Determination of Microcystins in Fish Tissue by ELISA and MALDI-TOF MS Using a Highly Specific Single Domain Antibody
Abstract
:1. Introduction
2. Results
2.1. Rationale for Method Selection
2.2. Validation of the Methods for the Analysis of MCs in Fish Extracts
2.2.1. Nanobody Based ELISA
2.2.2. Immuno-Concentration in Magnetic Beads with Immobilized Nb Q-MALDI MS
2.3. Analysis of Water and Fish
2.3.1. Water Samples
2.3.2. Fish Samples
2.4. Correlation ELISA—Sum of MC Congeners by Nb-MALDI MS in Fish Extracts
2.5. Receiver Operating Characteristic (ROC) Curves
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Chemicals and Reagents
5.2. Fish and Water Sampling
5.3. Microcystin Extraction
5.4. Analysis of Microcystins
5.4.1. Nanobody Based ELISA
5.4.2. Immuno-Concentration in Magnetic Beads with Immobilized Nb (Nb-QMALDI MS)
5.5. Methods Validation
5.6. Data and Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bormans, M.; Savar, V.; Legrand, B.; Mineaud, E.; Robert, E.; Lance, E.; Amzil, Z. Cyanobacteria and Cyanotoxins in Estuarine Water and Sediment. Aquat. Ecol. 2020, 54, 625–640. [Google Scholar] [CrossRef]
- Huisman, J.; Codd, G.A.; Paerl, H.W.; Ibelings, B.W.; Verspagen, J.M.H.; Visser, P.M. Cyanobacterial Blooms. Nat. Rev. Microbiol. 2018, 16, 471–483. [Google Scholar] [CrossRef]
- Paerl, H.W.; Havens, K.E.; Xu, H.; Zhu, G.; McCarthy, M.J.; Newell, S.E.; Scott, J.T.; Hall, N.S.; Otten, T.G.; Qin, B. Mitigating Eutrophication and Toxic Cyanobacterial Blooms in Large Lakes: The Evolution of a Dual Nutrient (N and P) Reduction Paradigm. Hydrobiologia 2020, 847, 4359–4375. [Google Scholar] [CrossRef]
- Metcalf, J.S.; Banack, S.A.; Wessel, R.A.; Lester, M.; Pim, J.G.; Cassani, J.R.; Cox, P.A. Toxin Analysis of Freshwater Cyanobacterial and Marine Harmful Algal Blooms on the West Coast of Florida and Implications for Estuarine Environments. Neurotox. Res. 2021, 39, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Preece, E.P.; Hardy, F.J.; Moore, B.C.; Bryan, M. A Review of Microcystin Detections in Estuarine and Marine Waters: Environmental Implications and Human Health Risk. Harmful Algae 2017, 61, 31–45. [Google Scholar] [CrossRef] [Green Version]
- Smith, V.H. Eutrophication of Freshwater and Coastal Marine Ecosystems a Global Problem. Environ. Sci. Pollut. Res. 2003, 10, 126–139. [Google Scholar] [CrossRef] [PubMed]
- Carmichael, W.W.; Azevedo, S.M.; An, J.S.; Molica, R.J.; Jochimsen, E.M.; Lau, S.; Rinehart, K.L.; Shaw, G.R.; Eaglesham, G.K. Human Fatalities from Cyanobacteria: Chemical and Biological Evidence for Cyanotoxins. Environ. Health Perspect. 2001, 109, 663–668. [Google Scholar] [CrossRef]
- Hilborn, E.D.; Beasley, V.R. One Health and Cyanobacteria in Freshwater Systems: Animal Illnesses and Deaths Are Sentinel Events for Human Health Risks. Toxins 2015, 7, 1374–1395. [Google Scholar] [CrossRef] [Green Version]
- Wood, R. Acute Animal and Human Poisonings from Cyanotoxin Exposure—A Review of the Literature. Environ. Int. 2016, 91, 276–282. [Google Scholar] [CrossRef]
- Svirčev, Z.; Lalić, D.; Savić, G.B.; Tokodi, N.; Backović, D.D.; Chen, L.; Meriluoto, J.; Codd, G.A. Global Geographical and Historical Overview of Cyanotoxin Distribution and Cyanobacterial Poisonings. Arch. Toxicol. 2019, 93, 2429–2481. [Google Scholar] [CrossRef]
- Fastner, J.; Humpage, A. Hepatotoxic Cyclic Peptides–Microcystins and Nodularins. In Toxic Cyanobacteria in Water; Chorus, I., Welker, M., Eds.; CRC Press: Boca Raton, FL, USA; World Health Organization: Geneva, Switzerland, 2021. [Google Scholar]
- Bouaïcha, N.; Miles, C.; Beach, D.; Labidi, Z.; Djabri, A.; Benayache, N.; Nguyen-Quang, T. Structural Diversity, Characterization and Toxicology of Microcystins. Toxins 2019, 11, 714. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meriluoto, J.; Spoof, L.; Codd, G.A. (Eds.) Handbook of Cyanobacterial Monitoring and Cyanotoxin Analysis; John Wiley & Sons: Hoboken, NJ, USA, 2017; ISBN 9781119068686. [Google Scholar]
- Botes, D.P.; Wessels, P.L.; Kruger, H.; Runnegar, M.T.C.; Santikarn, S.; Smith, R.J.; Barna, J.C.J.; Williams, D.H. Structural Studies on Cyanoginosins-LR, -YR, -YA, and -YM, Peptide Toxins from Microcystis Aeruginosa. J. Chem. Soc. Perkin Trans. 1985, 1, 2747. [Google Scholar] [CrossRef]
- Yoshizawa, S.; Matsushima, R.; Watanabe, M.F.; Harada, K.; Ichihara, A.; Carmichael, W.W.; Fujiki, H. Inhibition of Protein Phosphatases by Microcystis and Nodularin Associated with Hepatotoxicity. J. Cancer Res. Clin. Oncol. 1990, 116, 609–614. [Google Scholar] [CrossRef]
- McLellan, N.L.; Manderville, R.A. Toxic Mechanisms of Microcystins in Mammals. Toxicol. Res. 2017, 6, 391–405. [Google Scholar] [CrossRef] [Green Version]
- Theiss, W.C.; Carmichael, W.W.; Wyman, J.; Bruner, R. Blood Pressure and Hepatocellular Effects of the Cyclic Heptapeptide Toxin Produced by the Freshwater Cyanobacterium (Blue-Green Alga) Microcystis Aeruginosa Strain PCC-7820. Toxicon 1988, 26, 603–613. [Google Scholar] [CrossRef]
- Arman, T.; Clarke, J.D. Microcystin Toxicokinetics, Molecular Toxicology, and Pathophysiology in Preclinical Rodent Models and Humans. Toxins 2021, 13, 537. [Google Scholar] [CrossRef]
- Dabholkar, A.S.; Carmichael, W.W. Ultrastructural Changes in the Mouse Liver Induced by Hepatotoxin from the Freshwater Cyanobacterium Microcystis Aeruginosa Strain 7820. Toxicon 1987, 25, 285–292. [Google Scholar] [CrossRef] [PubMed]
- Azevedo, S.M.F.O. Understanding Exposure-Renal Dialysis. In Toxic Cyanobacteria in Water; Chorus, I., Welker, M., Eds.; CRC Press: Boca Raton, FL, USA; World Health Organization: Geneva, Switzerland, 2021. [Google Scholar]
- Humpage, A.; Cunliffe, D. Understanding Exposure-Drinking-Water. In Toxic Cyanobacteria in Water; Chorus, I., Welker, M., Eds.; CRC Press: Boca Raton, FL, USA; World Health Organization: Geneva, Switzerland, 2021. [Google Scholar]
- IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. Ingested Nitrate and Nitrite, and Cyanobacterial Peptide Toxins. IARC Monogr. Eval. Carcinog. Risks Hum. 2010, 94, v. [Google Scholar]
- Zhang, S.; Du, X.; Liu, H.; Losiewic, M.D.; Chen, X.; Ma, Y.; Wang, R.; Tian, Z.; Shi, L.; Guo, H.; et al. The latest advances in the reproductive toxicity of microcystin-LR. Environ. Res. 2021, 192, 110254. [Google Scholar] [CrossRef]
- Feng, S.; Deng, S.; Tang, Y.; Liu, Y.; Yang, Y.; Xu, S.; Tang, P.; Lu, Y.; Duan, Y.; Wei, J.; et al. Exposures and the Risk of Chronic Kidney Disease: A Case–Control Study in Central China. Environ. Sci. Technol. 2022, 56, 15818–15827. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, H.; Wang, X.; Chen, L.; Liu, W.; Cai, D.; Deng, S.; Chu, H.; Liu, Y.; Feng, X.; et al. Long-term environmental levels of microcystin-LR exposure induces colorectal chronic inflammation, fibrosis and barrier disruption via CSF1R/Rap1b signaling pathway. J. Hazard. Mater. 2022, 440, 129793. [Google Scholar] [CrossRef]
- World Health Organization. Guidelines for Drinking Water Quality-Health Criteria and Other Supporting Information; WHO: Geneva, Switzerland, 1998. [Google Scholar]
- World Health Organization. Cyanobacterial Toxins: Microcystins. Background Document for Development of WHO Guidelines for Drinking-Water Quality and Guidelines for Safe Recreational Water Environments; World Health Organization: Geneva, Switzerland, 2020. [Google Scholar]
- Ibelings, B.W.; Foss, A.; Chorus, I. Assessing Exposure-Food. In Toxic Cyanobacteria in Water; Chorus, I., Welker, M., Eds.; CRC Press: Boca Raton, FL, USA; World Health Organization: Geneva, Switzerland, 2021. [Google Scholar]
- Dietrich, D. Understanding Exposure-Cyanobacteria as Dietary Supplements. In Toxic Cyanobaceria in Water; Chorus, I., Welker, M., Eds.; CRC Press: Boca Raton, FL, USA; World Health Organization: Geneva, Switzerland, 2021. [Google Scholar]
- Testai, E.; Buratti, F.M.; Funari, E.; Manganelli, M.; Vichi, S.; Arnich, N.; Biré, R.; Fessard, V.; Sialehaamoa, A. Review and Analysis of Occurrence, Exposure and Toxicity of Cyanobacteria Toxins in Food; EFSA Supporting Publications: Parma, Italy, 2017; p. 13. [Google Scholar] [CrossRef]
- Magalhães, V.F.; Marinho, M.M.; Domingos, P.; Oliveira, A.C.; Costa, S.M.; Azevedo, L.O.; Azevedo, S.M.F.O. Microcystins (Cyanobacteria Hepatotoxins) Bioaccumulation in Fish and Crustaceans from Sepetiba Bay (Brasil, RJ). Toxicon 2003, 42, 289–295. [Google Scholar] [CrossRef]
- Ibelings, B.W.; Chorus, I. Accumulation of Cyanobacterial Toxins in Freshwater “Seafood” and Its Consequences for Public Health: A Review. Environ. Pollut. 2007, 150, 177–192. [Google Scholar] [CrossRef]
- Poste, A.E.; Hecky, R.E.; Guildford, S.J. Evaluating Microcystin Exposure Risk through Fish Consumption. Environ. Sci. Technol. 2011, 45, 5806–5811. [Google Scholar] [CrossRef] [Green Version]
- Geis-Asteggiante, L.; Lehotay, S.J.; Fortis, L.L.; Paoli, G.; Wijey, C.; Heinzen, H. Development and Validation of a Rapid Method for Microcystins in Fish and Comparing LC-MS/MS Results with ELISA. Anal. Bioanal. Chem. 2011, 401, 2617–2630. [Google Scholar] [CrossRef]
- Adamovský, O.; Bláha, L. Extraction of Microcystins from Animal Tissues. In Handbook of Cyanobacterial Monitoring and Cyanotoxin Analysis; Meriluoto, J., Spoof, L., Codd, G., Eds.; Wiley: Chichester, UK, 2017; pp. 358–361. [Google Scholar]
- Caixach, J.; Flores, C.; Spoof, L. Liquid Chromatography–Mass Spectrometry. In Handbook of Cyanobacterial Monitoring and Cyanotoxin Analysis; Meriluoto, J., Spoof, L., Codd, G.A., Eds.; Wiley: Chichester, UK, 2017; Volume 1, pp. 218–257. [Google Scholar]
- Birbeck, J.A.; Westrick, J.A.; O’neill, G.M.; Spies, B.; Szlag, D.C. Comparative Analysis of Microcystin Prevalence in Michigan Lakes by Online Concentration Lc/Ms/Ms and Elisa. Toxins 2019, 11, 13. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Zhu, B.; Liu, Z.; Wang, F.; Liang, J. Simultaneous Determination of Eight Microcystins in Fish by PRiME Pass-through Cleanup and Online Solid Phase Extraction Coupled to Ultra High Performance Liquid Chromatography-Tandem Mass Spectrometry. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2019, 1125, 121709. [Google Scholar] [CrossRef] [PubMed]
- Palagama, D.S.W.; Baliu-Rodriguez, D.; Lad, A.; Levison, B.S.; Kennedy, D.J.; Haller, S.T.; Westrick, J.; Hensley, K.; Isailovic, D. Development and Applications of Solid-Phase Extraction and Liquid Chromatography-Mass Spectrometry Methods for Quantification of Microcystins in Urine, Plasma, and Serum. J. Chromatogr. A 2018, 1573, 66–77. [Google Scholar] [CrossRef] [PubMed]
- Massey, I.Y.; Wu, P.; Wei, J.; Luo, J.; Ding, P.; Wei, H.; Yang, F. A Mini-Review on Detection Methods of Microcystins. Toxins 2020, 12, 641. [Google Scholar] [CrossRef] [PubMed]
- Welker, M.; Chorus, I.; Schaeffer, B.A.; Urquhart, E. Planning Monitoring Programmes for Cyanobacteria and Cyanotoxins. In Toxic Cyanobacteria in Water; CRC Press: Boca Raton, FL, USA, 2021; pp. 641–668. ISBN 1-00-308144-4. [Google Scholar]
- Zaffiro, A.; Rosenblum, L.; Wendelken, S.C. Method 546: Determination of Total Microcystins and Nodularins in Drinking Water and Ambient Water by Adda Enzyme-Linked Immunosorbent Assay; US EPA (United States Environmental Protection Agency), Standards and Risk Management Division: Cincinnati, OH, USA, 2016; pp. 1–21.
- Chorus, I.; Testai, E. Undersanding Exposure-Recreation and Occupational Activities. In Toxic Cyanobacteria in Water; Chorus, I., Welker, M., Eds.; CRC Press: Boca Raton, FL, USA; World Health Organization: Geneva, Switzerland, 2021. [Google Scholar]
- Gonzalez-Sapienza, G.; Rossotti, M.A.; Tabares-da Rosa, S. Single-Domain Antibodies As Versatile Affinity Reagents for Analytical and Diagnostic Applications. Front. Immunol. 2017, 8, 977. [Google Scholar] [CrossRef] [PubMed]
- Pírez-Schirmer, M.; Rossotti, M.; Badagian, N.; Leizagoyen, C.; Brena, B.M.; González-Sapienza, G. Comparison of Three Antihapten VHH Selection Strategies for the Development of Highly Sensitive Immunoassays for Microcystins. Anal. Chem. 2017, 89, 6800–6806. [Google Scholar] [CrossRef] [PubMed]
- Pírez-Schirmer, M.; Brena, B.M.; González-Sapienza, G. Oriented Functionalization of Magnetic Beads with In Vivo Biotinylated Nanobodies for Rapid MALDI-TOF MS Ultrasensitive Quantitation of Microcystins in Biological Samples. Anal. Chem. 2019, 91, 9925–9931. [Google Scholar] [CrossRef] [PubMed]
- Pírez, M.; Gonzalez-Sapienza, G.; Sienra, D.; Ferrari, G.; Last, M.; Last, J.A.; Brena, B.M. Limited Analytical Capacity for Cyanotoxins in Developing Countries May Hide Serious Environmental Health Problems: Simple and Affordable Methods May Be the Answer. J. Environ. Manag. 2013, 114, 63–71. [Google Scholar] [CrossRef] [PubMed]
- Lauceri, R.; Austoni, M.; Caviglia, F.; Kamburska, L.; Lami, A.; Morabito, G.; Pflueger, V.; Benavides, A.M.S.; Tonolla, M.; Torzillo, G.; et al. Coupling a Bio-Accumulator Organism and MALDI-TOF MS: An Early Warning Detection System for Microcystins in Water Bodies. J. Appl. Phycol. 2017, 29, 2979–2988. [Google Scholar] [CrossRef]
- Howard, K.L.; Boyer, G.L. Quantitative Analysis of Cyanobacterial Toxins by Matrix-Assisted Laser Desorption Ionization Mass Spectrometry. Anal. Chem. 2007, 79, 5980–5986. [Google Scholar] [CrossRef] [PubMed]
- Welker, M.; Fastner, J.; Erhard, M.; von Döhren, H. Applications of MALDI-TOF MS Analysis in Cyanotoxin Research. Environ. Toxicol. 2002, 17, 367–374. [Google Scholar] [CrossRef]
- Roegner, A.F.; Schirmer, M.P.; Puschner, B.; Brena, B.; Gonzalez-Sapienza, G. Rapid Quantitative Analysis of Microcystins in Raw Surface Waters with MALDI MS Utilizing Easily Synthesized Internal Standards. Toxicon 2014, 78, 94–102. [Google Scholar] [CrossRef] [Green Version]
- Roser, M.; Ortiz-Ospina, E. Our World in Data. Fish and seafood consumption per capita. 2017. Available online: https://ourworldindata.org/grapher/fish-and-seafood-consumption-per-capita (accessed on 5 December 2022).
- González-Piana, M.; Fabián, D.; Piccardo, A.; Chalar, G. Dynamics of Total Microcystin LR Concentration in Three Subtropical Hydroelectric Generation Reservoirs in Uruguay, South America. Bull. Environ. Contam. Toxicol. 2017, 99, 488–492. [Google Scholar] [CrossRef]
- Bonilla, S.; Aubriot, L.; Haakonsson, S.; Illarze, M.; Díaz, I.; Brena, B. Toxic Cyanobacterial Blooms Compromise the Use of the Río Negro Water, Uruguay. INNOTEC 2021, 22, e577. [Google Scholar] [CrossRef]
- Qi, Y.; Rosso, L.; Sedan, D.; Giannuzzi, L.; Andrinolo, D.; Volmer, D.A. Seven New Microcystin Variants Discovered from a Native Microcystis Aeruginosa Strain-Unambiguous Assignment of Product Ions by Tandem Mass Spectrometry. Rapid Commun. Mass Spectrom. 2015, 29, 220–224. [Google Scholar] [CrossRef]
- Matthiensen, A.; Beattie, K.A.; Yunes, J.S.; Kaya, K.; Codd, G.A. [D-Leu1]Microcystin-LR, from the Cyanobacterium Microcystis RST 9501 and from a Microcystis Bloom in the Patos Lagoon Estuary, Brazil. Phytochemistry 2000, 55, 383–387. [Google Scholar] [CrossRef] [PubMed]
- Lüdemann, L.; Grieger, W.; Wurm, R.; Wust, P.; Zimmer, C. Glioma Assessment Using Quantitative Blood Volume Maps Generated by T1-Weighted Dynamic Contrast-Enhanced Magnetic Resonance Imaging: A Receiver Operating Characteristic Study. Acta Radiol. 2006, 47, 303–310. [Google Scholar] [CrossRef] [PubMed]
- Skittrall, J.P.; Wilson, M.; Smielewska, A.A.; Parmar, S.; Fortune, M.D.; Sparkes, D.; Curran, M.D.; Zhang, H.; Jalal, H. Specificity and Positive Predictive Value of SARS-CoV-2 Nucleic Acid Amplification Testing in a Low-Prevalence Setting. Clin. Microbiol. Infect. 2021, 27, 469.e9–469.e15. [Google Scholar] [CrossRef] [PubMed]
- Brenner, H.; Gefeller, O. Variation of Sensitivity, Specificity, Likelihood Ratios and Predictive Values with Disease Prevalence. Stat. Med. 1997, 16, 981–991. [Google Scholar] [CrossRef]
- Schmidt, J.; Wilhelm, S.; Boyer, G. The Fate of Microcystins in the Environment and Challenges for Monitoring. Toxins 2014, 6, 3354–3387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, J.L.; Haney, J.F. Foodweb Transfer, Accumulation, and Depuration of Microcystins, a Cyanobacterial Toxin, in Pumpkinseed Sunfish (Lepomis gibbosus). Toxicon 2006, 48, 580–589. [Google Scholar] [CrossRef] [PubMed]
- Delfin-Riela, T.; Rossotti, M.A.; Echaides, C.; González-Sapienza, G. A Nanobody-Based Test for Highly Sensitive Detection of Hemoglobin in Fecal Samples. Anal. Bioanal. Chem. 2020, 412, 389–396. [Google Scholar] [CrossRef]
- Delfin-Riela, T.; Rossotti, M.; Alvez-Rosado, R.; Leizagoyen, C.; González-Sapienza, G. Highly Sensitive Detection of Zika Virus Nonstructural Protein 1 in Serum Samples by a Two-Site Nanobody ELISA. Biomolecules 2020, 10, 1652. [Google Scholar] [CrossRef]
- Campos, A.; Vasconcelos, V. Molecular Mechanisms of Microcystin Toxicity in Animal Cells. Int. J. Mol. Sci. 2010, 11, 268–287. [Google Scholar] [CrossRef] [Green Version]
- Metcalf, J.S.; Beattie, K.A.; Pflugmacher, S.; Codd, G.A. Immuno-Crossreactivity and Toxicity Assessment of Conjugation Products of the Cyanobacterial Toxin, Microcystin-LR. FEMS Microbiol. Lett. 2000, 189, 155–158. [Google Scholar] [CrossRef]
- Shoemaker, J.A.; Tettenhorst, D.R.; De la Cruz, A. EPA Method 544: Determination of Microcystins and Nodularin in Drinking Water by Solid Phase Extraction and Liquid Chromatography/Tandem Mass Spectrometry (LC/MS/MS); EPA Document #: EPA/600/R-14/474; Version 1.0; EPA: Cincinnati, OH, USA, 2015.
Nanobody ELISA | Polyclonal ELISA | ||||
---|---|---|---|---|---|
MC-LR | Recovery | RSD | Recovery | RSD | |
μg/L | ng/g Fish | % | % | % | % |
5.0 | 29 | 77 | 14 | 118 | 34 |
2.5 | 15 | 80 | 14 | 116 | 27 |
1.5 | 8.8 | 84 | 13 | 130 | 29 |
0.60 | 3.5 | 84 | 7 | 162 | 32 |
0.30 | 1.8 | 84 | 12 | 215 | 44 |
0.15 | 0.88 | 89 | 10 | 333 | 43 |
0.10 | 0.59 | 119 | 8 | 483 | 56 |
Parameter | Methodology/Calculation | Result | Acceptance Criteria * |
---|---|---|---|
Precision and Accuracy | 7 replicate lab fortified blanks (LFBs) at 1 µg/L MC-LR | Rec. = 93.9%; RSD = 5.2% | 70% < Recovery < 130% RSD < 15%. |
DL µg/L (ng/g fish ww) | SD × t (n−1 = 15, 1−α = 0.99) n = 16 | 0.079 µg/L (0.46 ng/g) | |
Quality Control-Std at 1 µg/L (SD) | Certified Standard from NRC Canada, CRM-MCLR | 0.91 µg/L (SD = 0.07 µg/L) | 70% < Recovery < 130% |
Method Reporting Limit (MRL) Confirmation (ng/g fish ww) | 7 replicates lab matrix blank (LMB) fortified at 0.3 μg/L MC-LR | 0.3 µg/L (1.8 ng/g fish ww) | <0.85 µg/L (5 ng/g) ** |
Upper PIR Limit | 143.9% | ≤150% | |
Lower PIR Limit | 57.8% | ≥50% | |
% Rec. 0.3 µg/L (RSD) | Average recovery of 7 replicates, LMB, fortified at 0.3 µg/L MC-LR | 100.8% (RSD = 10.9%) |
Parameter | MC-LR (μg/L) | MC-RR (μg/L) | MC-YR (μg/L) | MC-WR (μg/L) | Acceptance Criteria * |
---|---|---|---|---|---|
DL (n = 18) | 0.02 | ||||
MRL | 0.05 | 0.05 | 0.05 | 0.05 | <5 ng/g ** |
Upper PIR | 131.4 | 116.3 | 143.1 | 144.1 | ≤150% |
Lower PIR | 95.2 | 90.4 | 95.2 | 98.9 | ≥50% |
% Rec. 0.05 µg/L (RSD) | 113 | 103 | 119 | 121 | 50–150% |
(4.0) | (3.2) | (5.1) | (4.7) | <50% | |
Calibration Curve Low range 0.05–0.7μg/L | y = 5.331x − 0.112 | y = 5.233x − 0.120 | y = 4.841x − 0.098 | y = 3.451x − 0.042 | |
r2 | 0.9955 | 0.9957 | 0.9955 | 0.9975 | |
High range 0.7–5.0 µg/L | y = 5.539x − 0.287 | y = 5.918x − 0.514 | y = 5.030x − 0.102 | y = 4.111x − 0.076 | |
r2 | 0.9988 | 0.9981 | 0.9991 | 0.9967 | |
% Rec. 1 µg/L (RSD) | 106 | 106 | 101 | 93 | 70–130% |
(3.5) | (3.8) | (4.1) | (7.3) | <30% | |
% Rec. 3 µg/L (RSD) | 104 | 107 | 101 | 87 | 70–130% |
(4.1) | (4.5) | (4.1) | (4.0) | <30% |
2017 | 2021 | |
---|---|---|
Equation | y = 1.074x − 0.893 | y = 1.063x − 0.718 |
r2 | 0.9162 | 0.9166 |
Number of values (n) | 26 | 29 |
95% Confidence Intervals | ||
Slope | 0.9373 to 1.211 | 0.9362 to 1.189 |
Y-intercept | −1.244 to −0.5418 | −1.162 to −0.2727 |
ELISA Cut-Off Value/Threshold Value Sum of MCs | Calculation | 11.5 ng/g ELISA/ 5 ng/g ∑MCs | 15.3 ng/g ELISA/ 10 ng/g ∑MCs | 26.3 ng/g ELISA/ 24 ng/g ∑MCs |
---|---|---|---|---|
% of Tolerable Daily Intake | % of 2.4 μg/capita | 20% | 40% | 100% |
Sensitivity | =TP/TP + FN | 1.00 | 1.00 | 1.00 |
Specificity | =TN/TN + FP | 0.91 | 0.89 | 0.89 |
Positively Predictive Value (PPV) | =TP/TP + FP | 0.94 | 0.90 | 0.82 |
Negatively predictive Value (NPV) | =TN/TN + FN | 1.00 | 1.00 | 1.00 |
Prevalence | =TP + FN/(TP + FP + TN + FN) | 0.60 | 0.49 | 0.33 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Badagian, N.; Pírez Schirmer, M.; Pérez Parada, A.; Gonzalez-Sapienza, G.; Brena, B.M. Determination of Microcystins in Fish Tissue by ELISA and MALDI-TOF MS Using a Highly Specific Single Domain Antibody. Toxins 2023, 15, 84. https://doi.org/10.3390/toxins15020084
Badagian N, Pírez Schirmer M, Pérez Parada A, Gonzalez-Sapienza G, Brena BM. Determination of Microcystins in Fish Tissue by ELISA and MALDI-TOF MS Using a Highly Specific Single Domain Antibody. Toxins. 2023; 15(2):84. https://doi.org/10.3390/toxins15020084
Chicago/Turabian StyleBadagian, Natalia, Macarena Pírez Schirmer, Andrés Pérez Parada, Gualberto Gonzalez-Sapienza, and Beatriz M. Brena. 2023. "Determination of Microcystins in Fish Tissue by ELISA and MALDI-TOF MS Using a Highly Specific Single Domain Antibody" Toxins 15, no. 2: 84. https://doi.org/10.3390/toxins15020084
APA StyleBadagian, N., Pírez Schirmer, M., Pérez Parada, A., Gonzalez-Sapienza, G., & Brena, B. M. (2023). Determination of Microcystins in Fish Tissue by ELISA and MALDI-TOF MS Using a Highly Specific Single Domain Antibody. Toxins, 15(2), 84. https://doi.org/10.3390/toxins15020084