeomin® product | 5 | 23.5 | 0 | 0 |
Xeomin® reconstitution buffer | 0 | 0 | 12.5 | 4.5 |
Botox product | 2.5 | 0 | 0 | 4.5 |
Botox® reconstitution buffer | 2.5 | 23.5 | 12.5 | 0 |
Dysport® product | 0.62 | 0 | 12.5 | 0 |
Dysport® reconstitution buffer | 4.38 | 23.5 | 0 | 4.5 |
r-BoNT-A reconstitution buffer | 5 | 23.5 | 12.5 | 4.5 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Field, M.; Splevins, A.; Picaut, P.; Van der Schans, M.; Langenberg, J.; Noort, D.; Foster, K. AbobotulinumtoxinA (Dysport®), OnabotulinumtoxinA (Botox®), and IncobotulinumtoxinA (Xeomin®) Neurotoxin Content and Potential Implications for Duration of Response in Patients. Toxins 2018, 10, 535. https://doi.org/10.3390/toxins10120535
Field M, Splevins A, Picaut P, Van der Schans M, Langenberg J, Noort D, Foster K. AbobotulinumtoxinA (Dysport®), OnabotulinumtoxinA (Botox®), and IncobotulinumtoxinA (Xeomin®) Neurotoxin Content and Potential Implications for Duration of Response in Patients. Toxins. 2018; 10(12):535. https://doi.org/10.3390/toxins10120535
Chicago/Turabian StyleField, Malgorzata, Andrew Splevins, Philippe Picaut, Marcel Van der Schans, Jan Langenberg, Daan Noort, and Keith Foster. 2018. "AbobotulinumtoxinA (Dysport®), OnabotulinumtoxinA (Botox®), and IncobotulinumtoxinA (Xeomin®) Neurotoxin Content and Potential Implications for Duration of Response in Patients" Toxins 10, no. 12: 535. https://doi.org/10.3390/toxins10120535
APA StyleField, M., Splevins, A., Picaut, P., Van der Schans, M., Langenberg, J., Noort, D., & Foster, K. (2018). AbobotulinumtoxinA (Dysport®), OnabotulinumtoxinA (Botox®), and IncobotulinumtoxinA (Xeomin®) Neurotoxin Content and Potential Implications for Duration of Response in Patients. Toxins, 10(12), 535. https://doi.org/10.3390/toxins10120535