Phylogeny and Mycotoxin Profile of Pathogenic Fusarium Species Isolated from Sudden Decline Syndrome and Leaf Wilt Symptoms on Date Palms (Phoenix dactylifera) in Tunisia
Abstract
:1. Introduction
2. Results
2.1. Phylogenetic Analyses
2.2. Pathogenicity Assay
2.3. Mycotoxin Production
3. Discussion
3.1. Species Identification
3.2. Pathogenicity Test
3.3. Mycotoxin Profile
4. Conclusions
5. Materials and Methods
5.1. Origin of the Samples and Fungal Isolation
5.2. DNA Extraction and Molecular Analyses
5.3. Pathogenicity Assay
5.4. Mycotoxin Analyses
5.4.1. Sample Preparation
5.4.2. Chemicals and Reagents
5.4.3. Targeted UHPLC-MS/MS Analysis of MON
5.4.4. UHPLC-TWIMS-QTOF Screening of Mycotoxins
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Food and Agriculture Organization Statistics Division (FAOSTAT). Available online: www.fao.org/faostat (accessed on 3 May 2021).
- Ben-Amor, R.; Aguayo, E.; de Miguel-Gomez, M.D. The competitive advantage of the Tunisian palm date sector in the Mediterranean region. Span. J. Agric. Res. 2015, 13, 10. [Google Scholar] [CrossRef] [Green Version]
- Saleh, A.A.; Sharafaddin, A.H.; El Komy, M.H.; Ibrahim, Y.E.; Hamad, Y.K.; Molan, Y.Y. Fusarium species associated with date palm in Saudi Arabia. Eur. J. Plant Pathol. 2017, 148, 367–377. [Google Scholar] [CrossRef]
- Sedra, M.; Lazrek, B.H. Fusarium oxysporum f. sp. albedinis Toxin Characterization and use for selection of resistant date palm to Bayoud Disease. In Date Palm Biotechnology; Jain, S., Al-Khayri, J., Johnson, D., Eds.; Springer: Dordrecht, The Netherlands, 2011. [Google Scholar] [CrossRef]
- Zaid, A.; De Wet, P.F.; Djerbi, M.; Oihabi, A. Chapter XII diseases and pests of date palm. In Date Palm Cultivation; Zaid, A., Ed.; Food and Agriculture Organization of the United Nations: Rome, Italy, 2002; pp. 223–287. [Google Scholar]
- Djerbi, M. Bayoudh disease in North Africa: History distribution, diagnosis and control. Date Palm J. 1982, 1, 153–197. [Google Scholar]
- Abdalla, M.Y.; Al-Rokibah, A.; Moretti, A.; Mulè, G. Pathogenicity of toxigenic Fusarium proliferatum from Date Palm in Saudi Arabia. Plant Dis. 2000, 84, 321–324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Armengol, J.; Moretti, A.; Perrone, G.; Vicent, A.; Bengoechea, J.A.; García-Jiménez, J. Identification, incidence and characterization of Fusarium proliferatum on ornamental palms in Spain. Eur. J. Plant Pathol. 2005, 112, 123–131. [Google Scholar] [CrossRef]
- Cohen, Y.; Freeman, S.; Zveibil, A.; Ben Zvi, R.; Nakache, Y.; Biton, S.; Soroker, V. Reevaluation of factors affecting bunch drop in date palm. Hort. Sci. 2010, 45, 887–893. [Google Scholar] [CrossRef] [Green Version]
- Mansoori, B. Fusarium proliferatum induces gum in xylem vessels as the cause of Date Bunch Fading in Iran. J. Agric. Sci. Tech. 2012, 14, 1133–1140. [Google Scholar]
- Mansoori, B.; Kord, H. Yellow Death: A Disease of Date Palm in Iran caused by Fusarium solani. J. Phytopathol. 2006, 154, 125–127. [Google Scholar] [CrossRef]
- Alkahtani, M.; EL-Naggar, M.A.; Omer, S.A.; Abdel-Kareem, E.M.; Ammar, M.F. Effect of toxic Fusarium moniliforme on some biochemical component of some date palm cultivars. Am. J. Food Technol. 2011, 6, 730–741. [Google Scholar] [CrossRef]
- Al-Sadi, A.M.; Al-Jabri, A.H.; Al-Mazroui, S.S.; AlMahmooli, I.H. Characterization and pathogenicity of fungi and oomycetes associated with root diseases of date palms in Oman. Crop Prot. 2012, 37, 1–6. [Google Scholar] [CrossRef]
- Maitlo, W.A.; Markhand, G.S.; Abul-Soad, A.A.; Lodhi, A.M.; Jatoi, M.A. Fungi associated with sudden decline disease of date palm (Phoenix dactylifera L.) and its incidence at Khairpur, Pakistan. Pak. J. Phytopathol. 2014, 26, 67–73. [Google Scholar]
- Alwahshi, K.J.; Saeed, E.E.; Sham, A.; Alblooshi, A.A.; Alblooshi, M.M.; El-Tarabily, K.A.; Abu-Qamar, S.F. Molecular Identification and Disease Management of Date Palm Sudden Decline Syndrome in the United Arab Emirates. Int. J. Mol. Sci. 2019, 20, 923. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nishad, R.; Ahmed, T.A. Survey and Identification of Date Palm Pathogens and Indigenous Biocontrol Agents. Plant Dis. 2020, 104, 2498–2508. [Google Scholar] [CrossRef]
- Abbas, I.H.; Mouhi, M.N.; Al-Roubaie, J.T.; Hama, N.N.; El-Bahadli, A.H. Phomopsis phoenicola and Fusarium equiseti, new pathogens on date palm in Iraq. Mycol. Res. 1991, 95, 509. [Google Scholar] [CrossRef]
- Haq, I.U.; Khan, N.A. Fungal Diseases of Date Palm (Phoenix dactylifera): Etiology and Management. In Etiology and Integrated Management of Economically Important Fungal Diseases of Ornamental Palms. Sustainability in Plant and Crop Protection, 16; Ul Haq, I., Ijaz, S., Eds.; Springer: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
- Desjardins, A.E. Fusarium Mycotoxins: Chemistry, Genetics, and Biology; American Phytopathological Society (APS Press): Saint Paul, MN, USA, 2006. [Google Scholar]
- Blandino, M.; Reyneri, A.; Vanara, F.; Tamietti, G.; Pietri, A. Influence of agricultural practices on Fusarium infection, fumonisin and deoxynivalenol contamination of maize kernels. World Mycotoxin J. 2009, 2, 409–418. [Google Scholar] [CrossRef]
- Drakopoulos, D.; Sulyok, M.; Jenny, E.; Kägi, A.; Bänziger, I.; Logrieco, A.F.; Krska, R.; Vogelgsang, S. Fusarium Head Blight and Associated Mycotoxins in Grains and Straw of Barley: Influence of Agricultural Practices. Agronomy 2021, 11, 801. [Google Scholar] [CrossRef]
- IARC. Some naturally occurring substances: Food ITEMs and constituents, heterocyclic aromatic amines and mycotoxins. In IARC Monographs on the Evaluation of Carcinogenic Risks to Human; IARC: Lyon, France, 1993; Volume 56, pp. 245–395. [Google Scholar]
- IARC. Some traditional herbal medicines, some mycotoxins, naphthalene and styrene. In IARC Monographs on the Evaluation of Carcinogenic Risks to Human; IARC: Lyon, France, 2002; Volume 82, pp. 1–556. [Google Scholar]
- O’Donnell, K.; Sutton, D.A.; Rinaldi, M.G.; Sarver, B.A.; Balajee, S.A.; Schroers, H.J.; Summerbell, R.C.; Robert, V.A.; Crous, P.W.; Zhang, N.; et al. Internet-accessible DNA sequence database for identifying fusaria from human and animal infections. J. Clin. Microbiol. 2010, 48, 3708–3718. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Urban, M.; King, R.; Andongabo, A.; Maheswari, U.; Pedro, H.; Kersey, P.; Hammond-Kosack, K. First Draft Genome Sequence of a UK Strain (UK99) of Fusarium culmorum. Genome Announc. 2016, 4, e00771-16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.P.; Li, J.H.; Qi, Y.H.; Guo, C.; Li, X.; Li, M.Q. Determination and structural analysis of whole genome sequence of Fusarium equiseti D25-1. Acta Phytopathol. Sin. 2019, 49, 474–487. [Google Scholar] [CrossRef]
- King, R.; Urban, M.; Hammond-Kosack, M.C.U.; Hassani-Pak, K.; Hammond-Kosack, K.E. The completed genome sequence of the pathogenic ascomycete fungus Fusarium graminearum. BMC Genom. 2015, 16, 544. [Google Scholar] [CrossRef] [Green Version]
- Lysøe, E.; Frandsen, R.J.N.; Divon, H.H.; Terzi, V.; Orrù, L.; Lamontanara, A.; Kolseth, A.K.; Nielsen, K.F.; Thrane, U. Draft genome sequence and chemical profiling of Fusarium langsethiae, an emerging producer of type A trichothecenes. Int. J. Food Microbiol. 2016, 221, 29–36. [Google Scholar] [CrossRef]
- Wang, H.; Xiao, M.; Kong, F.; Chen, S.; Dou, H.T.; Sorrell, T.; Li, R.Y.; Xu, Y.C. Accurate and practical identification of 20 Fusarium species by seven-locus sequence analysis and reverse line blot hybridization, and an in vitro antifungal susceptibility study. J. Clin. Microbiol. 2011, 49, 1890–1898. [Google Scholar] [CrossRef] [Green Version]
- Proctor, R.H.; McCormick, S.P.; Kim, H.S.; Cardoza, R.E.; Stanley, A.M.; Lindo, L.; Kelly, A.; Brown, D.W.; Lee, T.; Vaughan, M.M.; et al. Evolution of structural diversity of trichothecenes, a family of toxins produced by plant pathogenic and entomopathogenic fungi. PLoS Pathog. 2018, 14, e1006946. [Google Scholar] [CrossRef] [Green Version]
- Ma, L.J.; van der Does, H.C.; Borkovich, K.A.; Coleman, J.J.; Daboussi, M.J.; Di Pietro, A.; Dufresne, M.; Freitag, M.; Grabherr, M.; Henrissat, B.; et al. Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium. Nature 2010, 464, 367–373. [Google Scholar] [CrossRef]
- Jeger, M.; Bragard, C.; Caffier, D.; Candresse, T.; Chatzivassiliou, E.; Dehnen-Schmutz, K.; Gilioli, G.; Gregoire, J.C.; Miret, J.A.J.; MacLeod, A.; et al. Pest categorisation of Fusarium oxysporum f. sp. Albedinis. EFSA J. 2018, 16, e05183. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; O’Donnell, K.; Sutton, D.A.; Nalim, F.A.; Summerbell, R.C.; Padhye, A.A.; Geiser, D.M. Members of the Fusarium solani species complex that cause infections in both humans and plants are common in the environment. J. Clin. Microb. 2006, 44, 2186–2190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coleman, J.J. The Fusarium Solani Species Complex: Ubiquitous pathogens of agricultural importance. Mol. Plant Pathol. 2016, 17, 146–158. [Google Scholar] [CrossRef] [PubMed]
- O’Donnell, K.; Sutton, D.A.; Rinaldi, M.G.; Gueidan, C.; Crous, P.W.; Geiser, D.M. Novel multilocus sequence typing scheme reveals high genetic diversity of human pathogenic members of the Fusarium incarnatum-equiseti and F. chlamydosporum species complexes within the United States. J. Clin. Microbiol. 2009, 47, 3851–3861. [Google Scholar] [CrossRef] [Green Version]
- Laraba, I.; McCormick, S.P.; Vaughan, M.M.; Geiser, D.M.; O’Donnell, K. Phylogenetic diversity, trichothecene potential, and pathogenicity within Fusarium sambucinum species complex. PLoS ONE 2021, 16, e0245037. [Google Scholar] [CrossRef]
- Proctor, H.R.; Desjardins, A.E.; Moretti, A. Biology and chemical complexity of Fusarium proliferatum. In The Role of Plant Pathology in Food Safety and Food Security, Plant Pathology in the 21st Century 3; Strange, R.N., Gullino, M.L., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; ISBN 978-1-4020-8931-2. [Google Scholar]
- Moretti, A.; Susca, A.; De Boevre, M.; De Saeger, S.; Di Mavungu, J.D.; Villani, A.; Haidukowski, M.; Somma, S.; van der Lee, T.; Waalwijk, C.; et al. The mycotoxigenic Fusarium proliferatum: A perfect example of the Great Beauty of fungal biodiversity. In Proceedings of the 2nd MycoKey International Conference “Integrated Solutions for Mycotoxin Management”, Wuhan, China, 16–18 September 2018. [Google Scholar]
- Susca, A.; Proctor, R.H.; Butchko, R.A.E.; Haidukowski, M.; Stea, G.; Logrieco, A.F.; Moretti, A. Variation in the fumonisin biosynthetic gene cluster in fumonisin-producing and nonproducing black aspergilli. Fungal Genet. Biol. 2014, 73, 39–52. [Google Scholar] [CrossRef] [Green Version]
- Susca, A.; Proctor, R.H.; Morelli, M.; Haidukowski, M.; Gallo, A.; Logrieco, A.F.; Moretti, A. Variation in Fumonisin and Ochratoxin Production Associated with Differences in Biosynthetic Gene Content in Aspergillus niger and A. welwitschiae Isolates from Multiple Crop and Geographic Origins. Front. Microbiol. 2016, 7, 1412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leslie, J.F.; Summerell, B.A. The Fusarium Laboratory Manual; Blackwell Publishing: Hoboken, NY, USA, 2006. [Google Scholar]
- Suga, H.; Arai, M.; Fukasawa, E.; Motohashi, K.; Nakagawa, H.; Tateishi, H.; Fuji, S.I.; Shimizu, M.; Kageyama, K.; Hyakumachi, M. Genetic differentiation associated with fumonisin and gibberellin production in Japanese Fusarium fujikuroi. Appl. Environ. Microbiol. 2019, 85, e02414-18. [Google Scholar] [CrossRef] [Green Version]
- Sultana, S.; Kitajima, M.; Kobayashi, H.; Nakagawa, H.; Shimizu, M.; Kageyama, K.; Suga, H. A Natural Variation of Fumonisin Gene Cluster Associated with Fumonisin Production Difference in Fusarium fujikuroi. Toxins 2019, 11, 200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sultana, S.; Bao, W.X.; Shimizu, M.; Kageyama, K.; Suga, H. Frequency of three mutations in the fumonisin biosynthetic gene cluster of Fusarium fujikuroi that are predicted to block fumonisin production. World Mycotoxin J. 2021, 14, 49–59. [Google Scholar] [CrossRef]
- Paciolla, C.; Dipierro, N.; Mulè, G.; Logrieco, A.; Dipierro, S. The mycotoxins beauvericin and T-2 induce cell death and alteration to the ascorbate metabolism in tomato protoplasts. Physiol. Mol. Plant Pathol. 2004, 65, 49–56. [Google Scholar] [CrossRef]
- Firakova, S.; Proksa, B.; Sturdikova, M. Biosynthesis and biological activity of enniatins. Die Pharm. 2007, 62, 563–568. [Google Scholar] [CrossRef]
- Song, H.H.; Lee, H.S.; Jeong, J.H.; Park, H.S.; Lee, C. Diversity in Beauvericin and Enniatins H, I, and MK1688 by Fusarium oxysporum isolated from potato. Int. J. Food Microbiol. 2008, 122, 296–301. [Google Scholar] [CrossRef] [PubMed]
- Logrieco, A.; Moretti, A.; Castella, G.; Kostecki, M.; Golinski, P.; Ritieni, A.; Chelkowski, J. Beauvericin production by Fusarium species. Appl. Environ. Microbiol. 1998, 64, 3084–3088. [Google Scholar] [CrossRef] [Green Version]
- Moretti, A.; Belisario, A.; Tafuri, A.; Ritieni, A.; Corazza, L.; Logrieco, A. Production of Beauvericin by Different Races of Fusarium Oxysporum F. sp. Melonis, The Fusarium Wilt Agent of Muskmelon. Eur. J. Plant Pathol. 2002, 108, 661–666. [Google Scholar] [CrossRef]
- López-Berges, M.S.; Capilla, J.; Turrà, D.; Schafferer, L.; Matthijs, S.; Jöchl, C.; Cornelis, P.; Guarro, J.; Haas, H.; Di Pietro, A. HapX-mediated iron homeostasis is essential for rhizosphere competence and virulence of the soilborne pathogen Fusarium oxysporum. Plant Cell 2012, 24, 3805–3822. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pavlovkin, J.; Mistríková, I.; Jašková, K.; Tamás, L. Impact of beauvericin on membrane properties of young initial leaves of maize with different susceptibility to Fusarium. Plant Soil Environ. 2012, 58, 205–210. [Google Scholar] [CrossRef] [Green Version]
- Herrmann, M.; Zocher, R.; Haese, A. Effect of disruption of the enniatin synthetase gene on the virulence of Fusarium avenaceum. Mol. Plant Microbe Interact. 1996, 9, 226–232. [Google Scholar] [CrossRef]
- Jestoi, M. Emerging Fusarium Mycotoxins Fusaproliferin, Beauvericin, Enniatins, and Moniliformin—A Review. Crit. Rev. Food Sci. Nutr. 2008, 48, 21–49. [Google Scholar] [CrossRef]
- Knutsen, H.K.; Alexander, J.; Barregård, L.; Bignami, M.; Brüschweiler, B.; Ceccatelli, S.; Cottrill, B.; Dinovi, M.; Grasl-Kraupp, B.; Hogstrand, C.; et al. Risks to human and animal health related to the presence of moniliformin in food and feed. EFSA J. 2018, 16, e05082. [Google Scholar] [CrossRef] [PubMed]
- Perincherry, L.; Lalak-Kańczugowska, J.; Stępień, Ł. Fusarium-Produced Mycotoxins in Plant-Pathogen Interactions. Toxins 2019, 11, 664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, D.C.; Flematti, G.R.; Ghisalberti, E.L.; Sivasithamparam, K.; Barbetti, M.J. Toxigenicity of enniatins from Western Australian Fusarium species to brine shrimp (Artemia franciscana). Toxicon 2011, 57, 817–825. [Google Scholar] [CrossRef] [PubMed]
- Hartman, G.L.; McCormick, S.P.; O’Donnell, K. Trichothecene-Producing Fusarium Species Isolated from Soybean Roots in Ethiopia and Ghana and their Pathogenicity on Soybean. Plant Dis. 2019, 103, 2070–2075. [Google Scholar] [CrossRef] [PubMed]
- O’Donnell, K.; Cigelnik, E.; Nirenberg, H.I. Molecular systematics and phylogeography of the Gibberella fujikuroi species complex. Mycologia 1998, 90, 465–493. [Google Scholar] [CrossRef]
- O’Donnell, K.; Kistler, H.C.; Tacke, B.K.; Casper, H.H. Gene genealogies reveal global phylogeographic structure and reproductive isolation among lineages of Fusarium graminearum, the fungus causing wheat scab. Proc. Natl Acad. Sci. USA 2000, 97, 7905–7910. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.L.; Whelen, S.; Hall, B.D. Phylogenetic relationships among ascomycetes: Evidence from an RNA polymerase II subunit. Mol. Biol. Evol. 1999, 16, 1799–1808. [Google Scholar] [CrossRef]
- Thompson, J.D.; Higgins, D.G.; Gibson, T.J. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994, 22, 4673–4680. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Felsenstein, J. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 1985, 39, 783–791. [Google Scholar] [CrossRef] [PubMed]
- Namsi, A.; Rabaoui, A.; Masiello, M.; Moretti, A.; Othmani, A.; Gargouri, S.; Gdoura, R.; Werbrouck, S. First Report of Leaf Wilt Caused by Fusarium proliferatum and F. brachygibbosum on Date Palm (Phoenix dactylifera) in Tunisia. Plant Dis. 2021, 105, 1217. [Google Scholar] [CrossRef]
- Townsend, G.R.; Heuberger, J.W. Methods for estimating losses caused by diseases in fungicide experi ments. Plant Dis. Report. 1943, 27, 340–343. [Google Scholar]
- Malachová, A.; Sulyok, M.; Beltrán, E.; Berthiller, F.; Krska, R. Optimization and validation of a quantitative liquid chromatography–tandem mass spectrometric method covering 295 bacterial and fungal metabolites including all regulated mycotoxins in four model food matrices. J. Chromatogr. 2014, 1362, 145–156. [Google Scholar] [CrossRef] [Green Version]
Fusarium species | Strain | GenBank Assembly Accession | Database * | References/Submitter | ||
---|---|---|---|---|---|---|
CAL1 | RPB2 | TEF1 | ||||
F. brachygibbosum | NRRL 34033 | GQ505388 | GQ505482 | GQ505418 | NCBI | [24] |
F. caatingaense | NRRL 66470 | GCA_013624355 | GCA_013624355 | GCA_013624355 | NCBI | USDA |
F. clavum | NRRL_66337 | GCA_004367155 | GCA_004367155 | GCA_004367155 | NCBI | USDA |
F. culmorum | FcUK99 | GCA_900074845 | GCA_900074845 | GCA_900074845 | NCBI | [25] |
F. equiseti | D25-1 | GCA_003313175 | GCA_003313175 | GCA_003313175 | NCBI | [26] |
F. fujikuroi | IMI 58289 | GCA_900079805 | GCA_900079805 | GCA_900079805 | NCBI | HMGU-IBIS |
F. graminearum | PH-1 | GCA_900044135 | GCA_900044135 | GCA_900044135 | NCBI | [27] |
F. langsethiae | Fl201059 | GCA_001292635 | GCA_001292635 | GCA_001292635 | NCBI | [28] |
F. proliferatum | ET1 | GCA_900029915 | GCA_900029915 | GCA_900029915 | NCBI | HMGU-IBIS |
F. solani | PUF007 | HQ412317 | HQ423201 | HQ165838 | NCBI | [29] |
F. sporotrichioides | NRRL3299 | GCA_003012315 | GCA_003012315 | GCA_003012315 | NCBI | [30] |
F. verticillioides | 7600 | GCA_000149555 | GCA_000149555 | GCA_000149555 | NCBI | [31] |
Strain | Fumonisins | MON | BEA | Enniatins | Trichothecenes | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
FB1 | FB2 | FB3 | ENN A1 | ENN B | ENN B1 | ENN H | ZEN | HT2 | T2 | |||
Fusarium proliferatum | ||||||||||||
18583 | 240.2 | 31.8 | 413.7 | 2.4 | 17.7 | <LOD | - | - | - | |||
18584 | 22.1 | 7.1 | 803.1 | 21.7 | 75.9 | <LOD | - | - | - | |||
18585 | 133.9 | 362.3 | 18.7 | <LOD | 80.5 | <LOD | - | - | - | |||
18586 | 168.5 | 334.1 | 11.7 | <LOD | 52.2 | <LOD | - | - | - | |||
18587 | 1382.2 | 626.8 | 299.1 | <LOD | 39 | <LOD | - | - | - | |||
18588 | 32.1 | 14.03 | 287.9 | <LOD | 422.7 | <LOD | - | - | - | |||
18589 | 19.9 | 5.6 | 2.4 | 41.4 | 0.3 | <LOD | - | - | - | |||
18590 | 57.6 | 12 | 99.5 | <LOD | 0.8 | <LOD | - | - | - | |||
18591 | 45.3 | 7 | 65.2 | <LOD | 1.3 | <LOD | - | - | - | |||
18592 | 48 | 125.8 | 591.6 | 32.2 | 42.3 | <LOD | - | - | - | |||
18593 | 917.4 | 425.7 | 49.6 | 1.9 | 47 | <LOD | - | - | - | |||
18594 | 120.3 | 47.8 | 15 | <LOD | 1.8 | <LOD | - | - | - | |||
18595 | 461.1 | 121.6 | 544.2 | 17.2 | 29 | <LOD | - | - | - | |||
18596 | 719 | 140.2 | 35.2 | <LOD | 32.5 | <LOD | - | - | - | |||
18597 | 1472.3 | 808.9 | 290.8 | <LOD | 16 | <LOD | - | - | - | |||
18598 | 4.1 | 2.2 | 0.6 | <LOD | 0.1 | <LOD | - | - | - | |||
18600 | 1116.2 | 190.1 | <LOD | <LOD | 46 | <LOD | - | - | - | |||
18601 | 416.5 | 94.4 | 81 | <LOD | 7.2 | <LOD | - | - | - | |||
18602 | 8.7 | 6.2 | 2.2 | <LOD | 8.6 | <LOD | 0.01 | <LOD | <LOD | - | - | - |
18603 | 921.3 | 184.6 | 365.1 | <LOD | 97.7 | <LOD | - | - | - | |||
18604 | 763.3 | 104 | 273.7 | <LOD | 26.6 | <LOD | - | - | - | |||
18605 | 37 | 4.8 | 14.25 | <LOD | 20.8 | <LOD | - | - | - | |||
18606 | 1122.9 | 163.6 | 58 | <LOD | 77.5 | <LOD | - | - | - | |||
18607 | 55 | 36.7 | 60.7 | 1 | 84.6 | 112.40 | 48.6 | 33.7 | 51.1 | - | - | - |
18608 | 0.9 | 0.3 | <LOD | <LOD | 6 | <LOD | - | - | - | |||
18609 | <LOD | <LOD | <LOD | <LOD | 8.2 | <LOD | - | - | - | |||
18610 | 1649.2 | 5.9 | <LOD | <LOD | 40.5 | <LOD | - | - | - | |||
18611 | 1090.4 | 69.9 | 507 | <LOD | 260.2 | <LOD | - | - | - | |||
18612 | 1086.8 | 44.7 | 149.9 | <LOD | 336.6 | <LOD | - | - | - | |||
18613 | 2213.6 | 373.1 | 529.9 | <LOD | 420.6 | <LOD | - | - | - | |||
18614 | 4.2 | 1.8 | 1.4 | <LOD | 17.2 | <LOD | - | - | - | |||
18615 | 1.1 | 0.4 | <LOD | <LOD | 0.04 | <LOD | 0.1 | <LOD | 1.1 | - | - | - |
18616 | 0.8 | 0.3 | <LOD | <LOD | 12.5 | <LOD | - | - | - | |||
18617 | <LOD | <LOD | <LOD | <LOD | 10.4 | <LOD | - | - | - | |||
18618 | <LOD | <LOD | <LOD | <LOD | 210.5 | <LOD | - | - | - | |||
18619 | <LOD | <LOD | <LOD | <LOD | 211.7 | <LOD | - | - | - | |||
18620 | <LOD | <LOD | <LOD | <LOD | 33.4 | <LOD | - | - | - | |||
18621 | <LOD | <LOD | <LOD | <LOD | 437.4 | <LOD | - | - | - | |||
18622 | 1942.4 | 765.3 | 319.1 | <LOD | 290.6 | <LOD | - | - | - | |||
18623 | 319.2 | 44.2 | 49.8 | <LOD | 39.1 | <LOD | - | - | - | |||
18624 | 31 | 4.1 | 5 | 1 | 10 | <LOD | - | - | - | |||
18625 | 100.4 | 9.7 | 21.1 | <LOD | 46 | <LOD | - | - | - | |||
18626 | 9.8 | 1 | 2 | <LOD | 2.9 | <LOD | - | - | - | |||
18627 | 9 | 0.9 | 1.8 | <LOD | 3.9 | <LOD | - | - | - | |||
18628 | 11809.8 | 622.4 | 292.2 | <LOD | 8.6 | <LOD | - | - | - | |||
18629 | 1100.8 | 424.9 | 269.8 | 25 | 94.2 | <LOD | - | - | - | |||
18645 | 1222.2 | 234.6 | 425.3 | <LOD | 90.8 | <LOD | - | - | - | |||
Fusarium brachygibbosum | ||||||||||||
18635 | - | - | - | <LOD | 1.2 | <LOD | 0.02 | <LOD | 1.9 | <LOD | 18.7 | <LOD |
18636 | - | - | - | <LOD | 0.4 | <LOD | <LOD | <LOD | 1.2 | |||
18637 | - | - | - | <LOD | 1.9 | <LOD | <LOD | |||||
18638 | - | - | - | <LOD | 1 | <LOD | <LOD | |||||
18639 | - | - | - | <LOD | 0.1 | <LOD | <LOD | |||||
18640 | - | - | - | <LOD | 0.6 | <LOD | <LOD | <LOD | 2.4 | |||
Fusarium incarnatum-equiseti species complex | ||||||||||||
18630 F. incarnatum | - | - | - | <LOD | 3.2 | <LOD | <LOD | |||||
18631 | - | - | - | <LOD | 0.5 | <LOD | <LOD | |||||
18632 | - | - | - | <LOD | 0.3 | <LOD | <LOD | |||||
18633 | - | - | - | <LOD | 0.9 | <LOD | <LOD | |||||
F. caatingaense | ||||||||||||
18634 F. clavum | - | - | - | <LOD | 423.1 | <LOD | <LOD | |||||
Fusarium solani | ||||||||||||
18643 | - | - | - | 50.1 | 21.6 | 82.5 | <LOD | <LOD | 285 | <LOD | ||
18644 | - | - | - | 62.2 | 25.2 | 95.1 | 8.2 | <LOD | 224.1 |
Strain (ITEM *) | Fusarium species | Part of Plant | Origin | Years of Sampling |
---|---|---|---|---|
18618 | F. proliferatum | Leaflets | Degueche | 2017 |
18619 | F. proliferatum | Leaflets | Degueche | 2017 |
18583 | F. proliferatum | Leaflets | El-Hamma | 2017 |
18584 | F. proliferatum | Leaflets | El-Hamma | 2017 |
18592 | F. proliferatum | Leaflets | El-Hamma | 2017 |
18595 | F. proliferatum | Leaflets | El-Hamma | 2017 |
18585 | F. proliferatum | Leaflets | Hezoua | 2017 |
18586 | F. proliferatum | Leaflets | Hezoua | 2017 |
18590 | F. proliferatum | Leaflets | Hezoua | 2017 |
18591 | F. proliferatum | Leaflets | Hezoua | 2017 |
18605 | F. proliferatum | Leaflets | Hezoua | 2017 |
18611 | F. proliferatum | Leaflets | IBN Chabbat | 2017 |
18612 | F. proliferatum | Leaflets | IBN Chabbat | 2017 |
18613 | F. proliferatum | Leaflets | IBN Chabbat | 2017 |
18589 | F. proliferatum | Leaflets | Mides | 2017 |
18624 | F. proliferatum | Leaflets | Mides | 2017 |
18627 | F. proliferatum | Leaflets | Mides | 2017 |
18606 | F. proliferatum | Leaflets | Tozeur | 2017 |
18607 | F. proliferatum | Leaflets | Tozeur | 2017 |
18610 | F. proliferatum | Leaflets | Tozeur | 2017 |
18623 | F. proliferatum | Leaflets | Tozeur | 2017 |
18602 | F. proliferatum | Roots | Mides | 2017 |
18616 | F. proliferatum | Roots | Mides | 2017 |
18636 | F. brachygibbosum | Leaflets | IBN Chabbat | 2017 |
18639 | F. brachygibbosum | Leaflets | IBN Chabbat | 2017 |
18640 | F. brachygibbosum | Leaflets | IBN Chabbat | 2017 |
18635 | F. brachygibbosum | Leaflets | Mides | 2017 |
18599 | F. clavum | Leaflets | Mides | 2017 |
18631 | F. caatingaense | Leaflets | Tozeur | 2017 |
18632 | F. caatingaense | Leaflets | Tozeur | 2017 |
18633 | F. caatingaense | Roots | Tozeur | 2017 |
18596 | F. proliferatum | Leaflets | Degueche | 2018 |
18621 | F. proliferatum | Leaflets | Degueche | 2018 |
18594 | F. proliferatum | Leaflets | Hezoua | 2018 |
18617 | F. proliferatum | Leaflets | Hezoua | 2018 |
18620 | F. proliferatum | Leaflets | Hezoua | 2018 |
18593 | F. proliferatum | Leaflets | IBN Chabbat | 2018 |
18597 | F. proliferatum | Leaflets | IBN Chabbat | 2018 |
18600 | F. proliferatum | Leaflets | IBN Chabbat | 2018 |
18601 | F. proliferatum | Leaflets | IBN Chabbat | 2018 |
18603 | F. proliferatum | Leaflets | IBN Chabbat | 2018 |
18622 | F. proliferatum | Leaflets | IBN Chabbat | 2018 |
18615 | F. proliferatum | Leaflets | Mides | 2018 |
18626 | F. proliferatum | Leaflets | Mides | 2018 |
18645 | F. proliferatum | Leaflets | Mides | 2018 |
18608 | F. proliferatum | Leaflets | Mides | 2018 |
18598 | F. proliferatum | Leaflets | Mides | 2018 |
18609 | F. proliferatum | Leaflets | Mides | 2018 |
18614 | F. proliferatum | Leaflets | Mides | 2018 |
18604 | F. proliferatum | Leaflets | Nafta | 2018 |
18628 | F. proliferatum | Leaflets | Nafta | 2018 |
18629 | F. proliferatum | Leaflets | Nafta | 2018 |
18625 | F. proliferatum | Leaflets | Tozeur | 2018 |
18588 | F. proliferatum | Roots | IBN Chabbat | 2018 |
18587 | F. proliferatum | Roots | IBN Chabbat | 2018 |
18641 | F. brachygibbosum | Leaflets | El-Hamma | 2018 |
18637 | F. brachygibbosum | Leaflets | Mides | 2018 |
18638 | F. brachygibbosum | Roots | Hezoua | 2018 |
18642 | F. brachygibbosum | Roots | El-Hamma | 2018 |
18634 | F. clavum | Leaflets | IBN Chabbat | 2018 |
18630 | F. incarnatum | Roots | Mides | 2018 |
18643 | F. solani | Roots | IBN Chabbat | 2018 |
18644 | F. solani | Leaflets | Mides | 2018 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rabaaoui, A.; Dall’Asta, C.; Righetti, L.; Susca, A.; Logrieco, A.F.; Namsi, A.; Gdoura, R.; Werbrouck, S.P.O.; Moretti, A.; Masiello, M. Phylogeny and Mycotoxin Profile of Pathogenic Fusarium Species Isolated from Sudden Decline Syndrome and Leaf Wilt Symptoms on Date Palms (Phoenix dactylifera) in Tunisia. Toxins 2021, 13, 463. https://doi.org/10.3390/toxins13070463
Rabaaoui A, Dall’Asta C, Righetti L, Susca A, Logrieco AF, Namsi A, Gdoura R, Werbrouck SPO, Moretti A, Masiello M. Phylogeny and Mycotoxin Profile of Pathogenic Fusarium Species Isolated from Sudden Decline Syndrome and Leaf Wilt Symptoms on Date Palms (Phoenix dactylifera) in Tunisia. Toxins. 2021; 13(7):463. https://doi.org/10.3390/toxins13070463
Chicago/Turabian StyleRabaaoui, Amal, Chiara Dall’Asta, Laura Righetti, Antonia Susca, Antonio Francesco Logrieco, Ahmed Namsi, Radhouane Gdoura, Stefaan P. O. Werbrouck, Antonio Moretti, and Mario Masiello. 2021. "Phylogeny and Mycotoxin Profile of Pathogenic Fusarium Species Isolated from Sudden Decline Syndrome and Leaf Wilt Symptoms on Date Palms (Phoenix dactylifera) in Tunisia" Toxins 13, no. 7: 463. https://doi.org/10.3390/toxins13070463
APA StyleRabaaoui, A., Dall’Asta, C., Righetti, L., Susca, A., Logrieco, A. F., Namsi, A., Gdoura, R., Werbrouck, S. P. O., Moretti, A., & Masiello, M. (2021). Phylogeny and Mycotoxin Profile of Pathogenic Fusarium Species Isolated from Sudden Decline Syndrome and Leaf Wilt Symptoms on Date Palms (Phoenix dactylifera) in Tunisia. Toxins, 13(7), 463. https://doi.org/10.3390/toxins13070463