Aspergillus flavus as a Model System to Test the Biological Activity of Botanicals: An Example on Citrullus colocynthis L. Schrad. Organic Extracts
Abstract
:1. Introduction
2. Results and Discussion
2.1. Phytochemical Characterization of C. colocynthis Extracts
2.2. Antifungal and Anti-Aflatoxigenic Activity
2.3. Aflatoxin-Modulating Activity
2.4. Time Course of Extract Administration on Aflatoxin Accumulation
2.5. Conidia Production and Conidiophores Morphology
3. Conclusions
4. Materials and Methods
4.1. Plant Materials
4.2. Extraction Protocol
4.3. Determination of the Total Phenolic Contents
4.4. Determination of DPPH Radical Scavenging Activity
4.5. UPLC-DAD-ESI-MS/MS Analysis
4.6. Fungal Strains, Media and Culture Condition
4.7. Aflatoxin Production Assay
4.8. Aspergillus Flavus Growth
4.9. Conidiation Rate Assessment and Reproductive Structures Analysis
4.10. Statistical Analysis
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wiseman, H.; Halliwell, B. Damage to DNA by Reactive Oxygen and Nitrogen Species: Role in Inflammatory Disease and Progression to Cancer. Biochem. J. 1996, 313, 17–29. [Google Scholar] [CrossRef] [PubMed]
- Singh, U.; Jialal, I. Oxidative stress and atherosclerosis. Pathophysiology 2006, 13, 129–142. [Google Scholar] [CrossRef]
- Smith, M.A.; Rottkamp, C.A.; Nunomura, A.; Raina, A.K.; Perry, G. Oxidative stress in Alzheimer’s disease. Biochim. Biophys. Acta 2000, 1502, 139–144. [Google Scholar] [CrossRef]
- Onyou, H. Role of Oxidative Stress in Parkinson’s Disease. Exp. Neurobiol. 2013, 22, 11–17. [Google Scholar]
- Ramakrishna, B.S.; Varghese, R.; Jayakumar, S.; Mathan, M.; Balasubramanian, K.A. Circulating antioxidants in ulcerative colitis and their relationship to disease severity and activity. J. Gastroenterol. Hepatol. 1997, 12, 490–494. [Google Scholar] [CrossRef] [PubMed]
- Kattoor, A.J.; Pothineni, N.V.K.; Palagiri, D.; Mehta, J.L. Oxidative Stress in Atherosclerosis. Curr. Atheroscler. Rep. 2017, 19, 42. [Google Scholar] [CrossRef]
- Kinnula, V.L.; Crapo, J.D. Superoxide dismutases in malignant cells and human tumors. Free Radic. Biol. Med. 2004, 36, 718–744. [Google Scholar] [CrossRef]
- Lien Ai, P.-H.; Hua, H.; Chuong, P.-H. Free Radicals, Antioxidants in Disease and Health. Int. J. Biomed. Sci. 2008, 4, 89–96. [Google Scholar]
- Serafini, M.; Peluso, I. Functional Foods for Health: The Interrelated antioxidant and anti-inflammatory role of rruits, vegetables, herbs, spices and cocoa in humans. Curr. Pharm. Des. 2016, 22, 6701–6715. [Google Scholar] [CrossRef]
- Davatgaran-Taghipour, Y.; Masoomzadeh, S.; Farzaei, M.H.; Bahramsoltani, R.; Karimi-Soureh, Z.; Rahimi, R.; Abdollahi, M. Polyphenol nanoformulations for cancer therapy: Experimental evidence and clinical perspective. Int. J. Nanomed. 2017, 12, 2689–2702. [Google Scholar] [CrossRef]
- Ahmad, N.; Mukhtar, H. Antioxidants meet molecular targets for cancer prevention and therapeutics. Antioxid Redox Signal. 2013, 19, 85–88. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Gan, R.Y.; Li, S.; Zhou, Y.; Li, A.N.; Xu, D.P.; Li, H.B. Antioxidant phytochemicals for the prevention and treatment of chronic diseases. Molecules 2015, 20, 21138–21156. [Google Scholar] [CrossRef]
- Szymanska, R.; Pospisil, P.; Kruk, J. Plant-Derived Antioxidants in Disease Prevention. Oxidative Med. Cell. Longev. 2016, 2016, 192–208. [Google Scholar] [CrossRef]
- Naveen, J.; Baskaran, V. Antidiabetic plant-derived nutraceuticals: A critical review. Eur. J. Nutr. 2018, 57, 1275–1299. [Google Scholar] [CrossRef]
- Tessema, E.N.; Gebre-Mariam, T.; Neubert, R.H.H.; Wohlrab, J. Potential Applications of Phyto-Derived Ceramides in Improving Epidermal Barrier Function. Ski. Pharm. Physiol. 2017, 30, 115–138. [Google Scholar] [CrossRef] [Green Version]
- Pandey, K.B.; Rizvi, S.I. Plant polyphenols as dietary antioxidants in human health and disease. Oxidative Med. Cell. Longev. 2009, 2, 270–278. [Google Scholar] [CrossRef]
- Reuter, J.; Merfort, I.; Schempp, C.M. Botanicals in dermatology: An evidence-based review. Am. J. Clin. Dermatol. 2010, 11, 247–267. [Google Scholar] [CrossRef]
- Fidrianny, I.; Rahmiyani, I.; Wirasutisna, K.R. Antioxidant capacities from various leaves extracts of four varieties mangoes using DPPH, ABTS assays and correlation with total phenolic, flavonoid, carotenoid. Int. J. Pharm. Pharm. Sci. 2013, 5, 189–194. [Google Scholar]
- Markowitz, J.S.; Zhu, H.J. Limitations of in vitro assessments of the drug interaction potential of botanical supplements. Planta Med. 2012, 78, 1421–1427. [Google Scholar] [CrossRef]
- Slatnar, A.; Jakopic, J.; Stampar, F.; Veberic, R.; Jamnik, P. The effect of bioactive compounds on in vitro and in vivo antioxidant activity of different berry juices. PLoS ONE 2012, 7, e47880. [Google Scholar] [CrossRef]
- Reverberi, M.; Zjalic, S.; Ricelli, A.; Punelli, F.; Camera, E.; Fabbri, C.; Picardo, M.; Fanelli, C.; Fabbri, A.A. Modulation of antioxidant defense in Aspergillus parasiticus is involved in aflatoxin biosynthesis: A role for the ApyapA gene. Eukaryot. Cell 2008, 7, 988–1000. [Google Scholar] [CrossRef]
- Roze, L.V.; Hong, S.-Y.; Linz, J.E. Aflatoxin biosynthesis: Current frontiers. Annu. Rev. Food Sci. Technol. 2013, 4, 293–311. [Google Scholar] [CrossRef]
- Roze, L.V.; Laivenieks, M.; Hong, S.-Y.; Wee, J.; Wong, S.S.; Vanos, B.; Awad, D.; Ehrlich, K.C.; Linz, J.E. Aflatoxin biosynthesis is a novel source of reactive oxygen species—A potential redox signal to initiate resistance to oxidative stress? Toxins 2015, 7, 1411–1430. [Google Scholar] [CrossRef]
- Passone, M.A.; Resnik, S.L.; Etcheverry, M.G. In vitro effect of phenolic antioxidants on germination, growth and aflatoxin B1 accumulation by peanut Aspergillus section Flavi. J. Appl. Microbiol. 2005, 99, 682–691. [Google Scholar] [CrossRef]
- Huang, J.-Q.; Jiang, H.-F.; Zhou, Y.-Q.; Lei, Y.; Wang, S.-Y.; Liao, B.-S. Ethylene inhibited aflatoxin biosynthesis is due to oxidative stress alleviation and related to glutathione redox state changes in Aspergillus flavus. Int. J. Food Microbiol. 2009, 130, 17–21. [Google Scholar] [CrossRef]
- Galanopoulou, D.; Markaki, P. Study of the Effect of Methyl Jasmonate Concentration on Aflatoxin B(1) Biosynthesis by Aspergillus parasiticus in Yeast Extract Sucrose Medium. Int. J. Microbiol. 2009, 2009, 842626. [Google Scholar]
- Degola, F.; Dall’Asta, C.; Restivo, F.M. Development of a simple and high-throughput method for detecting aflatoxins production in culture media. Lett. Appl. Microbiol. 2012, 55, 82–89. [Google Scholar] [CrossRef]
- Reverberi, M.; Fabbri, A.A.; Zjalić, S.; Ricelli, A.; Punelli, F.; Fanelli, C. Antioxidant enzymes stimulation in Aspergillus parasiticus by Lentinula edodes inhibits aflatoxin production. Appl. Microbiol. Biotechnol. 2005, 69, 207–215. [Google Scholar] [CrossRef]
- Reddy, K.R.N.; Reddy, C.S.; Muralidharan, K. Potential of botanicals and biocontrol agents on growth and aflatoxin production by Aspergillus flavus infecting rice grains. Food Control. 2009, 20, 173–178. [Google Scholar] [CrossRef]
- Reddy, K.R.N.; Nurdijati, S.B.; Salle, B. An overview of plant-derived products on control of mycotoxigenic fungi and mycotoxins. Asian J. Plant Sci. 2010, 9, 126–133. [Google Scholar] [CrossRef]
- Cabral, L.D.C.; Pinto, V.F.; Patriarca, A. Application of plant derived compounds to control fungal spoilage and mycotoxin production in foods. Int. J. Food Microbiol. 2013, 166, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Marzouk, B.; Marzouk, Z.; Haloui, E.; Fenina, N.; Bouraoui, A.; Aouni, M. Screening of analgesic and anti-inflammatory activities of Citrullus colocynthis from southern Tunisia. J. Ethnopharmacol. 2010, 128, 15–19. [Google Scholar] [CrossRef] [PubMed]
- Gurudeeban, S.; Ramanathan, T. Antidiabetic effect of Citrullus colocynthis in alloxon-induced diabetic rats. Ethno Pharm. 2010, 1, 112–119. [Google Scholar]
- Abdel-Hassan, I.A.; Abdel-Barry, J.A.; Tariq Mohammeda, S. The hypoglycaemic and antihyperglycaemic effect of Citrullus colocynthis fruit aqueous extract in normal and alloxan diabetic rabbits. J. Ethnopharmacol. 2000, 71, 325–330. [Google Scholar] [CrossRef]
- Mehrzadi, S.; Shojaii, A.; Pur, S.A.; Motevalian, M. Anticonvulsant Activity of Hydroalcoholic Extract of Citrullus colocynthis Fruit: Involvement of Benzodiazepine and Opioid Receptors. J. Evid. Based Complementary Altern. Med. 2016, 21, 31–35. [Google Scholar] [CrossRef] [PubMed]
- Hussain, A.I.; Rathore, H.A.; Sattar, M.Z.; Chatha, S.A.; Sarker, S.D.; Gilani, A.H. Citrullus colocynthis (L.) Schrad (bitter apple fruit): A review of its phytochemistry, pharmacology, traditional uses and nutritional potential. J. Ethnopharmacol. 2014, 155, 54–66. [Google Scholar] [CrossRef]
- Marzouk, B.; Marzouk, Z.; Décor, R.; Edziri, H.; Haloui, E.; Fenina, N.; Aouni, M. Antibacterial and anticandidal screening of Tunisian Citrullus colocynthis Schrad. from Medenine. J. Ethnopharmacol. 2009, 125, 344–349. [Google Scholar] [CrossRef]
- Amine, G.; ELHADJ-Khelil-Aminata, O.; Bouabdallah, G. Evaluation of antifungal effect of organic extracts of Algerian Citrullus colocynthis seeds against four strains of Aspergillus isolate from wheat stored. J. Med. Plants Res. 2013, 7, 727–733. [Google Scholar]
- Gowri, S.S.; Priyavardhini, S.; Vasantha, K.; Umadevi, M. Antibacterial activity on Citrullus colocynthis Leaf extract. Anc. Sci. Life 2009, 29, 12–13. [Google Scholar]
- Benariba, N.; Djazir, R.; Bellakhdar, W.; Belkacem, N.; Kadiata, M.; Malaisse, W.J.; Sener, A. Phytochemical screening and free radical scavenging activity of Citrullus colocynthis seeds extracts. Asian Pac. J. Trop. Biomed. 2013, 3, 35–40. [Google Scholar] [CrossRef]
- Rizvi, T.S.; Mabood, F.; Ali, L.; Al-Broumi, M.; Al Rabani, H.K.M.; Hussain, J.; Jabeen, F.; Manzoor, S.; Al-Harrasi, A. Application of NIR Spectroscopy Coupled with PLS Regression for Quantification of Total Polyphenol Contents from the Fruit and Aerial Parts of Citrullus colocynthis. Phytochem. Anal. 2018, 29, 16–22. [Google Scholar] [CrossRef]
- Delazar, A.; Gibbons, S.; Kosari, A.R.; Nazemiyeh, H.; Modarresi, M.; Nahar, L.; Sarker, S.D. Flavone C-glycosides and cucurbitacin glycosides from Citrullus colocynthis. DARU J. Pharm. Sci. 2006, 14, 109–114. [Google Scholar]
- Ogbuji, K.; McCutcheon, G.S.; Simmons, A.M.; Snook, M.E.; Harrison, H.F.; Levi, A. Partial Leaf Chemical Profiles of a Desert Watermelon Species (Citrullus colocynthis) and Heirloom Watermelon Cultivars (Citrullus lanatus var. lanatus). HortScience 2012, 47, 580–584. [Google Scholar] [CrossRef]
- Chawech, R.; Jarraya, R.; Girardi, C.; Vansteelandt, M.; Marti, G.; Nasri, I.; Racaud-Sultan, C.; Fabre, N. Cucurbitacins from the Leaves of Citrullus colocynthis (L.) Schrad. Molecules 2015, 20, 18001–18015. [Google Scholar] [CrossRef] [PubMed]
- Hussain, A.I.; Rathore, H.A.; Sattar, M.Z.; Chatha, S.A.; ud din Ahmad, F.; Ahmad, A.; Johns, E.J. Phenolic profile and antioxidant activity of various extracts from Citrullus colocynthis (L.) from the Pakistani flora. Ind. Crop. Prod. 2013, 45, 416–422. [Google Scholar] [CrossRef]
- Adam, S.E.I.; Al-Yahya, M.; l-Farhan, A.H. Response of Najdi sheep to oral administration of Citrullus colocynthis fruits, Nerium oleander leaves or their mixture. Small Rumin. Res. 2001, 40, 239–244. [Google Scholar] [CrossRef]
- Yoshikawa, M.; Morikawa, T.; Kobayashi, H.; Nakamura, A.; Matsuhira, K.; Nakamura, S.; Matsuda, H. Bioactive saponins and glycosides. XXVII. Structures of new cucurbitane-type triterpene glycosides and antiallergic constituents from Citrullus colocynthis. Chem. Pharm. Bull. 2007, 55, 428–434. [Google Scholar] [CrossRef]
- Shawkey, A.M.; Rabeh, M.A.; Abdellatif, A.O. Biofuntional moleculs from Citrullus colocynthis: An HPLC/MS analysis in correlation to antimicrobial and anticancer activities. Adv. Life Sci. Technol. 2014, 17, 51–61. [Google Scholar]
- Jian, C.C.; Chiu, M.H.; Nie, R.L.; Cordell, G.A.; Qiu, S.X. Cucurbitacins and cucurbitaneglycosides: Structures and biological activities. Nat. Prod. Rep. 2005, 22, 386–399. [Google Scholar]
- Negri, M.; Salci, T.P.; Shinobu-Mesquita, C.S.; Capoci, I.R.; Svidzinski, T.I.; Kioshima, E.S. Early state research on antifungal natural products. Molecules 2014, 19, 2925–2956. [Google Scholar] [CrossRef]
- Caceres, I.; El Khoury, R.; Medina, Á.; Lippi, Y.; Naylies, C.; Atoui, A.; El Khoury, A.; Oswald, I.; Bailly, J.-D.; Puel, O. Deciphering the anti-aflatoxinogenic properties of eugenol using a large-scale q-PCR approach. Toxins 2016, 8, 123. [Google Scholar] [CrossRef]
- Degola, F.; Bisceglie, F.; Pioli, M.; Palmano, S.; Elviri, L.; Pelosi, G.; Lodi, T.; Restivo, F.M. Structural modification of cuminaldehyde thiosemicarbazone increases inhibition specificity toward aflatoxin biosynthesis and sclerotia development in Aspergillus flavus. Appl. Microbiol. Biotechnol. 2017, 101, 6683–6696. [Google Scholar] [CrossRef]
- Abbas, H.K.; Wilkinson, J.; Zablotowicz, R.; Accinelli, C.; Abel, C.; Bruns, H.; Weaver, M. Ecology of Aspergillus flavus, regulation of aflatoxin production, and management strategies to reduce aflatoxin contamination of corn. Toxin Rev. 2009, 28, 142–153. [Google Scholar] [CrossRef]
- Ehrlich, K.C.; Moore, G.G.; Mellon, J.E.; Bhatnagar, D. Challenges facing the biological control strategy for eliminating aflatoxin contamination. World Mycotoxin J. 2015, 8, 225–233. [Google Scholar] [CrossRef]
- Bhatnagar, D.; McCormick, S.P. The inhibitory effect of neem (Azadirachta indica) leaf extracts on aflatoxin synthesis in Aspergillus parasiticus. J. Am. Oil Chem. Soc. 1988, 65, 1166–1168. [Google Scholar] [CrossRef]
- Masood, A.; Ranjan, K.S. The effect of aqueous plant extracts on growth and aflatoxin production by Aspergillus flavus. Lett. Appl. Microbiol. 1991, 13, 32–34. [Google Scholar] [CrossRef]
- Ansari, A.A.; Shrivastava, A.K. The effect of eucalyptus oil on growth and aflatoxin production by Aspergillus flavus. Lett. Appl. Microbiol. 1991, 13, 75–77. [Google Scholar] [CrossRef]
- Pottier Alapetite, G. Flore de la Tunisie. Angiospermes-dicotylédones, Gamopétales. Programme Flore Végétation Tunis. 1981, 655–1190. [Google Scholar]
- Singleton, V.L.; Rossi, J.A. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Degola, F.; Berni, E.; Restivo, F.M. Laboratory tests for assessing efficacy of atoxigenic Aspergillus flavus strains as biocontrol agents. Int. J. Food Microbiol. 2011, 146, 235–343. [Google Scholar] [CrossRef] [PubMed]
Ethyl Acetate | Methanol | Chloroform | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n° | Name | MW | [M − H]−, m/z | MS/MS, m/z | λmax, nm | Leaf | Stem | Root | Leaf | Stem | Root | Leaf | Stem | Root |
1 | Esculetin | 178 | 177 | 133, 105, 89 | 330 | 40.6 ± 4.91 | 10.5 ± 1.08 | 17.7 ± 2.03 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
2 | p-Coumaric acid | 164 | 163 | 147, 119 | 225, 310 | 20.7 ± 1.24 | 6.55 ± 0.45 | 1.67 ± 0.09 | 1.59 ± 0.12 | 1.75 ± 0.17 | n.d. | n.d. | n.d. | n.d. |
3 | Orientin | 448 | 447 | 327, 357, 285 | 350, 269 | n.d. | n.d. | 0.28 ± 0.01 | 140.3 ± 20.87 | 7.30 ± 0.97 | 1.20 ± 0.18 | n.d. | n.d. | n.d. |
4 | Apigenin-hexoside | 432 | 431 | 311, 269, 211, 159 | 267, 337 | 1.59 ± 0.23 | 0.41 ± 0.05 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
5 | trans p-Coumaric acid 4-O-malate | 280 | 279 | 147, 119 | 225, 310 | 0.79 ± 0.09 | 1.89 ± 0.31 | n.d. | 2.837 ± 0.21 | 5.44 ± 0.61 | n.d. | n.d. | n.d. | n.d. |
6 | Vitexin | 432 | 431 | 311, 341, 269 | 267, 337 | 3.86 ± 0.04 | n.d. | n.d. | 7.69 ± 0.68 | 4.66 ± 0.59 | n.d. | n.d. | n.d. | n.d. |
7 | Apigenin -D-glucopyranosyl-8-apiofuranoside | 564 | 563 | 311, 269 | 267, 337 | 59.6 ± 0.73 | 13.10 ± 1.44 | n.d. | 529.1 ± 30.17 | 108.5 ± 11.39 | n.d. | n.d. | n.d. | n.d. |
8 | Apigenin derivative (isomer 1) | 548 | 547 | 311 | 267, 337 | 13.5 ± 1.70 | 3.16 ± 0.29 | 0.05 ± 0.00 | 4.6 ± 0.42 | 0.31 ± 0.00 | 0.7 | n.d. | n.d. | n.d. |
9 | Apigenin derivative (isomer 2) | 548 | 547 | 311 | 267, 337 | 47.7 ± 3.99 | 14.3 ± 1.74 | 0.28 ± 0.01 | 13.6 ± 0.15 | 8.09 ± 0.06 | 1.77 | n.d. | n.d. | n.d. |
10 | caffeoyl malic Flavone | 578 | 577 | 179 | 340, 270 | 3.08 ± 0.29 | 1.19 ± 0.02 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
11 | coumaric Flavone derivative | 584 | 583 | 285, 147 | 348, 310 | 4.88 ± 0.51 | 5.06 ± 0.61 | 0.08 ± 0.00 | 55.1 ± 6.48 | 6.68 ± 0.52 | 1.34 ± 0.14 | n.d. | n.d. | n.d. |
12 | Apigenin derivative | 752 | 751 | 311 | 267, 337 | n.d. | 63.6 ± 5.41 | 24.9 ± 1.84 | 12.8 ± 2.54 | n.d. | n.d. | n.d. | n.d. | n.d. |
13 | Cucurbitacin E | 556 | 555 | n.d. | 229 | 54.2 ± 6.0 | 57.9 ± 6.9 | 13. 6 ± 0.98 | n.d. | 6.84 ± 0.54 | 2.48 ± 0.54 | 44.5 ± 5.41 | 55.9 ± 7.82 | 14.5 ± 2.54 |
14 | Cucurbitacin I | 514 | 513 | n.d. | 229 | 99.8 ± 8.21 | 5.81 ± 0.42 | 27.6 ± 3.41 | n.d. | n.d. | n.d. | 212.6 ± 32.77 | 220.2 ± 19.9 | 41.3 ± 6.77 |
15 | acetyl Cucurbitacin E | 760 | 759 | n.d. | 229 | 9.31 ± 0.57 | n.d. | 3.59 ± 0.08 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
16 | coumaroyl acetyl Cucurbitacin I | 864 | 863 | n.d. | 229 | 7.13 ± 0.44 | n.d. | 0.99 ± 0.00 | n.d. | n.d. | n.d. | 36.6 ± 4.09 | n.d. | n.d. |
17 | Apigenin-dihexoside | 594 | 593 | 311 | 267, 337 | n.d. | n.d. | n.d. | 15.4 ± 2.01 | 18.1 ± 2.55 | n.d. | n.d. | n.d. | n.d. |
18 | Epicatechin gallate | 442 | 441 | 289 | 280 | n.d. | n.d. | n.d. | 16.8 ± 2.11 | 10.8 ± 0.98 | n.d. | n.d. | n.d. | n.d. |
19 | Colocynthoside B | 806 | 805 | n.d. | 230 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | 25.6 ± 3.29 | 3.89 ± 0.45 | 6.69 ± 0.71 |
CHL | EA | MET | CNT | |
---|---|---|---|---|
Root | 0.45 ± 0.13 a | 0.43 ± 0.06 a | 0.43 ± 0.09 a | 0.47 ± 0.08 a |
Stem | 0.45 ± 0.11 a | 0.39 ± 0.15 a | 0.44 ± 0.12 a | 0.47 ± 0.08 a |
Leaf | 0.44 ±0.13 a | 0.46 ± 0.08 a | 0.43 ± 0.10 a | 0.47 ± 0.08 a |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Degola, F.; Marzouk, B.; Gori, A.; Brunetti, C.; Dramis, L.; Gelati, S.; Buschini, A.; Restivo, F.M. Aspergillus flavus as a Model System to Test the Biological Activity of Botanicals: An Example on Citrullus colocynthis L. Schrad. Organic Extracts. Toxins 2019, 11, 286. https://doi.org/10.3390/toxins11050286
Degola F, Marzouk B, Gori A, Brunetti C, Dramis L, Gelati S, Buschini A, Restivo FM. Aspergillus flavus as a Model System to Test the Biological Activity of Botanicals: An Example on Citrullus colocynthis L. Schrad. Organic Extracts. Toxins. 2019; 11(5):286. https://doi.org/10.3390/toxins11050286
Chicago/Turabian StyleDegola, Francesca, Belsem Marzouk, Antonella Gori, Cecilia Brunetti, Lucia Dramis, Stefania Gelati, Annamaria Buschini, and Francesco M. Restivo. 2019. "Aspergillus flavus as a Model System to Test the Biological Activity of Botanicals: An Example on Citrullus colocynthis L. Schrad. Organic Extracts" Toxins 11, no. 5: 286. https://doi.org/10.3390/toxins11050286
APA StyleDegola, F., Marzouk, B., Gori, A., Brunetti, C., Dramis, L., Gelati, S., Buschini, A., & Restivo, F. M. (2019). Aspergillus flavus as a Model System to Test the Biological Activity of Botanicals: An Example on Citrullus colocynthis L. Schrad. Organic Extracts. Toxins, 11(5), 286. https://doi.org/10.3390/toxins11050286