Large-Scale Green Liver System for Sustainable Purification of Aquacultural Wastewater: Construction and Case Study in a Semiarid Area of Brazil (Itacuruba, Pernambuco) Using the Naturally Occurring Cyanotoxin Microcystin as Efficiency Indicator
Abstract
:1. Introduction
2. Results and Discussion
2.1. First Trial
2.2. Second Trial and Final Layout
2.3. Contaminant Monitoring
3. Conclusions
4. Materials and Methods
4.1. Customized Planning
4.2. Flow Calculations and Upscaling
4.3. Aquatic Macrophytes Used for the Green Liver System
4.4. First Trial
4.5. Second Trial and Final Layout
4.6. Microcystin Congener Monitoring
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Kubitza, F. An overview of tilapia aquaculture in Brazil. In New Dimensions on Farmed Tilapia, Proceedings of the 6th International Symposium on Tilapia in Aquaculture, Manila, Philippines, 12–16 September 2004; Bolivar, R.B., Mair, G.C., Fitzsimmons, K., Eds.; NRAES: Ithaca, NY, USA, 2004; Available online: http://ag.arizona.edu/azaqua/ista/ista6/ista6web/pdf/709.pdf (accessed on 12 February 2019).
- Pincinato, R.B.M.; Asche, F. The development of Brazilian aquaculture: Introduced and native species. Aquac. Econ. Manag. 2016, 20, 312–323. [Google Scholar] [CrossRef]
- Henry-Silva, G.G.; Camargo, A.F.M. Impacto das atividades de aquicultura e sistemas de tratamento de efluentes com macrófitas aquáticas: Relato de caso. Bol. Inst. Pesca 2008, 34, 163–173. [Google Scholar]
- Rose, P.E.; Pedersen, J.A. Fate of oxytetracycline in streams receiving aquaculture discharges: Model simulations. Environ. Toxicol. Chem. 2005, 24, 40–50. [Google Scholar] [CrossRef] [PubMed]
- Hoga, C.A.; Almeida, F.L.; Reyes, F.G.L. A review on the use of hormones in fish farming: Analytical methods to determine their residues. CyTA Food 2018, 16, 679–691. [Google Scholar] [CrossRef] [Green Version]
- Scholz, S.N.; Esterhuizen-Londt, M.; Pflugmacher, S. Rise of toxic cyanobacterial blooms in temperate freshwater lakes: Causes, correlations and possible countermeasures. Toxicol. Environ. Chem. 2017, 99, 543–577. [Google Scholar] [CrossRef]
- Omidi, A.; Esterhuizen-Londt, M.; Pflugmacher, S. Still challenging: The ecological function of the cyanobacterial toxin microcystin—What we know so far. Toxin Rev. 2018, 37, 87–105. [Google Scholar] [CrossRef] [Green Version]
- Mancuso, M. Effects of fish farming on marine environment. J. FisheriesSciences.com 2015, 9, 89–90. [Google Scholar]
- Pflugmacher, S. Green Liver and Green Liver System—A sustainable way for future water purification. Aperito J. Aquat. Mar. Ecosyst. 2015, 1. [Google Scholar] [CrossRef]
- Pflugmacher, S.; Kühn, S.; Lee, S.; Choi, J.; Baik, S.; Kwon, K.; Contardo-Jara, V. Green Liver Systems® for Water Purification: Using the phytoremediation potential of aquatic macrophytes for the removal of different cyanobacterial toxins from water. Am. J. Plant Sci. 2015, 6, 1607–1618. [Google Scholar] [CrossRef] [Green Version]
- Sandermann, H. Plant metabolism of xenobiotics. Trends Biochem. Sci. 1992, 17, 82–84. [Google Scholar] [CrossRef]
- Sandermann, H. Higher plant metabolism of xenobiotics: The “Green Liver” Concept. Pharmacogenetics 1994, 4, 225–241. [Google Scholar] [CrossRef]
- DeBusk, T.A.; Williams, C.; Ryther, J.H. Removal of nitrogen and phosphorus from wastewater in a water hyacinth-based treatment system. J. Environ. Qual. 1983, 12, 257–262. [Google Scholar] [CrossRef]
- Boyd, C. Guidelines for aquaculture effluent management at the farm-level. Aquaculture 2003, 226, 101–112. [Google Scholar] [CrossRef]
- Baccarin, A.E.; Camargo, A.F.M. Characterization and evaluation of the impact of feed management on the effluents of Nile tilapia (Oreochromis niloticus) culture. Braz. Arch. Biol. Technol. 2005, 48, 81–90. [Google Scholar] [CrossRef] [Green Version]
- Esterhuizen-Londt, M.; Pflugmacher, S.; Downing, T.G. β-N-Methylamino-L-alanine (BMAA) uptake by the aquatic macrophyte Ceratophyllum demersum. Ecotoxicol. Environ. Saf. 2011, 74, 74–77. [Google Scholar] [CrossRef]
- Vilvert, E.; Contardo-Jara, V.; Esterhuizen-Londt, M.; Pflugmacher, S. The effect of oxytetracycline on physiological and enzymatic defense responses in aquatic plant species Egeria densa, Azolla caroliniana, and Taxiphyllum barbieri. Toxicol. Environ. Chem. 2017, 99, 104–116. [Google Scholar] [CrossRef]
- Contardo-Jara, V.; Kuehn, S.; Pflugmacher, S. Single and combined exposure to MC-LR and BMAA confirm suitability of Aegagropila linnaei for use in Green Liver Systems®—A case study with cyanobacterial toxins. Aquat. Toxicol. 2015, 165, 101–108. [Google Scholar] [CrossRef]
- Nimptsch, J.; Wiegand, C.; Pflugmacher, S. Cyanobacterial toxin elimination via bioaccumulation of MC-LR in aquatic macrophytes: An application of the “Green Liver Concept”. Environ. Sci. Technol. 2008, 42, 8552–8557. [Google Scholar] [CrossRef]
- Redding, T.; Todd, S.; Midlen, A. The treatment of aquaculture wastewaters—A botanical approach. J. Environ. Manag. 1997, 50, 283–299. [Google Scholar] [CrossRef]
- Bennicelli, R.; Stepniewska, Z.; Banach, A.; Szajnocha, K.; Ostrowski, J. The ability of Azolla caroliniana to remove heavy metals (Hg(II), Cr(III), Cr (IV)) from municipal waste water. Chemosphere 2004, 55, 141–146. [Google Scholar] [CrossRef]
- Singh, P.K.; Singh, D.P.; Singh, R.P. Growth, acetylene reduction activity, nitrate uptake and nitrate reductase activity of Azolla caroliniana and Azolla pinnata at varying nitrate levels. Biochem. Physiol. Pflanz. 1992, 188, 121–127. [Google Scholar] [CrossRef]
- Forni, C.; Chen, J.; Tancioni, L.; Caiola, M.G. Evaluation of the fern Azolla for growth, nitrogen and phosphorus removal from wastewater. Water Res. 2001, 35, 1592–1598. [Google Scholar] [CrossRef]
- Toledo, J.J.; Penha, J. Performance of Azolla caroliniana Wild. and Salvinia auriculata Aubl. on fish farming effluent. Braz. J. Biol. 2011, 71, 37–45. [Google Scholar] [CrossRef] [PubMed]
- Laurinavichene, T.V.; Yakunin, A.F.; Gototov, I.N. Effect of temperature and photoperiod duration on growth and nitrogen fixation in Azolla. Fiziol. Rast. (Moscow) 1990, 37, 457–461. [Google Scholar]
- Liu, X.; Chen, M.; Bian, Z.; Liu, C. Studies on urine treatment by biological purification using Azolla and UV photocatalytic oxidation. Adv. Space Res. 2008, 41, 783–786. [Google Scholar] [CrossRef]
- Watanabe, I.; Berja, N.S. The growth of four species of Azolla as affected by temperature. Aquat. Bot. 1983, 15, 175–185. [Google Scholar] [CrossRef]
- Henry-Silva, G.G.; Camargo, A.F.M. Efficiency of aquatic macrophytes to treat Nile Tilapia pond effluents. Sci. Agric. (Piracicaba Braz.) 2006, 63, 433–438. [Google Scholar] [CrossRef] [Green Version]
- Rai, D.N.; Datta Mushi, J. The influence of thick floating vegetation (Water hyacinth: Eichhornia crassipes) on the physicochemical environment of a freshwater wetland. Hydrobiologia 1979, 62, 65–69. [Google Scholar] [CrossRef]
- Greco, M.K.B.; Freitas, J.R. On two methods to estimate the reproduction of Eicchornia crassipes in the eutrophic Pampulha reservoir (MG/Brazil). Braz. J. Biol. 2002, 62, 463–471. [Google Scholar] [CrossRef] [Green Version]
- Zimmles, Y.; Kirzhner, F.; Malkovskaja, A. Application of Eichhornia crassipes and Pistia stratiotes for treatment of urban sewage in Israel. J. Environ. Manag. 2006, 81, 420–428. [Google Scholar] [CrossRef]
- Ebel, M.; Evangelou, M.W.H.; Schaeffer, A. Cyanide phytoremediation by water hyacinths (Eichhornia crassipes). Chemosphere 2006, 66, 816–823. [Google Scholar] [CrossRef]
- Caldelas, C.; Santiago, I.T.; Araus, J.L.; Bort, J.; Febrero, A. Physiological response of Eichhornia crassipes (Mart.) Solms to the combined exposure to excess nutrients and Hg. Braz. J. Plant Physiol. 2009, 21, 1–12. [Google Scholar] [CrossRef] [Green Version]
- NAS—National Academy of Sciences. Making Aquatic Weeds Useful: Some Perspectives for Developing Countries, 4th ed.; NAS: Washington, DC, USA, 1981; 174p. [Google Scholar]
- Reddy, K.R.; Agami, M.; Tucker, J.C. Influence of nitrogen supply rates on growth and nutrient storage by water hyacinth (Eichhornia crassipes) plants. Aquat. Bot. 1989, 36, 33–43. [Google Scholar] [CrossRef]
- Reddy, K.R.; Agami, M.; Tucker, J.C. Influence of phosphorus on growth and nutrient storage by water hyacinth (Eichhornia crassipes) plants. Aquat. Bot. 1990, 37, 355–365. [Google Scholar] [CrossRef]
- Center, T.D.; Van, T.K. Alteration of water hyacinth (Eichhornia crassipes (Mart) Solms) leaf dynamics and phytochemistry by insect damage and plant density. Aquat. Bot. 1989, 35, 181–195. [Google Scholar] [CrossRef]
- Lesage, E.; Mundia, C.; Rousseau, D.P.L. Sorption of Co, Cu, Ni and Zn from industrial effluents by the submerged aquatic macrophyte Myriophyllum spicatum. Ecol. Eng. 2007, 30, 320–325. [Google Scholar] [CrossRef]
- Bakar, A.F.A.; Yusoff, I.; Fatt, N.T.; Othman, F.; Ashraf, M.A. Arsenic, zinc and aluminium removal from gold mine wastewater effluent and accumulation by submerged aquatic plants (Caboma piauhyensis, Egeria densa and Hydrilla verticillata). BioMed Res. Int. 2013, 890803. [Google Scholar] [CrossRef] [Green Version]
- Gujarathi, N.P.; Haney, B.J.; Linden, J.C. Phytoremediation potential of Myriophyllum aquaticum and Pistia stratiotes to modify antibiotic growth promoters, tetracycline and oxytetracycline in aqueous wastewater systems. Int. J. Phytoremediat. 2005, 7, 99–112. [Google Scholar] [CrossRef] [PubMed]
- Bouaïcha, N.; Miles, C.O.; Beach, D.G.; Labidi, Z.; Djabri, A.; Benayache, N.Y.; Nguyen-Quang, T. Structural Diversity, Characterization and Toxicology of Microcystins. Toxins 2019, 11, 714. [Google Scholar] [CrossRef] [Green Version]
- Garfí, M.; Pedescoll, A.; Bécares, E.; Hijosa-Valsero, M.; Sidrach-Cardona, R.; García, J. Effect of climatic conditions, season and wastewater quality on contaminant removal efficiency of two experimental constructed wetlands in different regions of Spain. Sci. Total Environ. 2012, 437, 61–67. [Google Scholar] [CrossRef]
- Wu, L.; Pflugmacher, S.; Yang, A.; Esterhuizen-Londt, M. Photocatalytic degradation of microcystin-LR by modified high-energy {001} titanium dioxide: Kinetics and mechanism study of HF8. SDRP J. Earth Sci. Environ. Stud. 2018, 3, 408–416. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Esterhuizen, M.; Pflugmacher, S. Large-Scale Green Liver System for Sustainable Purification of Aquacultural Wastewater: Construction and Case Study in a Semiarid Area of Brazil (Itacuruba, Pernambuco) Using the Naturally Occurring Cyanotoxin Microcystin as Efficiency Indicator. Toxins 2020, 12, 688. https://doi.org/10.3390/toxins12110688
Esterhuizen M, Pflugmacher S. Large-Scale Green Liver System for Sustainable Purification of Aquacultural Wastewater: Construction and Case Study in a Semiarid Area of Brazil (Itacuruba, Pernambuco) Using the Naturally Occurring Cyanotoxin Microcystin as Efficiency Indicator. Toxins. 2020; 12(11):688. https://doi.org/10.3390/toxins12110688
Chicago/Turabian StyleEsterhuizen, Maranda, and Stephan Pflugmacher. 2020. "Large-Scale Green Liver System for Sustainable Purification of Aquacultural Wastewater: Construction and Case Study in a Semiarid Area of Brazil (Itacuruba, Pernambuco) Using the Naturally Occurring Cyanotoxin Microcystin as Efficiency Indicator" Toxins 12, no. 11: 688. https://doi.org/10.3390/toxins12110688
APA StyleEsterhuizen, M., & Pflugmacher, S. (2020). Large-Scale Green Liver System for Sustainable Purification of Aquacultural Wastewater: Construction and Case Study in a Semiarid Area of Brazil (Itacuruba, Pernambuco) Using the Naturally Occurring Cyanotoxin Microcystin as Efficiency Indicator. Toxins, 12(11), 688. https://doi.org/10.3390/toxins12110688