Key Global Actions for Mycotoxin Management in Wheat and Other Small Grains
Abstract
:1. Introduction
2. Fungi
2.1. Fusarium
2.1.1. Taxonomy and Geographic Distribution
2.1.2. Fusarium Head Blight Disease Process
2.1.3. Black Point
2.2. Alternaria
2.3. Claviceps
Ergot Disease Process
2.4. Aspergillus
2.4.1. Aspergillus ochraceous
2.4.2. Aspergillus flavus
2.5. Penicillium
3. Toxins
3.1. Trichothecenes
3.2. Zearalenone
3.3. Black Point-Associated Toxins
3.3.1. Alternaria-Associated Toxins
3.3.2. Fumonisins
3.4. Ergot Alkaloids
3.5. Ochratoxin A
3.6. Aflatoxins
4. Pre-Harvest
4.1. Wheat
4.1.1. Fusarium Head Blight
Host Resistance to Disease and Toxin
Fusarium Head Blight and Deoxynivalenol Forecasting Models
Cultural Practices
Crop Rotation
Tillage
Planting Date
Nitrogen Fertilization
Irrigation
Fungicides
Biological Control
Insect Control
Organic Farming
4.1.2. Control of Black Point
4.2. Rye (Secale cereale)
Control of Ergot
5. Post-Harvest
5.1. Harvest
5.2. Grain Cleaning and Sorting
Ergot
5.3. Drying, Storage and Decontamination
- Dry grain to 10–14% moisture content as quickly as possible. In many cases, grain at harvest will already be this dry. Dry as much as is needed for safety, but do not dry any further as excessive drying reduces the monetary value of the grain, which is sold by weight. For example, grain with 10% moisture is worth approximately 4% less than grain with 13% moisture, although drier grain can be stored for a longer time than wetter grain.
- Store in a suitable bin. The bin should be aerated if storage is to be for more than six months, and also may need to be cooled if the grain is stored through the summer. Bins should: (i) hold the grain without leaks or spills, (ii) prevent rain, snow or soil moisture from reaching the grain, (iii) protect grain from rodents, birds, other pests, damage from fire and wind, and theft, (iv) permit effective insect control, and (v) have sufficient headspace above the stored grain for sampling, inspecting, ventilating and treating the grain.
- Control insects in as many ways as necessary. Potential controls include (i) interior bin and bin perimeter sprays, (ii) insecticides applied to the grain as it is transferred to the bin, (iii) special treatments to protect grain that is most exposed at the top of the bin, and (iv) fumigation to reduce ongoing infestations.
- Control temperature. The lower the temperature the more difficult it is for significant insect or fungal metabolism to occur. A winter temperature of ~5 °C is viewed as optimal. A sensor network in the bin can help detect respiratory hotspots, which may be problematic if left untreated. Grain cooling usually is accomplished by aeration with outside air that is at least 5 °C cooler than the grain itself.
- Aerate the grain. Aerating the grain reduces the opportunity for moisture to collect and helps keep the temperature uniform. Aerate, usually from the bottom of the bin, long enough so that if a moisture front forms it can move completely through the grain and out the top of the bin. The relative humidity of the air used for aeration varies with temperature, but usually should be <60% to prevent rehydration of already dried grain.
5.3.1. Ozonation
5.3.2. Steam
5.3.3. Ammoniation
5.4. Milling
5.4.1. Dry Milling
5.4.2. Wet Milling
5.5. End-Product Utilization
5.5.1. Enzymes
5.5.2. Fermentation
Brewing
5.5.3. Bread and Other Baked Goods
5.5.4. Pasta
5.5.5. Extrusion
5.5.6. Binders
6. Nominal Group Discussions
6.1. Strategy and Methodology
- Silent generation of ideas.
- Sharing and recording of unique ideas.
- Idea explanation and potential modification.
- Voting and ranking. Each participant ranks the five most important answers for the question on the flip chart list, with the most important answer being given a “5”. The second choice answer receives a “4”, the next a “3”, and so on. Thus, for each response two numbers are generated—the number of individuals who considered the response amongst the five most important answers to the questions and a weighted ranking number that is the sum of the rankings of the participants who selected the response as one of the five most important.
- Presentation of results. Results from the discussions are presented on a question by question basis in Table 2, Table 3, Table 4 and Table 5. Results for pre-harvest questions 1–3 are summarized in a single table (Table 2), with results for the other questions each presented in individual tables (Table 3, Table 4 and Table 5). Within each table, responses that were selected by both groups are given first and followed by those selected by a single group. Responses within a set are ordered based on the number of individuals selecting the response, and then by the summed weight of the responses. Responses given in a group, but not included on any individual’s list of the top five (so no weighted score), are denoted with a “●” to enable distinction between an unweighted response and a response that was absent, which is left blank (“–”).
6.2. Nominal Group Questions 1–3
6.3. Nominal Group Question 4
6.4. Nominal Group Question 5
6.5. Nominal Group Question 6
6.6. Nominal Group Questions Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Worldwide Production of Grain in 2020/21, by Type. Available online: https://www.statista.com/statistics/263977/world-grain-production-by-type/ (accessed on 5 October 2021).
- Godfray, H.C.; Beddington, J.R.; Crute, I.R.; Haddad, L.; Lawrence, D.; Muir, J.F.; Pretty, J.; Robinson, S.; Thomas, S.M.; Toulmin, C. Food security: The challenge of feeding 9 billion people. Science 2010, 327, 812–818. [Google Scholar] [CrossRef] [Green Version]
- Mesterházy, Á.; Oláh, J.; Popp, J. Losses in the grain supply chain: Causes and solutions. Sustainability 2020, 12, 2342. [Google Scholar] [CrossRef] [Green Version]
- Antonissen, G.; Martel, A.; Pasmans, F.; Ducatelle, R.; Verbrugghe, E.; van den Broucke, V.; Li, S.; Haesebrouck, F.; van Immerseel, F.; Croubels, S. The impact of Fusarium mycotoxins on human and animal host susceptibility to infectious diseases. Toxins 2014, 6, 430–452. [Google Scholar] [CrossRef] [Green Version]
- Hussein, S.H.; Brasel, J.M. Toxicity, metabolism, and impact of mycotoxins on humans and animals. Toxicology 2001, 67, 101–134. [Google Scholar] [CrossRef]
- Mishra, S.; Ansari, K.M.; Dwivedi, P.D.; Pandey, H.P.; Das, M. Occurrence of deoxynivalenol in cereals and exposure risk assessment in Indian population. Food Cont. 2012, 30, 549–555. [Google Scholar] [CrossRef]
- Sun, J.; Wu, Y. Evaluation of dietary exposure to deoxynivalenol (DON) and its derivatives from cereals in China. Food Cont. 2016, 69, 90–99. [Google Scholar] [CrossRef]
- Bennett, J.W.; Klich, M. Mycotoxins. Clin. Microbiol. Rev. 2003, 16, 497–516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schatzmayr, G.; Streit, E. Global occurrence of mycotoxins in the food and feed chain: Facts and figures. World Mycotox. J. 2013, 6, 213–222. [Google Scholar] [CrossRef]
- Stanciu, O.; Banc, R.; Cozma, A.; Filip, L.; Miere, D.; Mañes, J.; Loghin, F. Occurrence of Fusarium mycotoxins in wheat from Europe—A review. Acta Univers. Cibin. Ser. E Food Technol. 2015, 19, 35–60. [Google Scholar]
- Fernandez, M.R.; Conner, R.L. Black point and smudge in wheat. Prair. Soils Crop. J. 2011, 4, 158–164. [Google Scholar]
- Zhang, H.; Zhang, Z.; van der Lee, T.; Chen, W.Q.; Xu, J.; Xu, J.S.; Yang, L.; Yu, D.; Waalwijk, C.; Feng, J. Population genetic analyses of Fusarium asiaticum populations from barley suggest a shift favoring 3ADON producers in southern China. Phytopathology 2010, 100, 328–336. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; van der Lee, T.; Waalwijk, C.; Chen, W.Q.; Xu, J.; Xu, J.S.; Zhang, Y.; Feng, J. Population analysis of the Fusarium graminearum species complex from wheat in China show a shift to more aggressive isolates. PLoS ONE 2012, 7, e31722. [Google Scholar] [CrossRef] [Green Version]
- Del Ponte, E.M.; Fernandes, J.M.C.; Pavan, W.; Baethgen, W.E. A model-based assessment of the impacts of climate variability on Fusarium head blight seasonal risk in Southern Brazil. J. Phytopathol. 2009, 157, 675–681. [Google Scholar] [CrossRef]
- Del Ponte, E.M.; Spolti, P.; Ward, T.J.; Gomes, L.B.; Nicolli, C.P.; Kuhnem, P.R.; Silva, C.N.; Tessmann, D.J. Regional and field-specific factors affect the composition of Fusarium head blight pathogens in subtropical no-till wheat agroecosystem of Brazil. Phytopathology 2015, 105, 246–254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moschini, R.C.; Martínez, M.I.; Sepulcri, M.G. Modeling and forecasting systems for Fusarium head blight and deoxynivalenol content in wheat in Argentina. In Fusarium Head Blight in Latin America; Alconada Magliano, T.M., Chulze, S.N., Eds.; Springer: Dordrecht, The Netherlands, 2013; pp. 205–227. [Google Scholar]
- Palazzini, J.; Fumero, M.V.; Yerkovich, N.; Barros, G.; Cuniberti, M.; Chulze, S.N. Correlation between Fusarium graminearum and deoxynivalenol during the 2012/13 wheat Fusarium Head Blight outbreak in Argentina. Cer. Res. Comm. 2015, 43, 627–637. [Google Scholar] [CrossRef] [Green Version]
- Spolti, P.; Shah, D.A.; Fernandes, J.M.C.; Bergstrom, G.C.; Del Ponte, E.M. Disease risk, spatial patterns, and incidence-severity relationships of Fusarium head blight in no-till spring wheat following maize or soybean. Plant. Dis. 2015, 99, 1360–1366. [Google Scholar] [CrossRef]
- Panwar, V.; Aggarwal, A.; Paul, S.; Kumar, J.; Saharan, M.S. Distribution dynamics of Fusarium spp. causing Fusarium head blight (FHB) in wheat at different geographical locations in India. So. As. J. Experi. Biol. 2016, 6, 167–177. [Google Scholar] [CrossRef]
- Minaar-Ontong, A.; Herselman, L.; Kriel, W.-M.; Leslie, J.F. Morphological characterization and trichothecene genotype analysis of a Fusarium Head Blight population in South Africa. Eur. J. Plant. Pathol. 2017, 148, 261–269. [Google Scholar] [CrossRef]
- McMullen, M.; Bergstrom, G.C.; De Wolf, E.; Dill-Macky, R.; Hershman, D.; Shaner, G.; van Sanford, D. A unified effort to fight an enemy of wheat and barley: Fusarium head blight. Plant. Dis. 2012, 96, 1712–1728. [Google Scholar] [CrossRef] [Green Version]
- Windels, C.E. Economic and social impacts of Fusarium head blight: Changing farms and rural communities in the Northern Great Plains. Phytopathology 2000, 90, 17–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xue, A.G.; Chen, Y.-H.; Seifert, K.; Guo, W.; Blackwell, B.A.; Harris, L.J.; Overy, D.P. Prevalence of Fusarium species causing head blight of spring wheat, barley and oat in Ontario during 2001–2017. Can. J. Plant. Pathol. 2019, 41, 392–402. [Google Scholar] [CrossRef]
- Aboukhaddour, R.; Fetch, T.; McCallum, B.D.; Harding, M.W.; Beres, B.L.; Graf, R.J. Wheat diseases on the prairies: A Canadian story. Plant. Pathol. 2020, 69, 418–432. [Google Scholar] [CrossRef]
- Moretti, A.; Pascale, M.; Logrieco, A.F. Mycotoxin risks under a climate change scenario in Europe. Tr. Food Sci. Technol. 2019, 84, 38–40. [Google Scholar] [CrossRef]
- Obanor, F.; Neate, S.; Simpfendorfer, S.; Sabburg, R.; Wilson, P.; Chakraborty, S. Fusarium graminearum and Fusarium pseudograminearum caused the 2010 head blight epidemics in Australia. Plant. Pathol. 2013, 62, 79–91. [Google Scholar] [CrossRef] [Green Version]
- Buerstmayr, M.; Steiner, B.; Buerstmayr, H. Breeding for Fusarium head blight resistance in wheat—Progress and challenges. Plant. Breed. 2020, 139, 429–454. [Google Scholar] [CrossRef]
- Ma, Z.; Xie, Q.; Li, G.; Jia, H.; Zhou, J.; Kong, Z.; Li, N.; Yuan, Y. Germplasms, genetics and genomics for better control of disastrous wheat Fusarium head blight. Theor. Appl. Genet. 2020, 133, 154–168. [Google Scholar] [CrossRef] [PubMed]
- Mesterházy, Á. Updating the breeding philosophy of wheat to Fusarium head blight (FHB): Resistance components, QTL identification, and phenotyping—A review. Plants 2020, 9, 1702. [Google Scholar] [CrossRef] [PubMed]
- De Wolf, E.; Paul, P.A. Predicting mycotoxin contamination in wheat. In Mycotoxin Production in Grain Chains; Leslie, J.F., Logrieco., A.F., Eds.; Wiley Blackwell: Ames, IA, USA, 2014; pp. 248–257. [Google Scholar]
- Leggieri, M.C.; van der Fels-Klerx, H.J.; Battilani, P. Cross-validation of predictive models for deoxynivalenol in wheat at harvest. World Mycotox. J. 2013, 6, 389–397. [Google Scholar] [CrossRef]
- Berthiller, F.; Crews, C.; Dall’Asta, C.; de Saeger, S.; Haesaert, G.; Karlovsky, P.; Oswald, I.P.; Seefelder, W.; Speijers, G.; Stroka, J. Masked mycotoxins: A review. Molec. Nutr. Food Res. 2013, 57, 165–186. [Google Scholar] [CrossRef] [PubMed]
- Khaneghah, A.M.; Kamani, M.H.; Fakhri, Y.; Coppa, C.F.S.C.; de Oliveira, C.A.F.; Sant’Ana, A.S. Changes in masked forms of deoxynivalenol and their co-occurrence with culmorin in cereal-based products: A systematic review and meta-analysis. Food Chem. 2019, 294, 587–596. [Google Scholar] [CrossRef] [PubMed]
- Rychlik, M.; Humpf, H.U.; Marko, D.; Dänicke, S.; Mally, A.; Berthiller, F.; Klaffke, H.; Lorenz, N. Proposal of a comprehensive definition of modified and other forms of mycotoxins including “masked” mycotoxins. Mycotox. Res. 2014, 30, 197–205. [Google Scholar] [CrossRef] [Green Version]
- Streit, E.; Schwab, C.; Sulyok, M.; Naehrer, K.; Krska, R.; Schatzmayr, G. Multi-mycotoxin screening reveals the occurrence of 139 different secondary metabolites in feed and feed ingredients. Toxins 2013, 5, 504–523. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leslie, J.F.; Lattanzio, V.; Audenaert, K.; Battilani, P.; Cary, J.; Chulze, S.N.; de Saeger, S.; Gerardino, A.; Karlovsky, P.; Liao, Y.-C.; et al. MycoKey round table discussions of future directions in research on chemical detection methods, genetics and biodiversity of mycotoxins. Toxins 2018, 10, 109. [Google Scholar] [CrossRef] [Green Version]
- Geiser, D.M.; Al-Hatmi, A.M.S.; Aoki, T.; Arie, T.; Balmas, V.; Barnes, I.; Bergstrom, G.C.; Bhattacharyya, M.K.; Blomquist, C.L.; Bowden, R.L.; et al. Phylogenomic analysis of a 55.1 kb 19-gene dataset resolves a monophyletic Fusarium that includes the Fusarium solani species complex. Phytopathology 2021, 111, 1064–1079. [Google Scholar] [CrossRef]
- Leslie, J.F.; Summerell, B.A. The Fusarium Laboratory Manual; Blackwell Professional: Ames, IA, USA, 2006. [Google Scholar]
- Desjardins, A.E. Fusarium Mycotoxins: Chemistry, Genetics, and Biology; APS Press: Saint Paul, MN, USA, 2006. [Google Scholar]
- Munkvold, G.P. Fusarium species and their associated mycotoxins. In Mycotoxigenic Fungi: Methods and Protocols; Moretti, A., Susca, A., Eds.; Humana Press: Totowa, NJ, USA; Springer-Nature: New York, NY, USA, 2017; pp. 51–106. [Google Scholar]
- Goswami, R.; Kistler, H.C. Heading for disaster: Fusarium graminearum on cereal crops. Molec. Plant. Pathol. 2014, 5, 515–525. [Google Scholar] [CrossRef]
- Logrieco, A.F.; Bottalico, A.; Mulè, G.; Moretti, A.; Perrone, G. Epidemiology of toxigenic fungi and their associated mycotoxins for some Mediterranean crops. Eur. J. Plant. Pathol. 2003, 109, 645–667. [Google Scholar] [CrossRef]
- Mesterházy, Á. Fusarium species of wheat in South Hungary, 1970–1983. Cer. Res. Comm. 1984, 12, 167–170. [Google Scholar]
- Tralamazza, S.M.; Bemvenuti, R.H.; Zorzete, P.; de Souza Garcia, F.; Corrêa, B. Fungal diversity and natural occurrence of deoxynivalenol and zearalenone in freshly harvested wheat grains from Brazil. Food Chem. 2016, 196, 445–450. [Google Scholar] [CrossRef] [PubMed]
- Mergoum, M.; Hill, P.J.; Quick, J.S. Evaluation of resistance of winter wheat to Fusarium acuminatum by inoculation of seedling roots with single, germinated conidia. Plant. Dis. 1998, 82, 300–302. [Google Scholar] [CrossRef]
- Scherm, B.; Balmas, V.; Spanu, F.; Pani, G.; Delogu, G.; Pasquali, M.; Migheli, Q. Fusarium culmorum: Causal agent of foot and root rot and head blight on wheat. Molec. Plant. Pathol. 2013, 14, 323–341. [Google Scholar] [CrossRef]
- Walter, S.; Nicholson, P.; Doohan, F.M. Action and reaction of host and pathogen during Fusarium head blight disease. New Phytol. 2010, 185, 54–66. [Google Scholar] [CrossRef] [PubMed]
- O’Donnell, K.; Ward, T.J.; Geiser, D.M.; Kistler, H.C.; Aoki, T. Genealogical concordance between the mating type locus and seven other nuclear genes supports formal recognition of nine phylogenetically distinct species within the Fusarium graminearum clade. Fung. Genet. Biol. 2004, 41, 600–623. [Google Scholar] [CrossRef] [PubMed]
- O’Donnell, K.; Ward, T.J.; Aberra, D.; Kistler, H.C.; Aoki, T.; Orwig, N.; Kimura, M.; Bjørnstad, A.; Klemsdal, S.S. Multilocus genotyping and molecular phylogenetics resolve a novel head blight pathogen within the Fusarium graminearum species complex from Ethiopia. Fung. Genet. Biol. 2008, 45, 1514–1522. [Google Scholar] [CrossRef] [PubMed]
- Sarver, B.A.J.; Ward, T.J.; Gale, L.R.; Broz, K.; Kistler, H.C.; Aoki, T.; Nicholson, P.; Carter, J.; O’Donnell, K. Novel Fusarium head blight pathogens from Nepal and Louisiana revealed by multi-locus genealogical concordance. Fung. Genet. Biol. 2011, 48, 1096–1107. [Google Scholar] [CrossRef]
- Starkey, D.E.; Ward, T.J.; Aoki, T.; Gale, L.R.; Kistler, H.C.; Geiser, D.M.; Suga, H.; Tòth, B.; Varga, J.; O’Donnell, K. Global molecular surveillance reveals novel Fusarium head blight species and trichothecene toxin diversity. Fung. Genet. Biol. 2007, 44, 1191–1204. [Google Scholar] [CrossRef]
- Yli-Mattila, T.; Gagkaeva, T.; Ward, T.J.; Aoki, T.; Kistler, H.C.; O’Donnell, K. A novel Asian clade within the Fusarium graminearum species complex includes a newly discovered cereal head blight pathogen from the Far East of Russia. Mycologia 2009, 101, 841–852. [Google Scholar] [CrossRef] [Green Version]
- van der Lee, T.; Zhang, H.; van Diepeningen, A.; Waalwijk, C. Biogeography of Fusarium graminearum species complex and chemotypes: A review. Food Add. Contam. Part A 2015, 32, 453–460. [Google Scholar] [CrossRef] [Green Version]
- Kelly, A.C.; Clear, R.M.; O’Donnell, K.; McCormick, S.; Turkington, T.K.; Tekauz, A.; Gilbert, J.; Kistler, H.C.; Busman, M.; Ward, T.J. Diversity of Fusarium head blight populations and trichothecene toxin types reveals regional differences in pathogen composition and temporal dynamics. Fung. Genet. Biol. 2015, 82, 22–31. [Google Scholar] [CrossRef]
- Shaner, G.E. Epidemiology of Fusarium head blight of small grain cereals in North America. In Fusarium Head Blight of Wheat and Barley; Leonard, K.J., Bushnell, W.R., Eds.; APS Press: St. Paul, MN, USA, 2003; pp. 84–119. [Google Scholar]
- van der Fels-Klerx, H.J.; de Rijk, T.C.; Booij, C.J.H.; Goedhart, P.W.; Boers, E.A.M.; Zhao, C.; Waalwijk, C.; Mol, H.G.J.; van der Lee, T.A.J. Occurrence of Fusarium Head Blight species and Fusarium mycotoxins in winter wheat in the Netherlands in 2009. Food Add. Contam. Part A 2012, 29, 1716–1726. [Google Scholar] [CrossRef]
- Yli-Mattila, T. Ecology and evolution of toxigenic Fusarium species in cereals in northern Europe and Asia. J. Plant. Pathol. 2010, 92, 7–18. [Google Scholar]
- Somma, S.; Petruzzella, A.L.; Logrieco, A.F.; Meca, G.; Cacciola, O.S.; Moretti, A. Phylogenetic analyses of Fusarium graminearum strains from cereals in Italy, and characterization of their molecular and chemical chemotypes. Crop. Past. Sci. 2014, 65, 52–61. [Google Scholar] [CrossRef]
- Gale, L.R.; Ward, T.J.; Balmas, V.; Kistler, H.C. Population subdivision of Fusarium graminearum sensu stricto in the upper Midwestern United States. Phytopathology 2007, 97, 1434–1439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lofgren, L.; Riddle, J.; Dong, Y.-H.; Kuhnem, P.R.; Cummings, J.A.; Del Ponte, E.M.; Bergstrom, G.C.; Kistler, H.C. A high proportion of NX-2 genotype strains are found among Fusarium graminearum isolates from northeastern New York State. Eur. J. Plant. Pathol. 2018, 150, 791–796. [Google Scholar] [CrossRef]
- Del Ponte, E.M.; Garda-Buffon, J.; Badiale-Furlong, E. Deoxynivalenol and nivalenol in commercial wheat grain related to Fusarium head blight epidemics in southern Brazil. Food Chem. 2012, 132, 1087–1091. [Google Scholar] [CrossRef] [Green Version]
- Osman, M.; He, X.; Benedettelli, S.; Singh, P.K. Trichothecene genotypes of Fusarium graminearum species complex and F. cerealis isolates from Mexican cereals. J. Plant. Pathol. 2016, 98, 331–336. [Google Scholar]
- Yerkovich, N.; Palazzini, J.M.; Sulyok, M.; Chulze, S.N. Trichothecene genotypes, chemotypes and zearalenone production by Fusarium graminearum species complex strains causing Fusarium head blight in Argentina during an epidemic and non-epidemic season. Trop. Plant. Pathol. 2017, 42, 190–196. [Google Scholar] [CrossRef]
- Umpiérrez-Failache, M.; Garmendia, G.; Pereyra, S.; Rodríguez-Haralambides, A.; Ward, T.J.; Vero, S. Regional differences in species composition and toxigenic potential among Fusarium head blight isolates from Uruguay indicate a risk of nivalenol contamination in new wheat production areas. Int. J. Food Microbiol. 2013, 166, 135–140. [Google Scholar] [CrossRef] [PubMed]
- Ramirez, M.L.; Reynoso, M.M.; Farnochi, M.C.; Chulze, S.N. Vegetative compatibility and mycotoxin chemotypes among Fusarium graminearum (Gibberella zeae) isolates from wheat in Argentina. Eur. J. Plant. Pathol. 2006, 115, 139–148. [Google Scholar] [CrossRef]
- Davari, M.; Wei, S.H.; Babay-Ahari, A.; Arzanlou, M.; Waalwijk, C.; van der Lee, T.A.J.; Zare, R.; van den Ende, A.H.G.G.; de Hoog, G.S.; van Diepeningen, A.D. Geographic differences in trichothecene chemotypes of Fusarium graminearum in the Northwest and North of Iran. World Mycotox. J. 2013, 6, 137–150. [Google Scholar] [CrossRef]
- Saharan, M.S.; Kumar, J.; Sharma, A.K.; Tiwari, R.; Nagarajan, S. Pathogenic variation among Fusarium species or isolates associated with head scab of wheat (Triticum aestivum) in India. Ind. J. Agric. Sci. 2003, 73, 322–326. [Google Scholar]
- Shin, S.; Son, J.-H.; Park, J.-C.; Kim, K.-H.; Yoon, Y.-M.; Cheong, Y.-K.; Kim, K.-H.; Hyun, J.-N.; Park, C.S.; Dill-Macky, R.; et al. Comparative pathogenicity of Fusarium graminearum isolates from wheat kernels in Korea. Plant. Pathol. J. 2018, 34, 347–355. [Google Scholar] [CrossRef]
- Suga, H.; Karugia, G.W.; Ward, T.; Gale, L.R.; Tomimura, K.; Nakajima, T.; Miyasaka, A.; Koizumi, S.; Kageyama, K.; Hyakumachi, M. Molecular characterization of the Fusarium graminearum species complex in Japan. Phytopathology 2008, 98, 159–166. [Google Scholar] [CrossRef] [Green Version]
- Ji, L.; Li, Q.; Wang, Y.; Burgess, L.W.; Sun, M.; Cao, K.; Kong, L. Monitoring of Fusarium species and trichothecene genotypes associated with Fusarium Head Blight on wheat in Hebei province, China. Toxins 2019, 11, 243. [Google Scholar] [CrossRef] [Green Version]
- Guenther, J.C.; Trail, F. The development and differentiation of Gibberella zeae (anamorph: Fusarium graminearum) during colonization of wheat. Mycologia 2005, 97, 229–237. [Google Scholar] [CrossRef]
- Ma, B.L.; Subedi, K.D.; Xue, A.G.; Voldeng, H.D. Crop management effects on Fusarium head blight, Fusarium-damaged kernels and deoxynivalenol concentration of spring wheat. J. Plant. Nutr. 2013, 36, 717–730. [Google Scholar] [CrossRef]
- Parry, D.W.; Jenkinson, P.; McLeod, L. Fusarium ear blight (scab) in small-grain cereals: A review. Plant. Pathol. 1995, 44, 207–238. [Google Scholar] [CrossRef]
- Reis, E.M.; Boareto, C.; Durante Danelli, A.L.; Zoldan, S.M. Anthesis, the infectious process and disease progress curves for Fusarium head blight in wheat. Summa Phytopathol. 2016, 42, 134–139. [Google Scholar] [CrossRef]
- Mourelos, C.A.; Malbran, I.; Balatti, P.A.; Ghiringhelli, P.D.; Lori, G.A. Gramineous and non-gramineous weed species as alternate hosts of Fusarium graminearum causal agent of Fusarium head blight of wheat in Argentina. Crop. Protect. 2014, 65, 100–104. [Google Scholar] [CrossRef]
- Pereyra, S.A.; Dill-Macky, R. Colonization of the residues of diverse plant species by Gibberella zeae and their contribution to Fusarium head blight inoculum. Plant. Dis. 2008, 92, 800–807. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Postic, J.; Cosic, J.; Jurkovic, D.; Vrandecic, K.; Saleh, A.A.; Leslie, J.F. Diversity of Fusarium species isolated from weeds and plant debris in Croatia. J. Phytopathol. 2012, 160, 76–81. [Google Scholar] [CrossRef]
- Imboden, L.; Afton, D.; Trail, F. Surface interactions of Fusarium graminearum on barley. Molec. Plant. Pathol. 2018, 9, 1332–1342. [Google Scholar] [CrossRef] [Green Version]
- Trail, F.; Xu, H.X.; Loranger, R.; Gadoury, D. Physiological and environmental aspects of ascospore discharge in Gibberella zeae (anamorph Fusarium graminearum). Mycologia 2002, 94, 181–189. [Google Scholar] [CrossRef]
- Jansen, C.; von Wettstein, D.; Schäfer, W.; Kogel, K.-H.; Felk, A.; Maier, F.J. Infection patterns in barley and wheat spikes inoculated with wild-type and trichodiene synthase gene disrupted Fusarium graminearum. Proc. Natl. Acad. Sci. USA 2005, 102, 16897–16982. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schöneberg, T.; Musa, T.; Forrer, H.-R.; Mascher, F.; Bucheli, T.D.; Bertossa, M.; Keller, B.; Vogelsang, S. Infection conditions of Fusarium graminearum in barley are variety specific and different from those in wheat. Eur. J. Plant. Pathol. 2018, 151, 975–989. [Google Scholar] [CrossRef] [Green Version]
- Beccari, G.; Arellano, C.; Covarelli, L.; Tini, F.; Sulyok, M.; Cowger, C. Effect of wheat infection timing on Fusarium head blight causal agents and secondary metabolites in grain. Int. J. Food Microbiol. 2019, 90, 214–225. [Google Scholar] [CrossRef]
- Desmond, O.J.; Manners, J.M.; Stephens, A.E.; Maclean, D.J.; Schenk, P.M.; Gardiner, D.M.; Munn, A.L.; Kazan, K. The Fusarium mycotoxin deoxynivalenol elicits hydrogen peroxide production, programmed cell death and defense responses in wheat. Molec. Plant. Pathol. 2008, 9, 435–445. [Google Scholar] [CrossRef] [Green Version]
- Proctor, R.H.; Desjardins, A.E.; McCormick, S.P.; Plattner, R.D.; Alexander, N.J.; Brown, D.W. Genetic analysis of the role of trichothecene and fumonisin mycotoxins in the virulence of Fusarium. Eur. J. Plant. Pathol. 2002, 108, 691–698. [Google Scholar] [CrossRef]
- Kikot, G.E.; Hours, R.A.; Alconada, T.M. Contribution of cell wall degrading enzymes to pathogenesis of Fusarium graminearum: A review. J. Basic Microbiol. 2009, 49, 231–241. [Google Scholar] [CrossRef] [PubMed]
- Brown, N.A.; Bass, C.; Baldwin, T.K.; Chen, H.; Massot, F.; Carion, P.W.C.; Urban, M.; van de Meene, A.M.L.; Hammond-Kosack, K.E. Characterization of the Fusarium graminearum-wheat floral interaction. J. Pathog. 2011, 2011, 626345. [Google Scholar] [CrossRef] [Green Version]
- Brown, N.A.; Urban, M.; van de Meene, A.M.L.; Hammond-Kosack, K.E. The infection biology of Fusarium graminearum: Defining the pathways of spikelet to spikelet colonization in wheat ears. Fung. Biol. 2010, 114, 555–571. [Google Scholar] [CrossRef]
- De Wolf, E.D.; Madden, L.V.; Lipps, P.E. Risk assessment models for wheat Fusarium head blight epidemics based on within-season weather data. Phytopathology 2003, 93, 428–435. [Google Scholar] [CrossRef] [Green Version]
- György, A.; Tóth, B.; Monika, V.; Mesterházy, Á. Methodical considerations and resistance evaluation against Fusarium graminearum and F. culmorum bead blight in wheat. Part 3. Susceptibility window and resistance expression. Microorganisms 2020, 8, 627. [Google Scholar] [CrossRef] [PubMed]
- Betchel, D.B.; Kaleikan, L.A.; Gaines, R.L.; Seitz, L.M. The effects of Fusarium graminearum infection on wheat kernels. Cer. Chem. 1985, 62, 191–197. [Google Scholar]
- Boyacioglu, D.; Hettiarachchy, N.S. Changes in some biochemical components of wheat-grain that was infected with Fusarium graminearum. J. Cer. Sci. 1995, 21, 57–62. [Google Scholar] [CrossRef]
- Horvat, D.; Spanic, V.; Dvojkovic, K.; Simic, G.; Magdic, D.; Nevistic, A. The influence of Fusarium infection on wheat (Triticum aestivum L.) proteins distribution and baking quality. Cer. Res. Comm. 2015, 43, 61–71. [Google Scholar] [CrossRef] [Green Version]
- Spanic, V.; Horvat, D.; Drezner, G.; Zdunic, Z. Changes in protein composition in the grain and malt after Fusarium infection dependently of wheat resistance. Pathogens 2019, 8, 112. [Google Scholar] [CrossRef] [Green Version]
- Freire, L.; Sant’Ana, A.S. Modified mycotoxins: An updated review on their formation, detection, occurrence, and toxic effects. Food Chem. Toxicol. 2018, 111, 189–205. [Google Scholar] [CrossRef]
- Busman, M.; Desjardins, A.E.; Proctor, R.H. Analysis of fumonisin contamination and the presence of Fusarium in wheat with kernel black point disease in the United States. Food Addit. Contam. Part A 2012, 29, 1092–1100. [Google Scholar] [CrossRef] [PubMed]
- Conner, R.L.; Hwang, S.F.; Stevens, R.R. Fusarium proliferatum: A new causal agent of black point in wheat. Can. J. Plant. Pathol. 1996, 18, 419–423. [Google Scholar] [CrossRef]
- Palacios, S.A.; Susca, A.; Haidukowski, M.; Stea, G.; Cendoya, E.; Ramirez, M.L.; Chulze, S.N.; Farnochi, M.C.; Moretti, A.; Torres, A.M. Genetic variability and fumonisin production by Fusarium proliferatum isolated from durum wheat grains in Argentina. Int. J. Food Microbiol. 2015, 201, 35–41. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.-Q.; Pfohl, K.; Karlovsky, P.; Dehne, H.-W.; Altincicek, B. Fumonisin B1 and beauvericin accumulation in wheat kernels after seed-borne infection with Fusarium proliferatum. Agric.Food Sci. 2016, 25, 138–145. [Google Scholar] [CrossRef] [Green Version]
- Xu, K.-G.; Jiang, Y.-M.; Li, Y.-K.; Xu, Q.-Q.; Niu, J.-S.; Zhu, X.-X.; Li, Q.-Y. Identification and pathogenicity of fungal pathogens causing Black Point in wheat on the North China Plain. Ind. J. Microbiol. 2018, 58, 159–164. [Google Scholar] [CrossRef] [PubMed]
- Amato, B.; Pfohl, K.; Tonti, S.; Nipoti, P.; Dastjerdi, R.; Pisi, A.; Karlovsky, P.; Prodi, A. Fusarium proliferatum and fumonisin B1 co-occur with Fusarium species causing Fusarium Head Blight in durum wheat in Italy. J. Appl. Bot. Food Qual. 2015, 88, 228–233. [Google Scholar]
- Desjardins, A.E.; Busman, M.; Proctor, R.H.; Stessman, R. Wheat kernel black point and fumonisin contamination by Fusarium proliferatum. Food Addit. Contam. 2007, 24, 1131–1137. [Google Scholar] [CrossRef] [PubMed]
- Simmons, E.G. Alternaria: An Identification Manual, 6th ed.; CBS Fungal Biodiversity Centre: Utrecht, The Netherlands, 2007. [Google Scholar]
- Andrew, M.; Peever, T.L.; Pryor, B.M. An expanded multilocus phylogeny does not resolve morphological species within the small-spored Alternaria species complex. Mycologia 2009, 101, 95–109. [Google Scholar] [CrossRef] [Green Version]
- Lawrence, D.P.; Gannibal, P.B.; Peever, T.L.; Pryor, B.M. The sections of Alternaria: Formalizing species-group concepts. Mycologia 2013, 105, 530–546. [Google Scholar] [CrossRef] [Green Version]
- Lawrence, D.P.; Rotondo, F.; Gannibal, P.B. Biodiversity and taxonomy of the pleomorphic genus Alternaria. Mycol. Prog. 2016, 15, 3. [Google Scholar] [CrossRef]
- Somma, S.; Amatulli, M.T.; Masiello, M.; Moretti, A.; Logrieco, A.F. Alternaria species associated to wheat black point identified through a multilocus sequence approach. Int. J. Food Microbiol. 2019, 293, 34–43. [Google Scholar] [CrossRef]
- Tralamazza, S.M.; Piacentini, K.C.; Iwase, C.H.T.; de Oliveira Rocha, L. Toxigenic Alternaria species: Impact in cereals worldwide. Curr. Opin. Food Sci. 2018, 23, 57–63. [Google Scholar] [CrossRef]
- Woudenberg, J.H.C.; Groenewald, J.Z.; Binder, M.; Crous, P.W. Alternaria redefined. Stud. Mycol. 2013, 75, 171–212. [Google Scholar] [CrossRef] [Green Version]
- Woudenberg, J.H.C.; Seidl, M.F.; Groenewald, J.Z.; de Vries, M.; Stielow, J.B.; Thomma, B.P.H.J.; and Crous, P.W. Alternaria section Alternaria: Species, formae speciales or pathotypes? Stud. Mycol. 2015, 82, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Da Cruz Cabral, L.; Terminiello, L.; Pinto, V.F.; Fog, K.; Patriarca, N.A. Natural occurrence of mycotoxins and toxigenic capacity of Alternaria strains from mouldy peppers. Int. J. Food Microbiol. 2016, 7, 155–160. [Google Scholar] [CrossRef]
- Logrieco, A.; Moretti, A.; Solfrizzo, M. Alternaria toxins and plant diseases: An overview of origin, occurrence and risks. World Mycotoxin J. 2009, 2, 129–140. [Google Scholar] [CrossRef]
- Patriarca, A.; Azcarate, M.P.; Terminiello, L.; Fernández Pinto, V. Mycotoxin production by Alternaria strains isolated from Argentinean wheat. Int. J. Food Microbiol. 2007, 119, 219–222. [Google Scholar] [CrossRef]
- Ramires, F.A.; Masiello, M.; Somma, S.; Villani, A.; Susca, A.; Logrieco, A.F.; Luz, C.; Meca, G.; Moretti, A. Phylogeny and mycotoxin characterization of Alternaria species isolated from wheat grown in Tuscany, Italy. Toxins 2018, 10, 472. [Google Scholar] [CrossRef] [Green Version]
- Perello, A.; Moreno, M.; Sisterna, M. Alternaria infectoria species group associated with Black point of wheat in Argentina. Plant. Pathol. 2008, 57, 379. [Google Scholar] [CrossRef] [Green Version]
- Amatulli, M.T.; Fanelli, F.; Moretti, A.; Mulè, G.; Logrieco, A.F. Alternaria species and mycotoxins associated to black point of cereals. Mycotoxins 2013, 63, 39–46. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, J.P.; Kushwaha, G.D.; Shukla, D.N. Black point disease of wheat and its implications on seed quality. Crop. Res. 2014, 47, 21–23. [Google Scholar]
- Dexter, J.E.; Matsuo, R.R. Effect of smudge and black point, mildewed kernels, and ergot on durum wheat quality. Cer. Chem. 1982, 59, 63–69. [Google Scholar]
- Kashem, M.A.; Sultana, N.; Samanta, S.C.; Kamal, A.M.A. Biochemical changes in wheat seed due to the effect of black-point at different levels of maturing. Pak. J. Sci. Indus. Res. 1999, 42, 89–92. [Google Scholar]
- Pichova, K.; Pažoutová, S.; Kostovcik, M.; Chudickova, M.; Stodulkova, E.; Novak, P.; Flieger, M.; van der Linde, E.; Kolarik, M. Evolutionary history of ergot with a new infrageneric classification (Hypocreales: Clavicipitaceae: Claviceps). Molec. Phylogen. Evol. 2018, 123, 73–87. [Google Scholar] [CrossRef] [PubMed]
- Alderman, S.C.; Halse, R.R.; White, J.F. A reevaluation of the host range and geographical distribution of Claviceps species in the United States. Plant. Dis. 2004, 88, 63–81. [Google Scholar] [CrossRef] [Green Version]
- Bandyopadhyay, R.; Frederickson, D.E.; McLaren, N.W.; Odvody, G.N.; Ryley, M.J. Ergot: A new disease threat to sorghum in the Americas and Australia. Plant. Dis. 1998, 82, 356–367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhat, R.V.; Roy, D.N.; Tulpule, P.G. Nature of alkaloids of ergoty pearl millet or bajra and its comparison with alkaloids of ergoty rye and ergoty wheat. Toxicol. Appl. Pharmacol. 1976, 36, 11–17. [Google Scholar] [CrossRef]
- Blaney, B.; Chakraborty, S.; Murray, S.A. Alkaloid production by isolates of the sorghum ergot pathogen (Claviceps africana) from Australia and other countries. Aust. J. Agric. Res. 2006, 57, 1023–1028. [Google Scholar] [CrossRef] [Green Version]
- Frederickson, D.E.; Mantle, P.G.; de Milliano, W.A.J. Claviceps africana sp. nov.: The distinctive ergot pathogen of sorghum in Africa. Mycol. Res. 1991, 95, 1101–1107. [Google Scholar] [CrossRef] [Green Version]
- Pažoutová, S.; Odvody, G.N.; Frederickson, D.E.; Chudíčková, M.; Olšovská, J.; Kolařík, M. New Claviceps species from warm-season grasses. Fung. Divers. 2011, 49, 145–165. [Google Scholar] [CrossRef]
- Thakur, R.P.; Rao, V.P.; Williams, R.J. The morphology and disease cycle of ergot caused by Claviceps fusiformis in pearl millet. Phytopathology 1984, 74, 201–205. [Google Scholar] [CrossRef]
- Hart, C. Forged in St. Anthony’s Fire: Drugs for migraine. Mod. Drug Discov. 1999, 2, 20–31. [Google Scholar]
- Mitchell, D.T.; Cooke, R.C. Some effects of temperature on germination and longevity of sclerotia in Claviceps pupurea. Trans. Brit. Mycol. Soc. 1968, 51, 721–729. [Google Scholar] [CrossRef]
- Tenberge, K.B. Biology and life strategy of the ergot fungi. In Ergot—The Genus Claviceps; Køen, V., Cvak, L., Eds.; Harwood Academic Publishers: Amsterdam, The Netherlands, 1999; pp. 25–56. [Google Scholar]
- Bennett, J.W. An overview of the genus Aspergillus. In Aspergillus: Molecular Biology and Genomics; Machida, M., Gomi, K., Eds.; Caister Academic Press: London, UK, 2010; pp. 1–17. [Google Scholar]
- Hocking, A.D. Aspergillus and related teleomorphs. In Food Spoilage Microorganisms; Blackburn, C.D.W., Ed.; Woodhead Publishing, Ltd.: Cambridge, UK, 2006; pp. 451–487. [Google Scholar]
- Frisvad, J.C.; Frank, J.M.; Houbraken, J.A.M.P.; Kuijpers, A.F.A.; Samson, R.A. New ochratoxin A producing species of Aspergillus section Circumdati. Stud. Mycol. 2004, 50, 23–44. [Google Scholar]
- Pitt, J.I. Mycotoxins: Ochratoxin A. In Encyclopedia of Food Safety, Volume 2; Motarjemi, Y., Moy, G., Todd, E., Eds.; Elsevier: Amsterdam, The Netherlands, 2014; pp. 304–309. [Google Scholar] [CrossRef]
- Ramírez-Camejo, L.A.; Zuluaga-Montero, A.; Lázaro-Escudero, M.; Hernández-Kendall, V.; Bayman, P. Phylogeography of the cosmopolitan fungus Aspergillus flavus: Is everything everywhere? Fung. Biol. 2012, 11, 452–463. [Google Scholar] [CrossRef]
- Klich, M.A. Aspergillus flavus: The major producer of aflatoxin. Molec. Plant. Pathol. 2007, 8, 713–722. [Google Scholar] [CrossRef] [PubMed]
- Riba, A.; Bouras, N.; Mokrane, S.; Mathieu, F.; Lebrihi, A.; Sabaou, N. Aspergillus section Flavi and aflatoxins in Algerian wheat and derived products. Food Chem. Toxicol. 2010, 48, 2772–2777. [Google Scholar] [CrossRef] [Green Version]
- Vaamonde, G.; Patriarca, A.; Pinto, V.F.; Comerio, R.; Degrossi, C. Variability of aflatoxin and cyclopiazonic acid production by Aspergillus section flavi from different substrates in Argentina. Int. J. Food Microbiol. 2003, 88, 79–84. [Google Scholar] [CrossRef]
- Yuan, Q.-S.; Yang, P.; Wu, A.-B.; Zuo, D.-Y.; He, W.-J.; Guo, M.-W.; Huang, T.; Li, H.-P.; Liao, Y.-C. Variation in the microbiome, trichothecenes, and aflatoxins in stored wheat grains in Wuhan, China. Toxins 2018, 10, 171. [Google Scholar] [CrossRef] [Green Version]
- Joubrane, K.; El Khoury, A.; Lteif, R.; Rizk, T.; Kallassy, M.; Hilan, C.; Maroun, R. Occurrence of aflatoxin B1 and ochratoxin A in Lebanese cultivated wheat. Mycotox. Res. 2011, 27, 249–257. [Google Scholar] [CrossRef] [PubMed]
- del Palacio, A.; Pan, D. Occurrence and toxigenic potential of Aspergillus section Flavi on wheat and sorghum silages in Uruguay. Mycology 2020, 11, 147–157. [Google Scholar] [CrossRef]
- El-Sisy, T.T.; Abd el Fadel, M.G.; Gad, S.S.; El-Shibiny, A.A.; Emara, M.F. Effect of storage period on wheat grain quality. Biomed. J. Sci. Tech. Res. 2019, 20, 15084–15094. [Google Scholar] [CrossRef]
- Cabañes, F.J.; Bragulat, M.R.; Castellá, G. Ochratoxin A producing species in the genus Penicillium. Toxins 2010, 2, 1111–1120. [Google Scholar] [CrossRef]
- Lund, F.; Frisvad, J.C. Penicillium verrucosum in wheat and barley indicates presence of ochratoxin A. J. Appl. Microbiol. 2003, 95, 1117–1123. [Google Scholar] [CrossRef] [Green Version]
- Cairns-Fuller, V.; Aldred, D.; Magan, N. Water, temperature and gas composition interactions affect growth and ochratoxin A production by isolates of Penicillium verrucosum on wheat grain. J. Appl. Microbiol. 2005, 99, 1215–1221. [Google Scholar] [CrossRef]
- Czaban, J.; Wróblewska, B.; Stochmal, A.; Janda, B. Growth of Penicillium verrucosum and production of ochratoxin A on nonsterilized wheat grain incubated at different temperatures and water content. Pol. J. Microbiol. 2006, 55, 321–331. [Google Scholar] [PubMed]
- Grovey, J.F. The trichothecenes and their biosynthesis. Forts. Chem. Organ. Natur. 2007, 88, 63–130. [Google Scholar]
- Varga, E.; Wiesenberger, G.; Hametner, C.; Ward, T.J.; Dong, Y.; Schofbeck, D.; McCormick, S.; Broz, K.; Stuckler, R.; Schuhmacher, R.; et al. New tricks of an old enemy: Isolates of Fusarium graminearum produce a novel type A trichothecene mycotoxin. Environ. Microbiol. 2015, 17, 2588–2600. [Google Scholar] [CrossRef]
- Foroud, N.A.; Baines, D.; Gagkaeva, T.Y.; Thakor, N.; Badea, A.; Steiner, B.; Bürstmayr, M.; Bürstmayr, H. Trichothecenes in cereal grains—An update. Toxins 2019, 11, 634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marasas, W.F.O.; Nelson, P.E.; Toussoun, T.A. Toxigenic Fusarium Species: Identity and Mycotoxicology; The Pennsylvania State University Press: University Park, PA, USA, 1984. [Google Scholar]
- Liang, J.M.; Xayamongkhon, H.; Broz, K.; Dong, Y.H.; McCormick, S.P.; Abramova, S.; Ward, T.J.; Ma, Z.H.; Kistler, H.C. Temporal dynamics and population genetic structure of Fusarium graminearum in the upper Midwestern United States. Fung. Genet. Biol. 2014, 73, 83–92. [Google Scholar] [CrossRef]
- Miedaner, T.; Cumagun, C.J.R.; Chakraborty, S. Population genetics of three important head blight pathogens Fusarium graminearum, F. pseudograminearum and F. culmorum. Plant. Pathol. J. 2008, 156, 129–139. [Google Scholar] [CrossRef]
- Tóth, B.; Mesterházy, Á.; Horváth, Z.; Bartók, T.; Varga, M.; Varga, J. Genetic variability of Central European Fusarium graminearum clade isolates. Eur. J. Plant. Pathol. 2005, 113, 35–45. [Google Scholar] [CrossRef]
- Ward, T.J.; Clear, R.M.; Rooney, A.P.; O’Donnell, K.; Gaba, D.; Patrick, S.; Starkey, D.E.; Gilbert, J.; Geiser, D.M.; Nowicki, T.W. An adaptive evolutionary shift in Fusarium head blight pathogen populations is driving the rapid spread of more toxigenic Fusarium graminearum in North America. Fung. Genet. Biol. 2008, 45, 473–484. [Google Scholar] [CrossRef] [PubMed]
- Zeller, K.A.; Bowden, R.L.; Leslie, J.F. Diversity of epidemic populations of Gibberella zeae from small quadrats in Kansas and North Dakota. Phytopathology 2003, 93, 874–880. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeller, K.A.; Bowden, R.L.; Leslie, J.F. Population differentiation and recombination in wheat scab populations of Gibberella zeae in the United States. Molec. Ecol. 2004, 13, 563–571. [Google Scholar] [CrossRef] [Green Version]
- Wegulo, S.N. Factors influencing deoxynivalenol accumulation in small grain cereals. Toxins 2012, 4, 1157–1180. [Google Scholar] [CrossRef]
- Mesterházy, Á. Role of deoxynivalenol in aggressiveness of Fusarium graminearum and F. culmorum and in resistance to Fusarium head blight. Eur. J. Plant. Pathol. 2002, 108, 675–684. [Google Scholar] [CrossRef]
- Eudes, F.; Comeau, A.; Rioux, S.; Collin, J. Phytotoxicity of eight mycotoxins associated with Fusarium in wheat head blight. Can. J. Plant. Pathol. 2000, 22, 286–292. [Google Scholar] [CrossRef]
- Maier, F.J.; Miedaner, T.; Hadeler, B.; Felk, A.; Salomon, S.; Lemmens, M.; Kassner, H.; Schäfer, W. Involvement of trichothecenes in fusarioses of wheat, barley and maize evaluated by gene disruption of the trichodiene synthase (Tri5) gene in three field isolates of different chemotype and virulence. Molec. Plant. Pathol. 2006, 7, 449–461. [Google Scholar] [CrossRef]
- Escrivá, L.; Font, G.; Manyes, L. In vivo toxicity studies of Fusarium mycotoxins in the last decade: A review. Food Chem. Toxicol. 2015, 78, 185–206. [Google Scholar] [CrossRef]
- Berthiller, F.; Dall’asta, C.; Corradini, R.; Marchelli, R.; Sulyok, M.; Krska, R.; Adam, G.; Schuhmacher, R. Occurrence of deoxynivalenol and its 3-α-D-glucoside in wheat and maize. Food Addit. Contam. 2009, 26, 507–511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gratz, S.W. Do plant-bound masked mycotoxins contribute to toxicity? Toxins 2017, 9, 85. [Google Scholar] [CrossRef]
- Lee, J.; Chang, I.-Y.; Kim, H.; Yun, S.-H.; Leslie, J.F.; Lee, Y.-W. Lineage composition and toxin production of Fusarium graminearum populations from rice in Korea. Appl. Environ. Microbiol. 2009, 75, 3289–3295. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Kim, H.; Jeon, J.J.; Kim, H.-S.; Zeller, K.A.; Carter, L.L.A.; Leslie, J.F.; Lee, Y.-W. Population structure and mycotoxin production of Fusarium graminearum from maize in Korea. Appl. Environ. Microbiol. 2012, 78, 2161–2167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palacios, S.A.; Erazo, J.G.; Ciasca, B.; Lattanzio, V.M.T.; Reynoso, M.M.; Farnochi, M.C.; Torres, A.M. Occurrence of deoxynivalenol and deoxynivalenol-3-glucoside in durum wheat from Argentina. Food Chem. 2017, 230, 728–734. [Google Scholar] [CrossRef] [PubMed]
- Del Ponte, E.M.; Fernandes, J.M.C.; Pierobom, C.R. Factors affecting density of airborne Gibberella zeae inoculum. Fitopatol. Brasil. 2005, 30, 55–60. [Google Scholar] [CrossRef]
- Duffeck, M.R.; Tibola, C.S.; Guarienti, E.M.; Del Ponte, E.M. Survey of mycotoxins in Southern Brazilian wheat and evaluation of immunoassay methods. Sci. Agric. 2017, 74, 343–348. [Google Scholar] [CrossRef] [Green Version]
- Dong, F.; Wang, S.; Yu, M.; Sun, Y.; Xu, J.; Shi, J. Natural occurrence of deoxynivalenol and deoxynivalenol 3-glucoside in various wheat cultivars grown in Jiangsu Province, China. World Mycotox. J. 2017, 10, 285–293. [Google Scholar] [CrossRef]
- Ji, F.; Xu, J.; Liu, X.; Yin, X.; Shi, J. Natural occurrence of deoxynivalenol and zearalenone in wheat from Jiangsu Province, China. Food Chem. 2014, 157, 393–397. [Google Scholar] [CrossRef]
- Balmas, V.; Scherm, B.; Marcello, A.; Beyer, M.; Hoffmann, L.; Migheli, Q.; Pasquali, M. Fusarium species and chemotypes associated with Fusarium head blight and Fusarium root rot on wheat in Sardinia. Plant. Pathol. 2015, 64, 972–979. [Google Scholar] [CrossRef] [Green Version]
- Pinto, V.E.F.; Terminiello, L.A.; Basilico, J.C.; Ritieni, A. Natural occurrence of nivalenol and mycotoxigenic potential of Fusarium graminearum strains in wheat affected by head blight in Argentina. Brazil. J. Microbiol. 2008, 39, 157–162. [Google Scholar] [CrossRef] [Green Version]
- Yuwai, K.E.; Rao, K.S.; Singh, K.; Tanaka, T.; Ueno, Y. Occurrence of nivalenol, deoxynivalenol, and zearalenone in imported cereals in Papua, New Guinea. Nat. Tox. 1994, 2, 19–21. [Google Scholar] [CrossRef]
- Calori-Domingues, M.A.; Bernardi, C.M.G.; Nardin, M.S.; de Souza, G.V.; dos Santos, F.G.R.; de Stein, M.A.; da Gloria, E.M.; dos Santos Dias, C.T.; de Camargo, A.C. Co-occurrence and distribution of deoxynivalenol, nivalenol and zearalenone in wheat from Brazil. Food Add. Contam. Part B 2016, 9, 142–151. [Google Scholar] [CrossRef]
- Tanaka, T.; Hasegawa, A.; Yamamoto, S.; Sugiura, Y.; Ueno, Y. A case report on a minor contamination of nivalenol in cereals harvested in Canada. Mycopathologia 1988, 101, 157–160. [Google Scholar] [CrossRef]
- Hsia, C.C.; Wu, Z.Y.; Li, Y.S.; Zhang, F.; Sun, Z.T. Nivalenol, a main Fusarium toxin in dietary foods from high-risk areas of cancer of esophagus and gastric cardia in China, induced benign and malignant tumors in mice. Oncol. Rep. 2004, 12, 449–456. [Google Scholar] [CrossRef] [PubMed]
- Müller, H.; Schwadorf, K.A. survey of the natural occurrence of Fusarium toxins in wheat grown in a southwestern area of Germany. Mycopathologia 1993, 121, 115–121. [Google Scholar] [CrossRef]
- Yazdanpanah, H.; Mansour-Khani, M.J.K.; Shafaati, A.; Rahimian, H.; Rasekh, H.R.; Gilani, K.; Moradkhani, M. Evaluation of natural occurrence of Fusarium mycotoxins in wheat fields of northern Iran. Cer. Res. Comm. 1997, 25, 337–341. [Google Scholar] [CrossRef]
- Bertuzzi, T.; Camardo, L.M.; Battilani, P.; Pietri, A. Co-occurrence of type A and B trichothecenes and zearalenone in wheat grown in northern Italy over the years 2009–2011. Food Add. Contam. Part B 2014, 7, 273–281. [Google Scholar] [CrossRef]
- Yoshizawa, T. Thirty-five years of research on deoxynivalenol, a trichothecene mycotoxin: With special reference to its discovery and co-occurrence with nivalenol in Japan. Food Saf. 2013, 1, 2013002. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.Y.; Woo, S.Y.; Tian, F.; Song, J.; Michlmayr, H.; Kim, J.-B.; Chun, H.S. Occurrence of deoxynivalenol, nivalenol, and their glucosides in Korean market foods and estimation of their population exposure through food consumption. Toxins 2020, 12, 89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bryła, M.; Ksieniewicz-Woźniak, E.; Waśkiewicz, A.; Szymczyk, K.; Jędrzejczak, R. Natural occurrence of nivalenol, deoxynivalenol, and deoxynivalenol-3-glucoside in Polish winter wheat. Toxins 2018, 10, 81. [Google Scholar] [CrossRef] [Green Version]
- Edwards, S.G. Fusarium mycotoxin content of UK organic and conventional wheat. Food Addit. Contam. Part A 2009, 26, 496–506. [Google Scholar] [CrossRef] [Green Version]
- Gupta, R.C.; Mostrom, M.S.; Evans, T.J. Zearalenone. In Veterinary Toxicology: Basic and Clinical Principles, 3rd ed.; Gupta, R.C., Ed.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 1055–1063. [Google Scholar]
- Hidy, P.H.; Baldwin, R.S.; Greasham, R.L.; Keith, C.L.; McMullen, J.R. Zearalenone and some derivatives: Production and biological activities. Adv. Appl. Microbiol. 1977, 22, 59–82. [Google Scholar]
- Gaffoor, I.; Trail, F. Characterization of two polyketide synthase genes involved in zearalenone biosynthesis in Gibberella zeae. Appl. Environ. Microbiol. 2006, 72, 1793–1799. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.-T.; Lee, Y.-R.; Jin, J.; Han, K.-H.; Kim, H.; Kim, J.-C.; Lee, T.; Yun, S.-H.; Lee, Y.-W. Two different polyketide synthase genes are required for synthesis of zearalenone in Gibberella zeae. Molec. Microbiol. 2005, 58, 1102–1113. [Google Scholar] [CrossRef]
- Lysøe, E.; Klemsdal, S.S.; Bone, K.R.; Frandsen, R.J.N.; Johansen, T.; Thrane, U.; Giese, H. The PKS4 gene of Fusarium graminearum is essential for zearalenone production. Appl. Environ. Microbiol. 2006, 72, 3924–3932. [Google Scholar] [CrossRef] [Green Version]
- Lysøe, E.; Bone, K.R.; Klemsdal, S.S. Real-time quantitative expression studies of the zearalenone biosynthetic gene cluster in Fusarium graminearum. Phytopathology 2009, 99, 176–184. [Google Scholar] [CrossRef] [Green Version]
- Knutsen, H.-K.; Alexander, J.; Barregård, L.; Bignami, M.; Brüschweiler, B.; Ceccatelli, S.; Cottrill, B.; Dinovi, M.; Edler, L.; Grasl-Kraupp, B.; et al. EFSA Panel on Contaminants in the Food Chain (CONTAM). Risks for animal health related to the presence of zearalenone and its modified forms in feed. EFSA J. 2017, 15, 4851. [Google Scholar] [CrossRef] [Green Version]
- Mallmann, C.A.; Dilkin, P.; Mallmann, A.O.; Oliveira, M.S.; Adaniya, Z.N.C.; Tonini, C. Prevalence and levels of deoxynivalenol and zearalenone in commercial barley and wheat grain produced in Southern Brazil: An eight-year (2008 to 2015) summary. Trop. Plant. Pathol. 2017, 42, 146–152. [Google Scholar] [CrossRef]
- Xiong, K.H.; Hu, W.; Wang, M.J.; Wei, H.; Cheng, C.B. A survey on contamination of deoxynivalenol and zearalenone in maize and wheat from Anhui and Henan Province. Food Sci. 2009, 30, 265–268. [Google Scholar]
- Ostry, V. Alternaria mycotoxins: An overview of chemical characterization, producers, toxicity, analysis and occurrence in foodstuffs. World Mycotox. J. 2008, 1, 175–188. [Google Scholar] [CrossRef]
- Alexander, A.; Benford, D.; Boobis, A.; Ceccatelli, S.; Cottrill, B.; Cravedi, J.-P.; di Domenico, A.; Doerge, D.; Dogliotti, E.; Edler, L.; et al. EFSA on Contaminants in the Food Chain (CONTAM): Scientific opinion on the risks for animal and public health related to the presence of Alternaria toxins in feed and food. EFSA J. 2011, 9, 2407. [Google Scholar] [CrossRef]
- Arcella, D.; Eskola, M.; Gómez-Ruiz, J.A. European Food Safety Authority scientific report on the dietary exposure assessment to Alternaria toxins in the European population. EFSA J. 2016, 14, 4654. [Google Scholar] [CrossRef]
- Logrieco, A.; Bottalico, A.; Solfrizzo, M.; Mulè, G. Incidence of Alternaria species in grains from Mediterranean countries and their ability to produce mycotoxins. Mycologia 1990, 82, 501–505. [Google Scholar] [CrossRef]
- Solhaug, A.; Eriksen, G.S.; Holme, J.A. Mechanisms of action and toxicity of the mycotoxin alternariol: A review. Basic Clin. Pharmacol. Toxicol. 2016, 119, 533–539. [Google Scholar] [CrossRef] [PubMed]
- Brugger, E.-M.; Wagner, J.; Schumacher, D.M.; Koch, K.; Podlech, J.; Metzler, M.; Lehmann, L. Mutagenicity of the mycotoxin alternariol in cultured mammalian cells. Toxicol. Lett. 2006, 164, 221–230. [Google Scholar] [CrossRef]
- Rheeder, J.P.; Marasas, W.F.O.; Vismer, H.F. Production of fumonisin analogs by Fusarium species. Appl. Environ. Microbiol. 2002, 68, 2101–2105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kamle, M.; Mahato, D.K.; Devi, S.; Lee, K.E.; Kang, S.G.; Kumar, P. Fumonisins: Impact on agriculture, food, and human health and their management strategies. Toxins 2019, 11, 328. [Google Scholar] [CrossRef] [Green Version]
- Cendoya, E.; Chiotta, M.L.; Zachetti, V.; Chulze, S.N.; Ramirez, M.L. Fumonisins and fumonisin-producing Fusarium occurrence in wheat and wheat by products: A review. J. Cer. Sci. 2018, 80, 158–166. [Google Scholar] [CrossRef]
- Lee, M.R. The history of ergot of rye (Claviceps purpurea). I: From antiquity to 1900. J. Roy. Coll. Phys. 2009, 39, 179–184. [Google Scholar]
- Orlando, B.; Maumené, C.; Piraux, F. Ergot and ergot alkaloids in French cereals: Occurrence, pattern and agronomic practices for managing the risk. World Mycotox. J. 2017, 10, 327–338. [Google Scholar] [CrossRef]
- Bryła, M.; Ksieniewicz-Woźniak, E.; Podolska, G.; Waśkiewicz, A.; Szymczyk, K.; Jędrzejczak, R. Occurrence of ergot and its alkaloids in winter rye harvested in Poland. World Mycotox. J. 2018, 11, 635–646. [Google Scholar] [CrossRef]
- Miedaner, T.; Geiger, H.H. Biology, genetics, and management of ergot (Claviceps spp.) in rye, sorghum, and pearl millet. Toxins 2015, 7, 659–678. [Google Scholar] [CrossRef] [Green Version]
- Panaccione, D.G.; Ryan, K.L.; Schardl, C.L.; Florea, S. Analysis and modification of ergot alkaloid profiles in fungi. Meth. Enzymol. 2012, 515, 267–290. [Google Scholar] [CrossRef]
- Haarmann, T.; Rolke, Y.; Giesbert, S.; Tudzynski, P. Ergot: From witchcraft to biotechnology. Molec. Plant. Pathol. 2009, 10, 563–577. [Google Scholar] [CrossRef] [PubMed]
- Hulvová, H.; Galuszka, P.; Frébortová, J.; Frébort, I. Parasitic fungus Claviceps as a source for biotechnological production of ergot alkaloids. Biotechnol. Adv. 2013, 31, 79–89. [Google Scholar] [CrossRef]
- Schiff, P.L. Ergot and its alkaloids. Am. J. Pharm. Edu. 2006, 70, 98. [Google Scholar] [CrossRef] [PubMed]
- European Commission. Consolidated text: Commission Regulation (EC) No 1881/2006 of 19 December 2006 setting maximum levels for certain con-taminants in foodstuffs. Document 02006R1881-20201014. 2020. Available online: Eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A02006R1881-20201014. (accessed on 5 October 2021).
- Lahouar, A.; Jedidi, I.; Said, S.; Sanchis, V. Incidence, legislation and strategies of control of mycotoxins in North African countries. Int. Food Res. J. 2018, 25, 2229–2247. [Google Scholar]
- Bui-Klimke, T.R.; Wu, F. Ochratoxin A and human health risk: A review of the evidence. Crit. Rev. Food Sci. Nutr. 2015, 55, 1860–1869. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heussner, A.H.; Bingle, L.E.H. Comparative ochratoxin toxicity: A review of the available data. Toxins 2015, 7, 4253–4282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bottalico, A.; Perrone, G. Toxigenic Fusarium species and mycotoxins associated with head blight in small grain cereals in Europe. Eur. J. Plant. Pathol. 2002, 108, 611–624. [Google Scholar] [CrossRef]
- Pfohl-Leszkowicz, A.; Manderville, R.A. Ochratoxin A: An overview on toxicity and carcinogenicity in animals and humans. Molec. Nutr. Food Res. 2007, 51, 61–99. [Google Scholar] [CrossRef]
- Zebiri, S.; Mokrane, S.; Verheecke, C.; Choque, É.; Reghioui, H.; Sabaou, N.; Mathieu, F.; Riba, A. Occurrence of ochratoxin A in Algerian wheat and its milling derivatives. Toxin Rev. 2018, 37, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Zahra, N.; Idrees, A.; Aslam, M.; Noreen, Z.; Masood, S.; Saeed, M.K.; Kalim, I.; Alim-Un-nisa; Hina, S.; Ahmad, I.; et al. Effect of moisture content on aflatoxin B1 production in wheat flour samples collected from Lahore, Pakistan. Pak. J. Anal. Environ. Chem. 2019, 20, 184–189. [Google Scholar] [CrossRef] [Green Version]
- Achakzai, A.K.K.; Samiullah; Mujeeb-Ur-Rahman; Bazai, Z.A. Occurrence and health hazard status of aflatoxin in human food and animal feed of wheat from Pakistan: A review paper. Pure Appl. Biol. 2015, 4, 611–619. [Google Scholar] [CrossRef]
- Ráduly, Z.; Szabó, L.; Madar, A.; Pócsi, I.; Csernoch, L. Toxicological and medical aspects of Aspergillus-derived mycotoxins entering the feed and food chain. Front. Microbiol. 2020, 10, 2908. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roy, M.; Harris, J.; Afreen, S.; Deak, E.; Gade, L.; Balajee, S.A.; Park, B.; Chiller, T.; Luby, S. Aflatoxin contamination in food commodities in Bangladesh. Food Addit. Contam. Part B 2013, 6, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.R.; Wang, Q.S.; Huang, J.X.; Ma, L.Y.; Chen, Z.H.; Wang, F.H. Aflatoxin B1 and sterigmatocystin in wheat and wheat products from supermarkets in China. Food Addit. Contam. Part B 2018, 11, 9–14. [Google Scholar] [CrossRef]
- Jahanbakhsh, M.; Afshar, A.; Feeli, S.M.; Pabast, M.; Ebrahimi, T.; Mirzaei, M.; Akbari-Adergani, B.; Farid, M.; Arabameri, M. Probabilistic health risk assessment (Monte Carlo simulation method) and prevalence of aflatoxin B1 in wheat flours of Iran. Int. J. Environ. Anal. Chem. 2021, 101. [Google Scholar] [CrossRef]
- Sadhasivam, S.; Britzi, M.; Zakin, V.; Kostyukovsky, M.; Trostanetsky, A.; Quinn, E.; Sionov, E. Rapid detection and identification of mycotoxigenic fungi and mycotoxins in stored wheat grain. Toxins 2017, 9, 302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wagacha, J.M.; Steiner, U.; Dehne, H.-W.; Zuehlke, S.; Spiteller, M.; Muthomi, J.; Oerke, E.C. Diversity in mycotoxins and fungal species infecting wheat in Nakuru district, Kenya. J. Phytopathol. 2010, 58, 527–535. [Google Scholar] [CrossRef]
- Beg, M.U.; Al-Mutairi, M.; Beg, K.R.; Al-Mazeedi, H.M.; Ali, L.N.; Saeed, T. Mycotoxins in poultry feed in Kuwait. Arch. Environ. Contam. Toxicol. 2006, 50, 594–602. [Google Scholar] [CrossRef]
- Alsharif, A.M.A.; Choo, Y.-M.; Tan, G.H. Detection of five mycotoxins in different food matrices in the Malaysian market by using validated liquid chromatography electrospray ionization triple quadrupole mass spectrometry. Toxins 2019, 11, 196. [Google Scholar] [CrossRef] [Green Version]
- Asghar, M.A.; Ahmed, A.; Iqbal, J.; Zahir, E.; Nauman, H. Fungal flora and aflatoxin contamination in Pakistani wheat kernels (Triticum aestivum L.) and their attribution in seed germination. J. Food Drug Anal. 2016, 24, 635–643. [Google Scholar] [CrossRef] [Green Version]
- Ghali, R.; Khalifa, K.H.; Ghorbel, H.; Maaroufi, K.; Hedilli, A. Aflatoxin determination in commonly consumed foods in Tunisia. J. Sci. Food Agric. 2010, 90, 2347–2351. [Google Scholar] [CrossRef]
- Turksoy, S.; Kabak, B. Determination of aflatoxins and ochratoxin A in wheat from different regions of Turkey by HPLC with fluorescence detection. Acta Alim. 2020, 49, 118–124. [Google Scholar] [CrossRef]
- Blandino, M.; Haidukowski, M.; Pascale, M.; Plizzari, L.; Scudellari, D.; Reyneri, A. Integrated strategies for the control of Fusarium head blight and deoxynivalenol contamination in winter wheat. Field Crop. Res. 2012, 133, 139–149. [Google Scholar] [CrossRef] [Green Version]
- Wenda-Piesik, A.; Lemańczyk, G.; Twarużek, M.; Błajet-Kosicka, B.; Kazek, M.; Grajewski, J. Fusarium head blight incidence and detection of Fusarium toxins in wheat in relation to agronomic factors. Eur. J. Plant. Pathol. 2017, 149, 515–531. [Google Scholar] [CrossRef] [Green Version]
- Mesterházy, Á.; Bartók, T.; Lamper, C. Influence of cultivar resistance, epidemic severity, and Fusarium species on the efficacy of fungicide control of Fusarium head blight in wheat and deoxynivalenol (DON) contamination of grain. Plant. Dis. 2003, 87, 1107–1115. [Google Scholar] [CrossRef] [Green Version]
- Mesterházy, Á.; Varga, M.; György, A.; Lehoczki-Krsjak, S.; Tóth, B. The role of adapted and non-adapted resistance sources in breeding resistance of winter wheat to Fusarium head blight and deoxynivalenol contamination. World Mycotox. J. 2018, 11, 539–557. [Google Scholar] [CrossRef]
- Yan, Z.; Zhang, H.; van der Lee, T.; Waalwijk, C.; van Diepeningen, A.D.; Deng, Y.; Feng, J.; Liu, T.G.; Chen, W.Q. Resistance to Fusarium head blight and mycotoxin accumulation among 129 wheat cultivars from different ecological regions in China. World Mycotox. J. 2019, 13, 189–200. [Google Scholar] [CrossRef]
- Zhu, Z.; Chen, L.; Zhang, W.; Yang, L.; Zhu, W.; Li, J.; Liu, Y.; Tong, H.; Fu, L.; Liu, J.; et al. Genome-wide association analysis of Fusarium head blight resistance in Chinese elite wheat lines. Front. Plant. Sci. 2020, 11, 206. [Google Scholar] [CrossRef] [Green Version]
- Buerstmayr, H.; Ban, T.; Anderson, J.A. QTL mapping and marker-assisted selection for Fusarium head blight resistance in wheat: A review. Plant. Breed. 2009, 128, 1–26. [Google Scholar] [CrossRef]
- Atanasoff, D. Fusarium blight (scab) of wheat and other cereals. J. Agric. Res. 1920, 20, 1–32. [Google Scholar]
- Schroeder, H.W.; Christensen, J.J. Factors affecting resistance of wheat to scab caused by Gibberella zeae. Phytopathology 1963, 53, 831–838. [Google Scholar]
- Mesterházy, Á. Types and components of resistance against Fusarium head blight of wheat. Plant. Breed. 1995, 114, 377–386. [Google Scholar] [CrossRef]
- He, X.; Dreisigacker, S.; Singh, R.P.; Singh, P.K. Genetics for low correlation between Fusarium head blight disease and deoxynivalenol (DON) content in a bread wheat mapping population. Theor. Appl. Genet. 2019, 132, 2401–2411. [Google Scholar] [CrossRef] [Green Version]
- Szabó-Hevér, Á.; Lehoczki-Krsjak, S.; Varga, M.; Purnhauser, L.; Pauk, J.; Lantos, C.; Mesterházy, Á. Differential influence of QTL linked to Fusarium head blight, Fusarium-damaged kernel, deoxynivalenol contents and associated morphological traits in a Frontana-derived wheat population. Euphytica 2014, 200, 9–26. [Google Scholar] [CrossRef] [Green Version]
- Scott, I.T. Varietal resistance and susceptibility to wheat scab. Univ. Mo. Agric. Exp. Stn. Res. Bull. 1927, 114, 14. [Google Scholar]
- Haile, J.K.; N’Diaye, A.; Walkowiak, S.; Nilsen, K.T.; Clarke, J.M.; Kutcher, H.R.; Steiner, B.; Buerstmayr, H.; Pozniak, C.J. Fusarium head blight in durum wheat: Recent status, breeding directions, and future research prospects. Phytopathology 2019, 109, 1664–1675. [Google Scholar] [CrossRef]
- Miller, J.D.; Young, J.C.; Sampson, R.D. Deoxynivalenol and Fusarium head blight resistance in spring cereals. Phytopathol. Zeit. 1985, 113, 359–367. [Google Scholar] [CrossRef]
- Snijders, C.H.A.; Perkowski, J. Effect of head blight caused by Fusarium culmorum on toxin content and weight of wheat kernels. Phytopathology 1990, 80, 566–570. [Google Scholar] [CrossRef]
- Lemmens, M.; Scholz, U.; Berthiller, F.; Dall’Asta, C.; Koutnik, A.; Schuhmacher, R.; Adams, G.; Buerstmayr, H.; Mesterházy, Á.; Krska, R.; et al. The ability to detoxify the mycotoxin deoxynivalenol co-localizes with a major QTL for Fusarium head blight resistance in wheat. Molec. Plant. Microbe Interact. 2005, 18, 1318–1324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mesterházy, Á.; Bartók, T.; Mirocha, C.M.; Komoróczy, R. Nature of resistance of wheat to Fusarium head blight and deoxynivalenol contamination and their consequences for breeding. Plant. Breed. 1999, 118, 97–110. [Google Scholar] [CrossRef]
- Mendes, G.D.R.L.; Del Ponte, E.M.; Feltrin, A.C.; Badiale-Furlong, E.; Oliveira, A.C.D. Common resistance to Fusarium head blight in Brazilian wheat cultivars. Scien. Agric. 2018, 75, 426–431. [Google Scholar] [CrossRef] [Green Version]
- Mesterházy, Á.; Bartók, T.; Kaszonyi, G.; Varga, M.; Tóth, B.; Varga, J. Common resistance to different Fusarium spp. causing Fusarium head blight in wheat. Eur. J. Plant. Pathol. 2005, 112, 267–281. [Google Scholar] [CrossRef]
- Tóth, B.; Kászonyi, G.; Bartók, T.; Varga, J.; Mesterházy, Á. Common resistance of wheat to members of the Fusarium graminearum species complex and F. culmorum. Plant. Breed. 2008, 127, 1–8. [Google Scholar] [CrossRef]
- Voss, H.-H.; Bowden, R.L.; Leslie, J.F.; Miedaner, T. Variation and transgression of aggressiveness among two Gibberella zeae crosses developed from highly aggressive parental isolates. Phytopathology 2010, 100, 904–912. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duveiller, E.; Mezzalama, M.; Legreve, A. Good management practices for minimizing the risk of Fusarium Head Blight and mycotoxin contamination in nontraditional warmer wheat growing areas. In Mycotoxin Production in Grain Chains; Leslie, J.F., Logrieco, A.F., Eds.; Wiley-Blackwell: Ames, IA, USA, 2014; pp. 220–231. [Google Scholar]
- Mesterházy, Á.; Varga, M.; Tóth, B.; Kótai, C.; Bartók, T.; Véha, A.; Ács, K.; Vágvölgyi, C.; Lehoczki-Krsjak, S. Reduction of deoxynivalenol (DON) contamination by improved fungicide use in wheat. Part 1. Dependence on epidemic severity and resistance level in small plot tests with artificial inoculation. Eur. J. Plant. Pathol. 2018, 151, 39–55. [Google Scholar] [CrossRef]
- Mesterházy, Á.; Varga, M.; Tóth, B.; Kótai, C.; Bartók, T.; Véha, A.; Ács, K.; Vágvölgyi, C.; Lehoczki-Krsjak, S. Reduction of deoxynivalenol (DON) contamination by improved fungicide use in wheat. Part 2. Farm scale tests with different nozzle types and updating the integrated approach. Eur. J. Plant. Pathol. 2018, 151, 1–20. [Google Scholar] [CrossRef]
- Rossi, V.; Manstretta, V.; Ruggeri, M. A multicomponent decision support system to manage Fusarium head blight and mycotoxins in durum wheat. World Mycotox. J. 2015, 8, 629–640. [Google Scholar] [CrossRef]
- GIEWS—Global Information and Early Warning System on Food and Agriculture. Available online: http://www.fao.org/giews/reports/crop-prospects/en/ (accessed on 5 October 2021).
- Giroux, M.E.; Bourgeois, G.; Dion, Y.; Rioux, S.; Zoghlami, S.; Parent, C.; Vachon, E.; Vanasse, A. Evaluation of forecasting models for Fusarium head Blight of wheat under growing conditions of Quebec, Canada. Plant. Dis. 2016, 100, 1192–1201. [Google Scholar] [CrossRef]
- Lecerf, R.; Ceglar, A.; Lopez-Lozano, R.; van der Velde, M.; Baruth, B. Assessing the information in crop model and meteorological indicators to forecast crop yield over Europe. Agric. Sys. 2019, 168, 191–202. [Google Scholar] [CrossRef]
- Liu, C.; Manstretta, V.; Rossi, V.; van der Fels-Klerx, H.J. Comparison of three modelling approaches for predicting deoxynivalenol contamination in winter wheat. Toxins 2018, 10, 267. [Google Scholar] [CrossRef] [Green Version]
- Cowger, R.; Weisz, R.; Arellano, C.; Murphy, P. Profitability of integrated management of Fusarium Head Blight in North Carolina winter wheat. Phytopathology 2016, 106, 814–823. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schaafsma, A.W.; Hooker, D.C. Climatic models to predict occurrence of Fusarium toxins in wheat and maize. Int. J. Food Microbiol. 2007, 119, 116–125. [Google Scholar] [CrossRef]
- Weather INnovations–Data Driven Decision Dgriculture. Available online: www.weatherinnovations.com (accessed on 5 October 2021).
- Rossi, V.; Giosué, S.; Pattori, E.; Spanna, F.; del Vecchio, A. A model estimating the risk for Fusarium head blight on wheat. OEPP Bull. 2003, 33, 421–425. [Google Scholar] [CrossRef]
- Skelsey, P.; Newton, A.C. Future environmental and geographic risks of Fusarium head blight of wheat in Scotland. Eur. J. Plant. Pathol. 2015, 142, 133–147. [Google Scholar] [CrossRef] [Green Version]
- van der Fels-Klerx, H.J.; Burgers, S.L.G.E.; Booij, C.J.H. Descriptive modelling to predict deoxynivalenol in winter wheat in the Netherlands. Food Addit. Contam. Part A 2010, 27, 636–643. [Google Scholar] [CrossRef] [PubMed]
- West, J.S.; Holdgate, S.; Townsend, J.A.; Edwards, S.G.; Jennings, P.; Fitt, B.D.L. Impacts of changing climate and agronomic factors on Fusarium ear blight of wheat in the UK. Fung. Ecol. 2012, 5, 53–61. [Google Scholar] [CrossRef] [Green Version]
- Moschini, R.C.; Fortugno, C. Predicting wheat head blight incidence using models based on meteorological factors in Pergamino, Argentina. Eur. J. Plant. Pathol. 1996, 102, 211–218. [Google Scholar] [CrossRef]
- Del Ponte, E.M.; Fernandes, J.M.C.; Pavan, W. A risk infection simulation model for Fusarium head blight of wheat. Fitopatol. Brasil. 2005, 30, 634–642. [Google Scholar] [CrossRef] [Green Version]
- Fusarium risk tool. Available online: www.wheatscab.psu.edu (accessed on 5 October 2021).
- Edwards, S.G. Influence of agricultural practices on Fusarium infection of cereals and subsequent contamination of grain by trichothecene mycotoxins. Toxicol. Lett. 2004, 153, 29–35. [Google Scholar] [CrossRef]
- Wegulo, S.N.; Baenziger, P.S.; Hernandez-Nopsa, J.; Bockus, W.W.; Hallen-Adams, H. Management of Fusarium head blight of wheat and barley. Crop. Prot. 2015, 73, 100–107. [Google Scholar] [CrossRef]
- Dill-Macky, R.; Jones, R. The effect of previous crop residues and tillage on Fusarium head blight of wheat. Plant. Dis. 2000, 84, 71–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reis, E.M.; Carmona, M.A. Integrated disease management of Fusarium head blight. In Fusarium Head Blight in Latin America; Alconada Magliano, T.M., Chulze, S.N., Eds.; Springer: Dordrecht, The Netherlands, 2013; pp. 159–173. [Google Scholar]
- Schöneberg, T.; Jenny, E.; Wettstein, F.E.; Bucheli, T.D.; Mascher, F.; Bertossa, M.; Musa, T.; Seifert, K.; Gräfenhan, T.; Keller, B. Occurrence of Fusarium species and mycotoxins in Swiss oats—Impact of cropping factors. Eur. J. Agron. 2018, 92, 123–132. [Google Scholar] [CrossRef]
- Stack, R.W. History of Fusarium head blight with emphasis on North America. In Fusarium Head Blight of Wheat and Barley; Leonard, K.J., Bushnell, W.R., Eds.; American Phytopathological Society Press: St. Paul, MN, USA, 2003; pp. 1–34. [Google Scholar]
- Trail, F.; Seminara, A. The mechanism of ascus firing—Merging biophysical and mycological viewpoints. Fung. Biol. Rev. 2014, 28, 70–76. [Google Scholar] [CrossRef]
- Mesterházy, Á.; Lehoczki-Krsjak, S.; Varga, M.; Szabó-Hevér, Á.; Tóth, B.; Lemmens, M. Breeding for FHB resistance via Fusarium damaged kernels and deoxynivalenol accumulation as well as inoculation methods in winter wheat. Agric. Sci. 2015, 6, 970–1002. [Google Scholar] [CrossRef] [Green Version]
- Obst, A.; Lepschy von Gleissenthall, J.; Beck, R. On the etiology of Fusarium head blight of wheat in South Germany—preceding crops, weather conditions for inoculum production and head infection, proneness of the crop to infection and mycotoxin production. Cer. Res. Comm. 1997, 25, 699–704. [Google Scholar] [CrossRef]
- Krebs, H.; Streit, B.; Forrer, H.R. Effect of tillage and preceding crops on Fusarium infection and deoxynivalenol content of wheat. In The World Grows Organic, Proceedings of the 13th International IFOAM Scientific Conference; Alfoldi, T., Lockeretz, W., Niggli, U., Eds.; IOS Press: Basel, Switzerland, 2000; p. 13. [Google Scholar]
- Chiotta, M.; Alaniz Zanon, M.; Palazzini, J.; Scandiani, M.; Formento, Á.; Barros, G.; Chulze, S. Pathogenicity of Fusarium graminearum and F. meridionale on soybean pod blight and trichothecene accumulation. Plant. Pathol. 2016, 65, 1492–1497. [Google Scholar] [CrossRef] [Green Version]
- Kukedi, E. Relationship between previous crop and Fusarium head blight infection. Növénytermelés 1977, 26, 207–2012, (In Hungarian with English summary and captions for tables and figures.). [Google Scholar]
- Edwards, S.G.; Jennings, P. Impact of agronomic factors on Fusarium mycotoxins in harvested wheat. Food Addit. Contam. Part A 2018, 35, 2443–2454. [Google Scholar] [CrossRef]
- Miller, J.D.; Culley, J.; Fraser, K.; Hubbard, S.; Meloche, F.; Ouellet, T.; Seaman, W.L.; Seifert, K.A.; Turkington, K.; Voldeng, H. Effect of tillage practice on Fusarium head blight of wheat. Can. J. Plant. Pathol. 1998, 20, 95–103. [Google Scholar] [CrossRef]
- Zorn, A.; Musa, T.; Lips, M. Costs of preventive agronomic measures to reduce deoxynivalenol in wheat. J. Agric. Sci. 2017, 155, 1033–1044. [Google Scholar] [CrossRef]
- Schaafsma, A.; Tamburic-Ilincic, L.; Hooker, D. Effect of previous crop, tillage, field size, adjacent crop, and sampling direction on airborne propagules of Gibberella zeae/Fusarium graminearum, Fusarium head blight severity, and deoxynivalenol accumulation in winter wheat. Can. J. Plant. Pathol. 2005, 27, 217–224. [Google Scholar] [CrossRef]
- Vogelgsang, S.; Beyer, M.; Pasquali, M.; Jenny, E.; Musa, T.; Bucheli, T.D.; Wettstein, F.E.; Forrer, H.-R. An eight-year survey of wheat shows distinctive effects of cropping factors on different Fusarium species and associated mycotoxins. Eur. J. Agron. 2019, 105, 62–77. [Google Scholar] [CrossRef]
- Hofgaard, I.; Seehusen, T.; Aamot, H.U.; Riley, H.; Razzaghian, J.; Le, V.H.; Hjelkrem, A.-G.R.; Dill-Macky, R.; Brodal, G. Inoculum potential of Fusarium spp. relates to tillage and straw management in Norwegian fields of spring oats. Front. Microbiol. 2016, 7, 556. [Google Scholar] [CrossRef] [Green Version]
- Champeil, A.; Fourbet, J.F.; Doré, T.; Rossignol, L. Influence of cropping system on Fusarium head blight and mycotoxin levels in winter wheat. Crop. Prot. 2004, 23, 531–537. [Google Scholar] [CrossRef]
- Imathiu, S.M.; Edwards, S.G.; Ray, R.V.; Back, M.A. Fusarium langsethiae—A HT-2 and T-2 toxin producer that needs more attention. J. Phytopathol. 2013, 161, 1–10. [Google Scholar] [CrossRef]
- Jacobsen, B.J. Good agricultural and harvest practices to reduce mycotoxin contamination in wheat in temperate countries. In Mycotoxin Production in Grain Chains; Leslie, J.F., Logrieco, A.F., Eds.; Wiley-Blackwell: Ames, IA, USA, 2014; pp. 209–219. [Google Scholar]
- Choo, T.M.; Martin, R.A.; Savard, M.E.; Blackwell, B. Effects of planting date and earliness on deoxynivalenol contamination in barley under natural epidemic conditions. Can. J. Plant. Sci. 2014, 94, 1363–1371. [Google Scholar] [CrossRef]
- Gorczyca, A.; Oleksy, A.; Gala-Czekaj, D.; Urbaniak, M.; Laskowska, M.; Waskiewicz, A.; Stepien, L. Fusarium head blight incidence and mycotoxin accumulation in three durum wheat cultivars in relation to sowing date and density. Sci. Nat. 2018, 105, 2–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krnjaja, V.; Mandic, V.; Levic, J.; Stankovic, S.; Petrovic, T.; Vasic, T.; Obradovic, A. Influence of N-fertilization on Fusarium head blight and mycotoxin levels in winter wheat. Crop. Protect. 2015, 67, 251–256. [Google Scholar] [CrossRef]
- Yoshida, M.; Nakajima, T.; Tonooka, T. Effect of nitrogen application at anthesis on Fusarium Head Blight and mycotoxin accumulation in bread making wheat in the western part of Japan. J. Gen. Plant. Pathol. 2008, 74, 355–363. [Google Scholar] [CrossRef]
- Lemmens, M.; Haim, K.; Lew, H.; Ruckenbauer, P. The effect of nitrogen fertilization on Fusarium head blight development and deoxynivalenol contamination in wheat. J. Phytopathol. 2004, 152, 1–8. [Google Scholar] [CrossRef]
- Gautam, P.; Dill-Macky, R. Impact of moisture, host genetics and Fusarium graminearum isolates on Fusarium head blight development and trichothecene accumulation in spring wheat. Mycotox. Res. 2012, 28, 45–58. [Google Scholar] [CrossRef]
- Haidukowski, M.; Pascale, M.; Perrone, G.; Pancaldi, D.; Campagna, C.; Visconti, A. Effect of fungicides on the development of Fusarium head blight, yield and deoxynivalenol accumulation in wheat inoculated under field conditions with Fusarium graminearum and Fusarium culmorum. J. Sci. Food Agric. 2005, 85, 191–198. [Google Scholar] [CrossRef]
- Audenaert, K.; Landschoot, S.; Vanheule, A.; Waegeman, W.; de Baets, B.; Haesaert, G. Impact of fungicide timing on the composition of the Fusarium head blight disease complex and the presence of deoxynivalenol in wheat. In Fungicides: Beneficial and Harmful Aspects; Thajuddin, N., Ed.; In Tech: Rijeka, Croatia, 2011; pp. 79–98. [Google Scholar]
- Machado, F.J.; Nicolli, C.P.; Möller, P.A.; Arruda, R.; Ward, T.J.; Del Ponte, E.M. Differential triazole sensitivity among members of the Fusarium graminearum species complex infecting barley grains in Brazil. Trop. Plant. Pathol. 2017, 42, 197–202. [Google Scholar] [CrossRef]
- Spolti, P.; Jorge, B.C.D.; Del Ponte, E.M. Sensitivity of Fusarium graminearum causing head blight of wheat in Brazil to tebuconazole and metconazole fungicides. Trop. Plant. Pathol. 2012, 37, 419–423. [Google Scholar] [CrossRef] [Green Version]
- Pirgozliev, S.R.; Ray, R.V.; Edwards, S.G.; Hare, M.C.; Jenkinson, P. Effect of timing of fungicide application on the development of Fusarium head blight and the accumulation of deoxynivalenol (DON) in winter wheat grain. Cer. Res. Comm. 2008, 36, 289–299. [Google Scholar] [CrossRef]
- Tateishi, H.; Miyake, T.; Mori, M.; Sakuma, Y.; Saishoji, T. Effect of application timing of metconazole on Fusarium head blight development and mycotoxin contamination in wheat and barley. J. Pest. Sci. 2014, 39, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Machado, F.J.; Santana, F.M.; Lau, D.; Del Ponte, E.M. Quantitative review of the effects of triazole and benzimidazole fungicides on Fusarium head blight and wheat yield in Brazil. Plant. Dis. 2017, 101, 1633–1641. [Google Scholar] [CrossRef] [Green Version]
- Chala, A.; Weinert, J.; Wolf, G.A. An integrated approach to the evaluation of the Efficacy of fungicides against Fusarium culmorum, the cause of head blight of wheat. J. Phytopathol. 2003, 151, 673–678. [Google Scholar] [CrossRef]
- Edwards, S.G.; Pirgozliev, S.R.; Hare, M.C.; Jenkinson, P. Quantification of trichothecene-producing Fusarium species in harvested grain by competitive PCR to determine efficacies of fungicides against Fusarium head blight of winter wheat. Appl. Environ. Microbiol. 2001, 67, 1575–1580. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simpson, D.R.; Weston, G.E.; Turner, J.A.; Jennings, P.; Nicholson, P. Differential control of head blight pathogens of wheat by fungicides and consequences for mycotoxin contamination of grain. Eur. J. Plant. Pathol. 2001, 107, 421–431. [Google Scholar] [CrossRef]
- Feksa, H.R.; Do Couto, H.T.Z.; Garozi, R.; De Almeida, J.L.; Gardiano, C.G.; Tessmann, D.J. Pre-and post-infection application of strobilurin-triazole premixes and single fungicides for control of Fusarium head blight and deoxynivalenol mycotoxin in wheat. Crop. Protect. 2019, 117, 128–134. [Google Scholar] [CrossRef]
- Chen, H.Z.; Wu, Q.Y.; Zhang, G.; Wu, J.W.; Zhu, F.; Yang, H.F.; Zhuang, Y.Q. Carbendazim-resistance of Gibberella zeae associated with Fusarium head blight and its management in Jiangsu Province, China. Crop. Protect. 2019, 124, 104866. [Google Scholar] [CrossRef]
- Sun, H.-Y.; Zhu, Y.-F.; Liu, Y.-Y.; Deng, Y.-Y.; Li, W.; Zhang, A.-X.; Chen, H.-G. Evaluation of tebuconazole for the management of Fusarium head blight in China. Australas. Plant. Pathol. 2014, 43, 631–638. [Google Scholar] [CrossRef]
- Mesterházy, Á.; Tóth, B.; Varga, M.; Bartók, T.; Szabó-Hevér, Á.; Farády, L.; Lehoczki-Krsjak, S. Role of fungicides, of nozzle types, and the resistance level of wheat varieties in the control of Fusarium head blight and deoxynivalenol. Toxins 2011, 3, 1453–1483. [Google Scholar] [CrossRef] [Green Version]
- Lehoczki-Krsjak, S.; Varga, M.; Szabó-Hevér, Á.; Mesterházy, Á. Translocation and degradation of tebuconazole and prothioconazole in wheat in the most Fusarium-susceptible phenophase. Pest. Manage. Sci. 2013, 69, 1216–1224. [Google Scholar] [CrossRef] [PubMed]
- Lehoczki-Krsjak, S.; Varga, M.; Mesterházy, Á. Distribution of prothioconazole and tebuconazole between wheat ears and flag leaves following fungicide spraying with different nozzle types at flowering. Pest. Manage. Sci. 2015, 71, 105–113. [Google Scholar] [CrossRef]
- Beres, B.L.; Brule-Babel, A.L.; Ye, Z.; Graf, R.J.; Turkington, T.K.; Harding, M.W.; Kutcher, H.R.; Hooker, D.C. Exploring genotype × environment × management synergies to manage Fusarium head blight in wheat. Can. J. Plant. Pathol. 2018, 40, 179–188. [Google Scholar] [CrossRef]
- Document 02009L0128-20190726. Consolidated text: Directive 2009/128/EC of the European Parliament and of the Council of 21 October 2009 Establishing a Framework for Community Action to Achieve the Sustainable Use of Pesticides. Available online: http://data.europa.eu/eli/dir/2009/128/2019-07-26 (accessed on 5 October 2021).
- Chulze, S.N.; Palazzini, J.M.; Torres, A.M.; Barros, G.; Ponsone, M.L.; Geisen, R.; Schmidt-Heydt, M.; Köhl, J. Biological control as a strategy to reduce the impact of mycotoxins in peanuts, grapes and cereals in Argentina. Food Addit. Contam. Part A 2015, 32, 471–479. [Google Scholar] [CrossRef] [PubMed]
- Compant, S.; Duffy, B.; Nowak, J.; Clement, C.; Barka, E.A. Use of plant growth-promoting bacteria for biocontrol of plant diseases: Principles, mechanisms of action, and future prospects. Appl. Environ. Microbiol. 2005, 71, 4951–4959. [Google Scholar] [CrossRef] [Green Version]
- Sarrocco, S.; Vannacci, G. Preharvest application of beneficial fungi as a strategy to prevent postharvest mycotoxin contamination: A review. Crop. Protect. 2018, 110, 160–170. [Google Scholar] [CrossRef]
- Abdallah, M.F.; Ameye, M.; de Saeger, S.; Audenaert, K.; Haesaert, G. Biological control of mycotoxigenic fungi and their toxins: An update for the pre-harvest approach. In Mycotoxins—Impact and Management Strategies; Njobeh, P.B., Stepman, F., Eds.; IntechOpen: London, UK, 2018. [Google Scholar] [CrossRef] [Green Version]
- Johansson, P.M.; Johnsson, L.; Gerhardson, B. Suppression of wheat-seedling diseases caused by Fusarium culmorum and Microdochium nivale using bacterial seed treatment. Plant. Pathol. 2003, 52, 219–227. [Google Scholar] [CrossRef]
- Palazzini, J.M.; Alberione, E.; Torres, A.; Donat, C.; Kohl, J.; Chulze, S.N. Biological control of Fusarium gramienarum sensu stricto causal agent of Fusarium head blight of wheat, using formulated antagonists under field conditions in Argentina. Biolog. Cont. 2016, 94, 56–61. [Google Scholar] [CrossRef]
- Palazzini, J.; Roncallo, P.; Renata Cantoro, C.; Chiotta, M.; Yerkovich, N.; Palacios, S.; Echenique, V.; Torres, A.; Ramirez, M.; Karlovsky, P.; et al. Biocontrol of Fusarium graminearum sensu stricto, reduction of deoxynivalenol accumulation and phytohormone induction by two selected antagonists. Toxins 2018, 10, 88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schisler, D.; Khan, N.; Boehm, M.J.; Slininger, P. Greenhouse and field evaluation of biological control of Fusarium head blight on durum wheat. Plant. Dis. 2002, 86, 1350–1356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Liu, J.; Chen, H.; Yao, J. Characterization of Fusarium graminearum inhibitory lipopeptide from Bacillus subtilis IB. Appl. Microbiol. Biotechnol. 2007, 76, 889–894. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, J.; Yang, N.; Wen, Z.; Sun, X.; Chai, Y.; Ma, Z. Wheat microbiome bacteria can reduce virulence of a plant pathogenic fungus by altering histone acetylation. Nat. Comm. 2018, 9, 3429. [Google Scholar] [CrossRef] [Green Version]
- Hu, W.; Gao, Q.; Hamada, M.S.; Dawood, D.H.; Zheng, J.; Chen, Y.; Ma, Z. Potential of Pseudomonas chlororaphis subsp. aurantiaca strain Pcho10 as a biocontrol agent against Fusarium graminearum. Phytopathology 2014, 104, 1289–1297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palazzini, J.M.; Ramirez, M.L.; Torres, A.M.; Chulze, S.N. Potential biocontrol agents for Fusarium head blight and deoxynivalenol production in wheat. Crop. Protect. 2007, 26, 1702–1710. [Google Scholar] [CrossRef]
- Luongo, L.; Galli, M.; Corazza, L.; Meekes, E.; Haas, L.D.; van der Plas, C.L.; Köhl, J. Potential of fungal antagonists for biocontrol of Fusarium spp. in wheat and maize through competition in crop debris. Biocont. Sci. Technol. 2005, 15, 229–242. [Google Scholar] [CrossRef]
- Palazzini, J.M.; Groenenboom-de Haas, B.H.; Torres, A.M.; Köhl, J.; Chulze, S.N. Biocontrol and population dynamics of Fusarium spp. on wheat stubble in Argentina. Plant. Pathol. 2013, 62, 859–866. [Google Scholar] [CrossRef]
- Sarrocco, S.; Moncini, L.; Pachetti, G.; Moretti, A.; Ritieni, A.; Vannacci, G. Biological control of Fusarium head blight under field conditions. IOCB-WPRS Bull. 2013, 86, 95–100. [Google Scholar]
- Tan, J.; de Zutter, N.; de Saeger, S.; de Boevre, M.; Tran, T.M.; van der Lee, T.; Waalwijk, C.; Willems, A.; Vandamme, P.; Ameye, M.; et al. Presence of the weakly pathogenic Fusarium poae in the Fusarium Head Blight disease complex hampers biocontrol and chemical control of the virulent Fusarium graminearum pathogen. Front. Plant. Sci. 2021, 12, 216. [Google Scholar] [CrossRef]
- Sinha, A.K.; Sinha, K.K. Insect pests, Aspergillus flavus and aflatoxin contamination in stored wheat: A survey at north Bihar (India). J. Stor. Prod. Res. 1990, 26, 223–226. [Google Scholar] [CrossRef]
- Scarpino, V.; Reyneri, A.; Sulyok, M.; Krska, R.; Blandino, M. Impact of the insecticide application to maize cultivated in different environmental conditions on emerging mycotoxins. Field Crop. Res. 2018, 217, 188–198. [Google Scholar] [CrossRef]
- Conner, R.L.; Davidson, J.G.N. Resistance in wheat to black point caused by Alternaria alternata and Cochliobolus sativus. Can. J. Plant. Sci. 1988, 68, 351–359. [Google Scholar] [CrossRef]
- Bühler Group Sortex. Optical Sorting Solutions. Available online: https://www.buhlergroup.com/content/buhlergroup/global/en/process-technologies/Optical-Sorting.html (accessed on 5 October 2021).
- Menzies, J.G.; Turkington, T.K. An overview of the ergot (Claviceps pupurea) issue in western Canada: Challenges and solutions. Can. J. Phytopathol. 2015, 37, 40–51. [Google Scholar] [CrossRef]
- Miedaner, T.; Mirdita, V.; Rodemann, B.; Drobeck, T.; Rentel, D. Genetic variation of winter rye cultivars for their ergot (Claviceps purpurea) reaction tested in a field design with minimized interplot interference. Plant. Breed. 2010, 129, 58–62. [Google Scholar] [CrossRef]
- Dung, J.K.S.; Kaur, N.; Walenta, D.L.; Alderman, S.C.; Frost, K.E.; Hamm, P.B. Reducing Claviceps purpurea sclerotia germination with soil-applied fungicides. Crop. Protect. 2018, 106, 146–149. [Google Scholar] [CrossRef]
- Neme, K.; Mohammed, A. Mycotoxin occurrence in grains and the role of postharvest management as a mitigation strategies. A review. Food Cont. 2017, 78, 412–425. [Google Scholar] [CrossRef]
- Schaarschmidt, S.; Fauhl-Hassek, C. The fate of mycotoxins during the processing of wheat for human consumption. Comp. Rev. Food Sci. Food Saf. 2018, 17, 556–593. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grundas, S.; Wrigley, C.W. Wheat harvesting, transport and storage. In Reference Module in Food Science: Grain Harvest, Storage and Transport; Elsevier: Amsterdam, The Netherlands, 2016. [Google Scholar] [CrossRef]
- Trenholm, H.L.; Charmley, L.L.; Prelusky, D.B.; Warner, R.M. Two physical methods for the decontamination of four cereals contaminated with deoxynivalenol and zearalenone. J. Agric. Food Chem. 1991, 39, 356–360. [Google Scholar] [CrossRef]
- Rios, G.; Zakhia, N.; Abecassis, J.; Chaurand, M.; Samson, M.-F.; Richard-Forget, F.; Lullien-Pellerin, V. Impact des opérations de transformation sur la répartition du DON dans les produits de fractionnement du blé dur. In Proceedings of the Colloque Scientifique “Mycotoxines Fusariennes des Céréales”, Arcachon, France, 11–13 September 2007. [Google Scholar]
- Tibola, C.S.; Fernandes, J.M.C.; Guarienti, E.M. Effect of cleaning, sorting and milling processes in wheat mycotoxin content. Food Cont. 2016, 60, 174–179. [Google Scholar] [CrossRef] [Green Version]
- Shahin, M.A.; Symons, S.J. Detection of Fusarium damaged kernels in Canada western red spring wheat using visible/near-infrared hyperspectral imaging and principal component analysis. Comp. Electron. Agric. 2011, 75, 107–112. [Google Scholar] [CrossRef]
- Dexter, J.E.; Clear, R.M.; Preston, K.R. Fusarium head blight: Effect on the milling and baking of some Canadian wheats. Cer. Chem. 1996, 73, 695–701. [Google Scholar]
- Dexter, J.E.; Marchylo, B.A.; Clear, R.M.; Clarke, J.M. Effect of Fusarium head blight on semolina milling and pasta-making quality of durum wheat. Cer. Chem. 1997, 74, 519–525. [Google Scholar] [CrossRef]
- Osborne, B.G.; Ibe, F.; Brown, G.L.; Petagine, F.; Scudamore, K.A.; Banks, J.N.; Hetmanski, M.T.; Leonard, C.T. The effects of milling and processing on wheat contaminated with ochratoxin A. Food Addit. Contam. 1996, 13, 141–153. [Google Scholar] [CrossRef]
- Scudamore, K.A.; Banks, J.; MacDonald, S.J. Fate of ochratoxin A in the processing of whole wheat grains during milling and bread production. Food Addit. Contam. 2003, 20, 1153–1163. [Google Scholar] [CrossRef]
- Bailey, K.L.; Gossen, B.D.; Gugel, R.K.; Morrall, R.A.A. (Eds.) Diseases of Field Crops in Canada, 3rd ed.; The Canadian Phytopathological Society and University Extension Press: Saskatoon, SK, Canada, 2003; pp. 89–93. [Google Scholar]
- Magan, N.; Aldred, D. Managing microbial spoilage in cereals and baking products. In Food Spoilage Microorganisms; de Blackburn, C., Ed.; Woodhead Publishing Ltd.: Cambridge, UK, 2006; pp. 194–212. [Google Scholar]
- Mrema, G.; Gumbe, L.; Chepete, H.; Agullo, J. Grain crop drying, handling and storage. In FAO Rural Structures in the Tropics: Design and Development; FAO: Rome, Italy, 2011; pp. 363–383. [Google Scholar]
- Grains Research and Development Corporation. GRDC GROWNOTES. Grain Storage; Grains Research and Development Corporation: Canberra, ACT, Australia, 2020; Available online: https://storedgrain.com.au/wp-content/uploads/2020/07/GRDC-GS-GrowNotes_25.6.20-Final-web-version-June-2020.pdf (accessed on 5 October 2021).
- Harner, J.P.; Sloderbeck, P.; Bauernfeind, R.J. Storing Wheat, Kansas State University Agricultural Experiment Station and Cooperative Extension Bulletin MF-855. 2005. Available online: https://bookstore.ksre.ksu.edu/pubs/mf855.pdf (accessed on 5 October 2021).
- Payne, T.S. Harvest and storage management of wheat. In FAO Plant Production and Protection Series No. 30: Bread Wheat; Curtis, B.C., Rajaram, S., Macpherson, H.G., Eds.; FAO: Rome, Italy, 2002; Available online: http://www.fao.org/3/y4011e/y4011e00.htm (accessed on 5 October 2021).
- Sadaka, S.; On-Farm. Wheat Drying and Storage. University of Arkansas Cooperative Extension Bulletin. Available online: https://www.uaex.edu/farm-ranch/crops-commercial-horticulture/Grain_drying_and_storage/wheat_drying_and_storage.aspx (accessed on 5 October 2021).
- Agriopoulou, S.; Stamatelopoulou, E.; Varzakas, T. Advances in occurrence, importance, and mycotoxin control strategies: Prevention and detoxification in foods. Foods 2020, 9, 137. [Google Scholar] [CrossRef] [PubMed]
- Calado, T.; Venancio, A.; Abrunhosa, L. Irradiation for mold and mycotoxin control: A review. Comp. Rev. Food Sci. Food Saf. 2014, 13, 1049–1062. [Google Scholar] [CrossRef] [Green Version]
- Čolović, R.; Puvača, N.; Cheli, F.; Avantaggiato, G.; Greco, D.; Đuragić, O.; Kos, J.; Pinotti, L. Decontamination of mycotoxin-contaminated feedstuffs and compound feed. Toxins 2019, 11, 617. [Google Scholar] [CrossRef] [Green Version]
- Karlovsky, P.; Suman, M.; Berthiller, F.; de Meester, J.; Eisenbrand, G.; Perrin, I.; Oswald, I.P.; Speijers, G.; Chiodini, A.; Recker, T.; et al. Impact of food processing and detoxification treatments on mycotoxin contamination. Mycotox. Res. 2016, 32, 179–205. [Google Scholar] [CrossRef]
- Los, A.; Ziuzina, D.; Bourk, P. Current and future technologies for microbiological decontamination of cereal grains. J. Food Sci. 2018, 83, 1484–1493. [Google Scholar] [CrossRef] [Green Version]
- FDA (United States Food and Drug Administration). Secondary direct food additives permitted in food for human consumption. Fed. Regist. 2001, 66, 33829–33830. [Google Scholar]
- Afsah-Hejri, L.; Hajeb, P.; Ehsani, R.J. Application of ozone for degradation of mycotoxins in food: A review. Comp. Rev. Food Sci. Food Saf. 2020, 19, 1777–1808. [Google Scholar] [CrossRef]
- Conte, G.; Fontanelli, M.; Galli, F.; Cotrozzi, L.; Pagni, L.; Pellegrini, E. Mycotoxins in feed and food and the role of ozone in their detoxification and degradation: An update. Toxins 2020, 12, 486. [Google Scholar] [CrossRef]
- Lullien-Pellerin, V. Ozone in grain processing. In Ozone in Food Processing; O’Donnell, C., Tiwari, B.K., Cullen, P.J., Rice, R.G., Eds.; Wiley-Blackwell: Bridgewater, NJ, USA, 2012; pp. 81–102. [Google Scholar]
- Li, M.M.; Guan, E.Q.; Bian, K. Structure elucidation and toxicity analysis of the degradation products of deoxynivalenol by gaseous ozone. Toxins 2019, 11, 474. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, M.M.; Guan, E.Q.; Bian, K. Effect of ozone treatment on deoxynivalenol and quality evaluation of ozonised wheat. Food Addit. Contam. Part A 2015, 32, 544–553. [Google Scholar] [CrossRef] [PubMed]
- Piemontese, L.; Messia, M.C.; Marconi, E.; Falasca, L.; Zivoli, R.; Gambacorta, L.; Perrone, G.; Solfrizzo, M. Effect of gaseous ozone treatments on DON, microbial contaminants and technological parameters of wheat and semolina. Food Addit. Contam. Part A 2018, 35, 760–771. [Google Scholar] [CrossRef]
- Santos Alexandre, A.P.; Vela-Paredes, R.S.; Santos, A.S.; Costa, N.S.; Canniatti-Brazaca, S.G.; Calori-Domingues, M.A.; Duarte Augusto, P.E. Ozone treatment to reduce deoxynivalenol (DON) and zearalenone (ZEN) contamination in wheat bran and its impact on nutritional quality. Food Addit. Contam. Part A 2018, 35, 1189–1199. [Google Scholar] [CrossRef]
- Savi, G.D.; Piacentini, K.C.; Bittencourt, K.O.; Scussel, V.M. Ozone treatment efficiency on Fusarium graminearum and deoxynivalenol degradation and its effects on whole wheat grains (Triticum aestivum L.) quality and germination. J. Stor. Prod. Res. 2014, 59, 245–253. [Google Scholar] [CrossRef]
- Savi, G.D.; Piacentini, K.C.; Scussel, V.M. Ozone treatment efficiency in Aspergillus and Penicillium growth inhibition and mycotoxin degradation of stored wheat grains (Triticum aestivum L.). J. Food Process. Preserv. 2015, 39, 940–948. [Google Scholar] [CrossRef]
- Zhu, F. Effect of ozone treatment on the quality of grain products. Food Chem. 2018, 264, 358–366. [Google Scholar] [CrossRef]
- Kottapalli, B.; Wolf-Hall, C.E.; Schwarz, P. Evaluation of gaseous ozone and hydrogen peroxide treatments for reducing Fusarium survival in malting barley. J. Food Protect. 2005, 68, 1236–1240. [Google Scholar] [CrossRef] [PubMed]
- Scudamore, K.A.; Patel, S. The fate of deoxynivalenol and fumonisins in wheat and maize during commercial breakfast cereal production. World Mycotox. J. 2008, 1, 437–448. [Google Scholar] [CrossRef]
- Young, J.C.; Fulcher, R.G.; Hayhoe, J.H.; Scott, P.M.; Dexter, J.E. Effect of milling and baking on deoxynivalenol (vomitoxin) content of eastern Canadian wheats. J. Agric. Food Chem. 1984, 32, 659–664. [Google Scholar] [CrossRef]
- Liu, Y.; Li, M.; Bian, K.; Guan, E.; Liu, Y.; Lu, Y. Reduction of deoxynivalenol in wheat with superheated steam and its effects on wheat quality. Toxins 2019, 11, 414. [Google Scholar] [CrossRef] [Green Version]
- Pronyk, C.; Cenkowski, S.; Abramson, D. Superheated steam reduction of deoxynivalenol in naturally contaminated wheat kernels. Food Cont. 2006, 17, 789–796. [Google Scholar] [CrossRef]
- Chełkowski, J.; Goliński, P.; Godlewska, B.; Radomyska, W.; Szebiotko, K.; Wiewiórowska, M. Mycotoxins in cereal grain. Part IV. Inactivation of ochratoxin A and other mycotoxins during ammoniation. Nahrung 1981, 25, 631–637. [Google Scholar] [CrossRef]
- Borràs-Vallverdú, B.; Ramos, A.J.; Marín, S.; Sanchis, V.; Rodríguez-Bencomo, J.J. Deoxynivalenol degradation in wheat kernels by exposition to ammonia vapours: A tentative strategy for detoxification. Food Cont. 2020, 118, 107444. [Google Scholar] [CrossRef]
- Weng, C.Y.; Martinez, A.J.; Park, D.L. Efficacy and permanency of ammonia treatment in reducing aflatoxin levels in corn. Food Addit. Contam. 1994, 11, 649–658. [Google Scholar] [CrossRef]
- Cucullu, A.F.; Lee, L.S.; Pons, W.A.; Stanley, J.B. Ammoniation of aflatoxin B1: Isolation and characterization of a product with molecular weight 206. J. Agric. Food Chem. 1976, 24, 408–410. [Google Scholar] [CrossRef] [PubMed]
- Sovrani, V.; Blandino, M.; Scarpino, V.; Reyneri, A.; Coïsson, J.D.; Travaglia, F.; Locatelli, M.; Bordiga, M.; Montella, R.; Arlorio, M. Bioactive compound content, antioxidant activity, deoxynivalenol and heavy metal contamination of pearled wheat fractions. Food Chem. 2012, 135, 39–46. [Google Scholar] [CrossRef] [Green Version]
- Tibola, C.S.; Fernandes, J.M.C.; Guarienti, E.M.; Nicolau, M. Distribution of Fusarium mycotoxins in wheat milling process. Food Cont. 2015, 53, 91–95. [Google Scholar] [CrossRef] [Green Version]
- Brera, C.; Peduto, A.; Debegnach, F.; Pannunzi, E.; Prantera, E.; Gregori, E.; de Giacomo, M.; de Santis, B. Study of the influence of the milling process on the distribution of deoxynivalenol content from the caryopsis to cooked pasta. Food Cont. 2012, 32, 309–312. [Google Scholar] [CrossRef]
- Edwards, S.G.; Dickin, E.T.; MacDonald, S.; Butler, D.; Hazel, C.M.; Patel, S.; Scudamore, K.A. Distribution of Fusarium mycotoxins in UK wheat mill fractions. Food Addit. Contam. Part A 2011, 28, 1694–1704. [Google Scholar]
- Nishio, Z.; Takata, K.; Ito, M.; Tanio, M.; Yamaguchi, H.; Ban, T. Deoxynivalenol distribution in flour and bran of spring wheat lines with different levels of Fusarium head blight resistance. Plant. Dis. 2010, 94, 335–338. [Google Scholar] [CrossRef]
- Halt, M. Aspergillus flavus and aflatoxin B1 in flour production. Eur. J. Epidemiol. 1994, 10, 555–558. [Google Scholar] [CrossRef] [PubMed]
- Peng, C.; Wang, L.; An, F.; Zhang, L.; Wang, Y.; Li, S.; Wang, C.; Liu, H. Fate of ochratoxin A during wheat milling and some Chinese breakfast processing. Food Cont. 2015, 57, 142–146. [Google Scholar] [CrossRef]
- Samar, M.M.; Fontán, C.F.; Resnik, S.L.; Pacin, A.M.; Castillo, M. Distribution of deoxynivalenol in wheat, wheat flour, bran, and gluten, and variability associated with the test procedure. J. AOAC Int. 2003, 86, 551–556. [Google Scholar] [CrossRef] [Green Version]
- Loi, M.; Fanelli, F.; Liuzzi, V.C.; Logrieco, A.F.; Mulè, G. Mycotoxin biotransformation by native and commercial enzymes: Present and future perspectives. Toxins 2017, 9, 111. [Google Scholar] [CrossRef]
- Lyagin, I.; Efremenko, E. Enzymes for detoxification of various mycotoxins: Origins and mechanisms of catalytic action. Molecules 2019, 24, 2362. [Google Scholar] [CrossRef] [Green Version]
- Yao, Y.; Long, M. The biological detoxification of deoxynivalenol: A review. Food Chem. Toxicol. 2020, 145, 111649. [Google Scholar] [CrossRef]
- Wang, N.; Wu, W.-W.; Pan, J.-W.; Long, M. Detoxification strategies for zearalenone using microorganisms: A review. Microrganisms 2019, 7, 208. [Google Scholar] [CrossRef] [Green Version]
- Kakeya, H.; Takahashi-Ando, N.; Kimura, M.; Onose, R.; Yamaguchi, I.; Osada, H. Biotransformation of the mycotoxin, zearalenone, to a non-estrogenic compound by a fungal strain of Clonostachys sp. Biosci. Biotechnol. Biochem. 2002, 66, 2723–2726. [Google Scholar] [CrossRef] [Green Version]
- Takahashi-Ando, N.; Kimura, M.; Kakeya, H.; Osada, H.; Yamaguchi, I. A novel lactonohydrolase responsible for the detoxification of zearalenone: Enzyme purification and gene cloning. Biochem. J. 2002, 365, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Karlovsky, P.; Crane III, E.; Gilliam, J.T.; Maddox, J.R. Compositions and Methods of Zearalenone Degradation. U.S. Patent no. 20030073239, 17 April 2003. [Google Scholar]
- Takahashi-Ando, N.; Ohsato, S.; Shibata, T.; Hamamoto, H.; Yamaguchi, I.; Kimura, M. Metabolism of zearalenone by genetically modified organisms expressing the detoxification gene from Clonostachys rosea. Appl. Environ. Microbiol. 2004, 70, 3239–3245. [Google Scholar] [CrossRef] [Green Version]
- Yang, W.C.; Hsu, T.C.; Cheng, K.C.; Liu, J.R. Expression of the Clonostachys rosea lactonohydrolase gene by Lactobacillus reuteri to increase its zearalenone-removing ability. Microb. Cell Factor. 2017, 16, 69. [Google Scholar] [CrossRef]
- Yu, Y.; Wu, H.; Tang, Y.; Qiu, L. Cloning, expression of a peroxiredoxin gene from Acinetobacter sp. SM04 and characterization of its recombinant protein for zearalenone detoxification. Microbiol. Res. 2012, 167, 121–126. [Google Scholar] [CrossRef]
- Pitout, M.J. The hydrolysis of ochratoxin A by some proteolytic enzymes. Biochem. Pharmacol. 1969, 18, 485–491. [Google Scholar] [CrossRef]
- Stander, M.A.; Bornscheuer, U.T.; Henke, E.; Steyn, P.S. Screening of commercial hydrolases for the degradation of ochratoxin A. J. Agric. Food Chem. 2000, 48, 5736–5739. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.; Poulsen, C.H.; Dalsgaard, S.; Wang, H.; Nikolaev, I. Food Additive Comprising an Amidase for Detoxifying Ochratoxin. U.S. Patent no. 113,649B2, 28 September 2015. [Google Scholar]
- Chen, W.; Li, C.; Zhang, B.; Zhou, Z.; Shen, Y.; Liao, X.; Yang, J.; Wang, Y.; Li, X.; Li, Y.; et al. Advances in biodetoxification of ochratoxin A—A review of the past five decades. Front. Microbiol. 2018, 9, 1386. [Google Scholar] [CrossRef] [PubMed]
- Boivin, P.; Malanda, M. Improvement of malt quality and safety by adding starter culture during the malting process. Tech. Quart.—Mast. Brew. Assoc. Amer. 1997, 34, 96–101. [Google Scholar]
- Bakutis, B.; Baliukonienė, V.; Paškevičius, A. Use of a biological method for detoxification of mycotoxins. Bot. Lith. 2005, 7, 123–129. [Google Scholar]
- El-Nezami, H.S.; Chrevatidis, A.; Auriola, S.; Salminen, S.; Mykkänen, H. Removal of common Fusarium toxins in vitro by strains of Lactobacillus and Propionibacterium. Food Addit. Contam. 2002, 19, 680–686. [Google Scholar] [CrossRef]
- Niderkorn, V.; Boudra, H.; Morgavi, D.P. Binding of Fusarium mycotoxins by fermentative bacteria in vitro. J. Appl. Microbiol. 2006, 101, 849–856. [Google Scholar] [CrossRef]
- Armando, M.R.; Pizzolitto, R.P.; Dogi, C.A.; Cristofolini, A.; Merkis, C.; Poloni, V.; Dalcero, A.M.; Cavaglieri, L.R. Adsorption of ochratoxin A and zearalenone by potential probiotic S. cerevisiae strains and its relation with cell wall thickness. J. Appl. Microbiol. 2012, 113, 256–264. [Google Scholar] [CrossRef]
- El-Nezami, H.; Polychronaki, N.; Salminen, S.; Mykkänen, H. Binding rather than metabolism may explain the interaction of two food-grade Lactobacillus strains with zearalenone and its derivative α-zearalenol. Appl. Environ. Microbiol. 2002, 68, 3545–3549. [Google Scholar] [CrossRef] [Green Version]
- Yiannikouris, A.; François, J.; Poughon, L.; Dussap, C.G.; Bertin, G.; Jeminet, G.; Jouany, J.P. Alkali extraction of β-D-glucans from S. cerevisiae cell walls and study of their adsorptive properties toward zearalenone. J. Agric. Food Chem. 2004, 52, 3666–3673. [Google Scholar] [CrossRef] [PubMed]
- Lancova, K.; Hajslova, J.; Poustka, J.; Krplova, A.; Zachariasova, M.; Dostalek, P.; Sachambula, L. Transfer of Fusarium mycotoxins and ‘masked’ deoxynivalenol (deoxynivalenol-3-glucoside) from field barley through malt to beer. Food Addit. Contam. Part A 2008, 25, 732–744. [Google Scholar] [CrossRef] [Green Version]
- Scott, P.M. Mycotoxins transmitted into beer from contaminated grains during brewing. J. AOAC Int. 1996, 10, 381–389. [Google Scholar] [CrossRef] [Green Version]
- Schwarz, P.B.; Casper, H.H.; Beattie, S. Fate and development of naturally occurring Fusarium mycotoxins during malting and brewing. J. Amer. Soc. Brew. Chem. 1995, 53, 121–127. [Google Scholar] [CrossRef]
- Schwarz, P.B.; Hill, N.S.; Rottinghaus, G.E. Fate of ergot (Claviceps purpurea) alkaloids during malting and brewing. J. Amer. Soc. Brew. Chem. 2007, 65, 1–8. [Google Scholar] [CrossRef]
- Scott, P.M.; Kanhere, S.R. Determination of ochratoxin A in beer. Food Addit. Contam. 1995, 12, 591–598. [Google Scholar] [CrossRef]
- Abbas, H.K.; Mirocha, C.J.; Pawlosky, R.J.; Pusch, D.J. Effect of cleaning, milling, and baking on deoxynivalenol in wheat. Appl. Environ. Microbiol. 1985, 50, 482–486. [Google Scholar] [CrossRef] [Green Version]
- Lancova, K.; Hajslova, J.; Kostelanska, M.; Kohoutkova, J.; Nedelnik, J.; Moravcova, H.; Vanova, M. Fate of trichothecene mycotoxins during the processing: Milling and baking. Food Addit. Contam. Part A 2008, 25, 650–659. [Google Scholar] [CrossRef]
- Neira, M.S.; Pacin, A.M.; Martínez, E.J.; Moltó, G.; Resnik, S.L. The effects of bakery processing on natural deoxynivalenol contamination. Int. J. Food Microbiol. 1997, 37, 21–25. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, B. Fates of deoxynivalenol and deoxynivalenol-3-glucoside during bread and noodle processing. Food Cont. 2015, 50, 754–757. [Google Scholar] [CrossRef]
- Vidal, A.; Morales, H.; Sanchis, V.; Ramos, A.J.; Marín, S. Stability of DON and OTA during the breadmaking process and determination of process and performance criteria. Food Cont. 2014, 40, 234–242. [Google Scholar] [CrossRef] [Green Version]
- Generotti, S.; Cirlini, M.; Malachova, A.; Sulyok, M.; Berthiller, F.; Dall’Asta, C.; Suman, M. Deoxynivalenol and deoxynivalenol-3-glucoside mitigation through bakery production strategies: Effective experimental design within industrial rusk-making technology. Toxins 2015, 7, 2773–2790. [Google Scholar] [CrossRef] [Green Version]
- Moazami Farahany, E.; Jinap, S. Influence of noodle processing (industrial protocol) on deoxynivalenol. Food Cont. 2011, 22, 1765–1769. [Google Scholar] [CrossRef]
- Matsuura, Y.; Yoshizawa, T.; Morooka, N. Effect of food additives and heating on the decomposition of zearalenone in wheat flour. Food Hyg. Safe. Sci. 1981, 22, 293–298. [Google Scholar] [CrossRef]
- Visconti, A.; Haidukowski, E.M.; Pascale, M.; Silvestri, M. Reduction of deoxynivalenol during durum wheat processing and spaghetti cooking. Toxicol. Lett. 2004, 153, 181–189. [Google Scholar] [CrossRef] [PubMed]
- Cano-Sancho, G.; Sanchis, V.; Ramos, A.J.; Marín, S. Effect of food processing on exposure assessment studies with mycotoxins. Food Addit. Contam. Part A 2013, 30, 867–875. [Google Scholar] [CrossRef]
- Hossen, M.S.; Nakagawa, H.; Nagashima, H.; Okadome, H.; Kushiro, M. Loss of nivalenol during cooking of noodles made from Fusarium-infected Japanese soft wheat. J. Food Process. Preserv. 2014, 38, 1113–1118. [Google Scholar] [CrossRef]
- Serrano, A.B.; Font, G.; Mañes, J.; Ferrer, E. Development a mitigation strategy of enniatins in pasta under home-cooking conditions. LWT—Food Sci. Technol. 2016, 65, 1017–1024. [Google Scholar] [CrossRef]
- Tittlemier, S.A.; Roscoe, M.; Trelka, R.; Patrick, S.K.; Bamforth, J.M.; Gräfenhan, T.; Schlichting, L.; Fu, B.X. Fate of moniliformin during milling of Canadian durum wheat, processing, and cooking of spaghetti. Can. J. Plant. Sci. 2013, 94, 555–563. [Google Scholar] [CrossRef]
- Sakuma, H.; Watanabe, Y.; Furusawa, H.; Yoshinari, T.; Akashi, H.; Kawakami, H.; Saito, S.; Sugita-Konishi, Y. Estimated dietary exposure to mycotoxins after taking into account the cooking of staple foods in Japan. Toxins 2013, 5, 1032–1042. [Google Scholar] [CrossRef] [Green Version]
- Wu, Q.; Lohrey, L.; Cramer, B.; Yuan, Z.; Humpf, H.-U. Impact of physicochemical parameters on the decomposition of deoxynivalenol during extrusion cooking of wheat grits. J. Agric. Food Chem. 2011, 59, 12480–12485. [Google Scholar] [CrossRef] [PubMed]
- Scudamore, K.A.; Banks, J.N.; Guy, R.C.E. Fate of ochratoxin A in the processing of whole wheat grain during extrusion. Food Addit. Contam. 2004, 21, 488–497. [Google Scholar] [CrossRef] [PubMed]
- Scudamore, K.A.; Guy, R.C.E.; Kelleher, B.; MacDonald, S.J. Fate of the Fusarium mycotoxins, deoxynivalenol, nivalenol and zearalenone, during extrusion of whole meal wheat grain. Food Addit. Contam. Part A 2008, 25, 331–337. [Google Scholar] [CrossRef] [Green Version]
- Clarke, L.C.; Sweeney, T.; Curley, E.; Duffy, S.K.; Vigors, S.; Rajauria, G.; O’Doherty, J.V. Mycotoxin binder increases growth performance, nutrient digestibility and digestive health of finisher pigs offered wheat based diets grown under different agronomical conditions. Anim. Feed Sci. Technol. 2018, 240, 52–65. [Google Scholar] [CrossRef]
- Jin, L.; Wang, W.; Degroote, J.; van Noten, N.; Yan, H.; Majdeddin, M.; van Poucke, M.; Peelman, L.; Goderis, A.; van de Mierop, K.; et al. Mycotoxin binder improves growth rate in piglets associated with reduction of toll-like receptor-4 and increase of tight junction protein gene expression in gut mucosa. J. Anim. Sci. Biotechnol. 2017, 8. [Google Scholar] [CrossRef]
- Devreese, M.; Girgis, G.N.; Tran, S.-T.; de Baere, S.; de Backer, P.; Croubels, S.; Smith, T.K. The effects of feed-borne Fusarium mycotoxins and glucomannan in turkey poults based on specific and non-specific parameters. Food Chem. Toxicol. 2014, 63, 69–75. [Google Scholar] [CrossRef]
- Stanford, K.; Swift, M.L.; Wang, Y.X.; McAllister, T.A.; McKinnon, J.; Blakley, B.; Chaves, A.V. Effects of feeding a mycotoxin binder on nutrient digestibility, alkaloid recovery in feces, and performance of lambs fed diets contaminated with cereal ergot. Toxins 2018, 10, 312. [Google Scholar] [CrossRef] [Green Version]
- Horky, P.; Venusova, E.; Aulichova, T.; Ridoskova, A.; Skladanka, J.; Skalickova, S. Usability of graphene oxide as a mycotoxin binder: In vitro study. PLoS ONE 2020, 15, e0239479. [Google Scholar] [CrossRef]
- Delbecq, A.L.; van de Ven, A.H.; Gustafson, D.H. Group Techniques for Program. Planning: A Guide to Nominal Group and Delphi Processes; Scott Foresman Co.: Glenview, IL, USA, 1975. [Google Scholar]
- Bandyopadhyay, R.; Frederiksen, R.A.; Leslie, J.F. Priorities for mycotoxin research in Africa identified by using the nominal group technique. In Mycotoxins: Detection Methods, Management, Public Health and Agricultural Trade; Leslie, J.F., Bandyopadhyay, R., Visconti, A., Eds.; CABI: Kew, UK, 2008; pp. 19–26. [Google Scholar]
- Leslie, J.F.; Poschmaier, B.; van Egmond, H.; Malachová, A.; de Nijs, M.; Bagi, F.; Zhou, J.; Jin, Z.; Wang, S.; Suman, M.; et al. The MyToolbox EU-China partnership—Progress and future directions in mycotoxin research and management. Toxins 2020, 12, 712. [Google Scholar] [CrossRef]
No. | Question |
---|---|
Identify effective measures for minimizing pre-harvest contamination of small grains by: | |
1 | DON and ZEA |
2 | T-2 and HT-2 toxins |
3 | Other toxins, e.g., Alternaria toxins, ergot alkaloids and aflatoxins |
4 | Identify effective measures for minimizing mycotoxin contamination in small grains post-harvest |
5 | Identify processing steps and/or decontamination/detoxification actions to reduce mycotoxin content in small-grain products |
6 | Identify information to be generated or questions to be answered to help those involved in the small-grain chain continue to make progress in reducing mycotoxin contamination after the MycoKey project ends in 2020 |
Response Number | Q1 | Q2 | Q3 | Response | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
NG1 | NG2 | NG1 | NG2 | NG1 | NG2 | ||||||||
#¹ | S2 | # | S | # | S | # | S | # | S | # | S | ||
1 | 7 | 25 | 10 | 37 | 3 | 15 | 8 | 34 | 3 | 10 | 3 | 8 | Breeding for resistance |
2 | 6 | 24 | 4 | 18 | 5 | 17 | 2 | 4 | 4 | 13 | 6 | 21 | Fungicide application—timing and technology |
3 | 3 | 9 | 1 | 2 | 3 | 9 | 3 | 7 | 3 | 10 | 2 | 6 | Tillage |
4 | 1 | 3 | 1 | 3 | 2 | 7 | 3 | 7 | 3 | 10 | 2 | 6 | Crop residue management |
5 | ●3 | –4 | 2 | 7 | ● | – | 3 | 7 | 2 | 3 | 2 | 5 | IPM |
6 | 3 | 3 | 1 | 2 | 1 | 2 | 1 | 4 | 3 | 7 | ● | – | Biological control |
7 | 4 | 15 | 5 | 10 | 4 | 12 | 3 | 7 | 3 | 8 | – | – | Crop rotation |
8 | 4 | 9 | 5 | 17 | 2 | 4 | 5 | 8 | – | – | – | – | Disease forecasting |
9 | 2 | 4 | 3 | 5 | 2 | 4 | – | – | 2 | 6 | – | – | Research: Mycotoxin biosynthesis inhibitors |
10 | ● | – | 1 | 1 | – | – | 1 | 4 | – | – | 4 | 13 | Research: Plant physiology, morphology and stress |
11 | 1 | 1 | ● | – | 1 | 3 | 3 | 7 | – | – | – | – | Diversify planting dates |
12 | – | – | ● | – | – | – | 8 | 25 | – | – | 6 | 17 | Research: Fungal species distribution and population biology |
13 | – | – | – | – | – | – | 2 | 5 | 3 | 14 | 5 | 12 | Research: Toxin production conditions |
14 | 2 | 4 | 3 | 5 | – | – | 5 | 15 | – | – | – | – | Research: New fungicides |
15 | ● | – | 1 | 1 | – | – | – | – | 6 | 20 | – | – | Research: Fungal physiology |
16 | ● | – | ● | – | – | – | – | – | – | – | 5 | 17 | Decision support systems |
17 | 3 | 4 | – | – | 1 | 1 | – | – | 1 | 5 | – | – | Additional farmer training |
18 | – | – | – | – | 1 | 2 | 3 | 7 | ● | – | – | – | Planting site location |
19 | ● | – | – | – | ● | – | – | – | 1 | 1 | – | – | Intercropping |
20 | – | – | – | – | 4 | 10 | – | – | 3 | 6 | – | – | New/improved diagnostics |
21 | 1 | 2 | ● | – | – | – | – | – | – | – | – | – | Alter/increase fertilizer |
22 | – | – | – | – | – | – | – | – | – | – | 4 | 11 | Research: Economic importance |
23 | – | – | – | – | – | – | – | – | – | – | 3 | 10 | Seed treatment |
24 | – | – | – | – | – | – | – | – | 2 | 7 | – | – | Herbicides/weed control |
25 | – | – | 1 | 2 | – | – | – | – | – | – | – | – | Research: GMO for resistance |
26 | – | – | – | – | – | – | – | – | – | – | ● | – | Planting density |
27 | – | – | ● | – | – | – | – | – | – | – | – | – | Reduce fungal inoculum |
28 | – | – | ● | – | – | – | – | – | – | – | – | – | Production system sustainability |
Response Number | NG1 | NG2 | Response | ||
---|---|---|---|---|---|
#¹ | S2 | # | S | ||
1 | 5 | 20 | 5 | 14 | Reduced humidity/water activity |
2 | 2 | 8 | 7 | 27 | Climate-controlled storage |
3 | 3 | 11 | 3 | 12 | Mechanical and physical seed sorting |
4 | 2 | 3 | 3 | 6 | Insect control |
5 | 1 | 4 | 3 | 12 | Seed sorting for toxin based on NIR |
6 | 2 | 5 | 1 | 1 | Toxin decontamination/degradation |
7 | 2 | 5 | 1 | 1 | Biological control |
8 | • | - | 2 | 7 | New storage technology |
9 | • | - | • | - | Climate control during transport |
10 | - | - | 5 | 16 | Combine settings |
11 | - | - | 5 | 13 | Seed cleaning/disinfestation |
12 | - | - | 3 | 10 | HAACP |
13 | 3 | 7 | - | - | Hygiene control during transport |
14 | - | - | 3 | 5 | Decision support system |
15 | - | - | 2 | 5 | Drying equipment |
16 | 2 | 5 | - | - | Harvesting technology |
17 | - | - | 1 | 5 | Separation during storage |
18 | 1 | 3 | - | - | Mycotoxin testing and forecasting |
19 | 1 | 2 | - | - | Lower temperature storage |
20 | 1 | 1 | - | - | Timing of harvest |
21 | • | - | - | - | Blending |
22 | • | - | - | - | Rapid transport from field to storage |
23 | • | - | - | - | Storage time limit |
Response Number | NG1 | NG2 | Response | ||
---|---|---|---|---|---|
#¹ | S2 | # | S | ||
1 | 4 | 16 | 8 | 33 | Sorting |
2 | 4 | 13 | 6 | 17 | Milling and dehulling |
3 | 5 | 12 | 4 | 11 | Enzymatic decontamination (for feed) |
4 | 4 | 12 | 3 | 6 | Washing |
5 | 3 | 8 | 3 | 10 | Baking/Boiling/Heating |
6 | 2 | 5 | 2 | 4 | Bacterial or yeast fermentation |
7 | 2 | 4 | 2 | 5 | Mix with binders |
8 | •3 | -4 | 3 | 7 | Blending |
9 | - | - | 3 | 12 | Check toxin contamination prior to processing |
10 | 2 | 8 | - | - | Glume separation/seed cleaning |
11 | - | - | 2 | 4 | Control process parameters |
12 | 2 | 4 | - | - | Farmer/stakeholder training/education |
13 | 1 | 5 | - | - | Discarding |
14 | 1 | 3 | - | - | Establish regulatory process |
15 | - | - | • | - | Extrusion |
16 | • | - | - | - | Trace toxins through the process |
17 | • | - | - | - | Irradiation |
Response Number | NG1 | NG2 | Response | ||
---|---|---|---|---|---|
#¹ | S2 | # | S | ||
1 | 2 | 5 | 5 | 23 | App for farmer/stakeholder use—knowledge translation and transfer kit |
2 | 5 | 18 | 1 | 2 | New resistant lines with pedigrees and catalog of current materials |
3 | 4 | 12 | 1 | 2 | Develop new products (preferably green) and supporting information |
4 | 2 | 6 | 3 | 8 | Forecasting system adaptable to climate change |
5 | 5 | 17 | • | - | Operation guidelines and decision support systems |
6 | • | - | 4 | 11 | Fungicide recommendations |
7 | - | - | 4 | 14 | New host resistance sources |
8 | 4 | 12 | - | - | Monitoring the global population of toxigenic fungi |
9 | - | - | 3 | 8 | What … why … when … how mycotoxins |
10 | - | - | 2 | 8 | Risk maps for toxin contamination |
11 | - | - | 2 | 7 | Rapid phenotyping technology |
12 | - | - | 2 | 6 | Risk assessment |
13 | - | - | 2 | 2 | Develop farmer/stakeholder training program |
14 | 1 | 5 | - | - | Information on best management practices |
15 | - | - | 1 | 5 | Smart warehouse management |
16 | 1 | 3 | - | - | Establish efficacy of biocontrol on residue inoculum |
17 | - | - | 1 | 3 | Characterize interaction between endogenous and toxigenic fungal populations |
18 | - | - | 1 | 2 | How to combine biological controls and chemical controls |
19 | - | - | 1 | 2 | List of “What if …?” questions |
20 | 1 | 1 | - | - | Chemicals for decontaminating grain |
21 | 1 | 1 | - | - | Efficient and effective detection of emerging toxins |
22 | 1 | 1 | - | - | Monitoring tools for silos |
23 | - | - | 1 | 1 | Better agronomic practices |
24 | - | - | 1 | 1 | Summarize historic field data |
25 | • | - | - | - | Information on future food production needs |
26 | • | - | - | - | Information on toxicology of other fungal secondary metabolites |
27 | • | - | - | - | New sorting methods |
28 | • | - | - | - | Resistance to emerging toxins |
29 | • | - | - | - | Understanding the relationship between plant physiology and resistance |
30 | - | - | • | - | Catalog of information available on the web |
31 | - | - | • | - | Improve IPM |
32 | - | - | • | - | Low-cost, energy-efficient drying technology |
33 | - | - | • | - | Multiple disease-resistant crops |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leslie, J.F.; Moretti, A.; Mesterházy, Á.; Ameye, M.; Audenaert, K.; Singh, P.K.; Richard-Forget, F.; Chulze, S.N.; Ponte, E.M.D.; Chala, A.; et al. Key Global Actions for Mycotoxin Management in Wheat and Other Small Grains. Toxins 2021, 13, 725. https://doi.org/10.3390/toxins13100725
Leslie JF, Moretti A, Mesterházy Á, Ameye M, Audenaert K, Singh PK, Richard-Forget F, Chulze SN, Ponte EMD, Chala A, et al. Key Global Actions for Mycotoxin Management in Wheat and Other Small Grains. Toxins. 2021; 13(10):725. https://doi.org/10.3390/toxins13100725
Chicago/Turabian StyleLeslie, John F., Antonio Moretti, Ákos Mesterházy, Maarten Ameye, Kris Audenaert, Pawan K. Singh, Florence Richard-Forget, Sofía N. Chulze, Emerson M. Del Ponte, Alemayehu Chala, and et al. 2021. "Key Global Actions for Mycotoxin Management in Wheat and Other Small Grains" Toxins 13, no. 10: 725. https://doi.org/10.3390/toxins13100725
APA StyleLeslie, J. F., Moretti, A., Mesterházy, Á., Ameye, M., Audenaert, K., Singh, P. K., Richard-Forget, F., Chulze, S. N., Ponte, E. M. D., Chala, A., Battilani, P., & Logrieco, A. F. (2021). Key Global Actions for Mycotoxin Management in Wheat and Other Small Grains. Toxins, 13(10), 725. https://doi.org/10.3390/toxins13100725