No Secondary Treatment Failure during Incobotulinumtoxin—A Long-Term Treatment Demonstrated by the Drawing of Disease Severity
Abstract
:1. Introduction
2. Results
2.1. Demographical, Treatment-Related Data and Outcome Measures of All Patients
2.2. Three Types of CoDB Graphs and Corresponding Treatment-Related Data
2.3. Three Different Types of CoDA Graphs and Corresponding Treatment-Related Data
2.4. No NAB Induction and No Primary or Secondary Treatment Failure
3. Discussion
3.1. No NAB Induction during Long-Term Monotherapy with incoBoNT/A
3.2. No Hints for the Development of a Secondary Treatment Failure in the CoDA Graphs
3.3. No Hint of a Primary Treatment Failure
3.4. Strengths and Limitations of the Study
4. Conclusions
5. Materials and Methods
5.1. Patients: Demographical and Treatment-Related Data
5.2. Drawing of the Course of Disease Graphs
5.3. Classification of the CoD Graphs
5.4. Antibody Testing
5.5. Statistics
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Montecucco, C.; Schiavo, G.; Rossetto, O. The mechanism of action of tetanus and botulinum neurotoxins. Arch. Toxicol. Suppl. 1996, 18, 342–354. [Google Scholar] [PubMed]
- Gu, S.; Rumpel, S.; Zhou, J. Botulinum neurotoxin is shielded by NTNHA in an interlocked complex. Science 2012, 335, 977–981. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.; Zhong, X.; Gu, S. Molecular basis for disruption of E-cadherin adhesion by botulinum neurotoxin A complex. Science 2014, 344, 1405–1410. [Google Scholar] [CrossRef] [Green Version]
- Eisele, K.H.; Taylor, H.V. Dissociation of the 900 kDa neurotoxin complex from C. botulinum under physiological conditions. Toxicon 2008, 51, 10. [Google Scholar] [CrossRef]
- Eisele, K.H.; Fink, K.; Vey, M.; Taylor, H. Studies on the dissociation of botulinum neurotoxin type A complexes. Toxicon 2011, 57, 555–565. [Google Scholar] [CrossRef] [PubMed]
- Frevert, J.; Dressler, D. Complexing Proteins in Botulinum Toxin Type A Drugs: A Help or a Hindrance? Biologics 2010, 4, 325–332. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.C.; Yokota, K.; Arimitsu, H.; Hwang, H.J.; Sakaguchi, Y.; Cui, J.; Takeshi, K.; Watanabe, T.; Ohyama, T.; Oguma, K. Production of Anti-Neurotoxin Antibody Is Enhanced by Two Subcomponents, HA1 and HA3b, of Clostridium Botulinum Type B 16S Toxin-Haemagglutinin. Microbiology 2005, 151, 3739–3747. [Google Scholar] [CrossRef] [Green Version]
- Kukreja, R.; Chang, T.W.; Cai, S.; Lindo, P.; Riding, S.; Zhou, Y.; Ravichandran, E.; Singh, B.R. Immunological Characterization of the Subunits of Type A Botulinum Neurotoxin and Different Components of Its Associated Proteins. Toxicon 2009, 53, 616–624. [Google Scholar] [CrossRef]
- Joshi, S.G.; Elias, M.; Singh, A.; Al-Saleem, F.H.; Ancharski, D.; Nasser, Z.; Takahashi, T.; Simpson, L.L. Modulation of Botulinum Toxin-Induced Changes in Neuromuscular Function with Antibodies Directed against Recombinant Polypeptides or Fragments. Neuroscience 2011, 179, 208–222. [Google Scholar] [CrossRef]
- Van Kooyk, Y. C-type lectins on dendritic cells: Key modulators for the induction of immune responses. Biochem. Soc. Trans. 2008, 36, 1478–1481. [Google Scholar] [CrossRef]
- Oshima, M.; Deitiker, P.; Jankovic, J.; Atassi, M.Z. The Regions on the light chain of botulinum neurotoxin type A recognized by T cells from toxin-treated cervical dystonia patients. The complete human T-cell recognition map of the toxin molecule. Immunol. Investig. 2018, 47, 18–39. [Google Scholar] [CrossRef] [PubMed]
- Atassi, M.Z.; Dolimbek, B.Z.; Jankovic, J.; Steward, L.E.; Aoki, K.R. Molecular Recognition of Botulinum Neurotoxin B Heavy Chain by Human Antibodies from Cervical Dystonia Patients That Develop Immunoresistance to Toxin Treatment. Mol. Immunol. 2008, 45, 3878–3888. [Google Scholar] [CrossRef] [PubMed]
- Atassi, M.Z.; Dolimbek, B.Z.; Jankovic, J.; Steward, L.E.; Aoki, K.R. Regions of Botulinum Neurotoxin A Light Chain Recognized by Human Anti-Toxin Antibodies from Cervical Dystonia Patients Immunoresistant to Toxin Treatment. The Antigenic Structure of the Active Toxin Recognized by Human Antibodies. Immunobiology 2011, 216, 782–792. [Google Scholar] [CrossRef] [PubMed]
- Barinaga, M. Secrets of secretion revealed. Science 1993, 260, 487–489. [Google Scholar] [CrossRef]
- Eleopora, R.; Tugnoli, V.; Quatrale, R.; Rossetto, O.; Montecucco, C. Different types of botulinum toxin in humans. Mov. Disord. 2004, 19, 53–59. [Google Scholar] [CrossRef]
- Hefter, H.; Spiess, C.; Rosenthal, D. Very early reduction in efficacy of botulinum toxin therapy for cervical dystonia in patients with subsequent secondary treatment failure—A retrospective analysis. J. Neur. Trans. 2013, 121, 513–519. [Google Scholar] [CrossRef] [Green Version]
- Walter, U.; Mühlenhoff, C.; Benecke, R.; Dressler, D.; Mix, E.; Alt, J.; Wittstock, M.; Dudesek, A.; Storch, A.; Kamm, C. Frequency and risk factors of antibody-induced secondary failure of botulinum neurotoxin therapy. Neurology 2020, 94, e2109–e2120. [Google Scholar] [CrossRef]
- Schulte-Baukloh, H.; Bigalke, H.; Miller, K.; Heine, G.; Pape, D.; Lehmann, J.; Knispel, H.H. Botulinum Neurotoxin Type A in Urology: Antibodies as a Cause of Therapy Failure. Int. J. Urol. 2008, 15, 407–415. [Google Scholar] [CrossRef]
- Dressler, D. Clinical presentation and management of antibody-induced failure of botulinum toxin therapy. Mov. Disord. 2004, 19 (Suppl. S8), S92–S100. [Google Scholar] [CrossRef]
- Lange, O.; Bigalke, H.; Dengler, R.; Wegner, F.; de Groot, M.; Wohlfarth, K. Neutralizing antibodies and secondary therapy failure after treatment with botulinum toxin type A: Much ado about nothing? Clin. Neuropharmacol. 2009, 32, 213–218. [Google Scholar] [CrossRef]
- Fabbri, M.; Leodori, G.; Fernandes, R.M.; Bhidayasiri, R.; Marti, M.J.; Colosimo, C.; Ferreira, J.J. Neutralizing Antibody and Botulinum Toxin Therapy: A Systematic Review and Meta-Analysis. Neurotox. Res. 2016, 29, 105–117. [Google Scholar] [CrossRef] [PubMed]
- Hefter, H.; Rosenthal, D.; Moll, M. High botulinum toxin-neutralizing antibody prevalence under long-term cervical dystonia treatment. Mov. Disord. Clin. Pract. 2016, 3, 500–506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Albrecht, P.; Jansen, A.; Lee, J.I.; Moll, M.; Ringelstein, M.; Rosenthal, D.; Bigalke, H.; Aktas, O.; Hartung, H.P.; Hefter, H. High prevalence of neutralizing antibodies after long-term botulinum neurotoxin therapy. Neurology 2019, 92, e48–e54. [Google Scholar] [CrossRef]
- Hefter, H.; Schomaecker, I.; Schomaecker, M.; Rosenthal, D.; Samadzadeh, S. The impact of the course of disease before botulinum toxin therapy on the course of treatment and long-term outcome in cervical dystonia. Toxins 2021, 13, 493. [Google Scholar] [CrossRef] [PubMed]
- Schomaecker, I. Einfluss des Beschwerdeverlaufes vor der Botulinumtoxintherapie Zervikaler Dystonien auf das Langzeitergebnis. 2022. Available online: https://docserv.uni-duesseldorf.de/ (accessed on 11 July 2023).
- Hefter, H.; Schomaecker, I.; Schomaecker, M.; Ürer, B.; Brauns, R.; Rosenthal, D.; Albrecht, P.; Samadzadeh, S. Lessons about Botulinum Toxin A Therapy from Cervical Dystonia Patients Drawing the Course of Disease: A Pilot Study. Toxins 2023, 15, 431. [Google Scholar] [CrossRef]
- Hefter, H.; Rosenthal, D.; Jansen, A.; Brauns, R.; Ürer, B.; Bigalke, H.; Hartung, H.-P.; Meuth, S.G.; Lee, J.-I.; Albrecht, P.; et al. Significantly lower antigenicity of incobotulinumtoxin than abo- or onabotulinumtoxin. J. Neurol. 2023, 270, 788–796. [Google Scholar] [CrossRef]
- Hefter, H.; Brauns, R.; Ürer, B.; Rosenthal, D.; Albrecht, P. Effective long-term treatment with incobotulinumtoxin (Xeomin®) without neutralizing antibody induction: A monocentric, cross-sectional study. J. Neurol. 2020, 267, 1340–1347. [Google Scholar] [CrossRef] [Green Version]
- Hefter, H.; Schoemaeker, I.; Schomaecker, M.; Hefter, H. Disease progression of idiopathic cervical dystonia in spite of improvement after botulinum toxin therapy. Front. Neurol. 2020, 11, 588395. [Google Scholar] [CrossRef]
- Lee, J.-I.; Jansen, A.; Samadzadeh, S.; Kahlen, U.; Moll, M.; Ringelstein, M.; Soncin, G.; Bigalke, H.; Aktas, O.; Moldovan, A.S.; et al. Long-term adherence and response behaviour to botulinum toxin in different indications. Ann. Clin. Trans. Neurol. 2021, 8, 15–28. [Google Scholar] [CrossRef]
- Samadzadeh, S.; Brauns, R.; Hefter, H. The extreme ends of the treatment response spectrum to botulinum toxin in cervical dystonia. Toxins 2021, 13, 22. [Google Scholar] [CrossRef]
- Tsui, J.K.; Eisen, A.; Stoessl, A.J.; Calne, S.; Calne, D.B. Double-blind study of botulinum toxin in spasmodic torticollis. Lancet 1986, 2, 245–247. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://www.digitizeIT.de/ (accessed on 11 July 2023).
Parameter | RO | CO | DO | ALL | Significance-Level (p < 0.05) | |
---|---|---|---|---|---|---|
n = | 7 | 15 | 11 | 33 | ||
Female/male | ¾ | 10/5 | 4/7 | 17/16 | n.s. | |
AGE (years) | MV/SD | 53.9/14.1 | 59.67/13.13 | 60.5/13.1 | 58.72/13.15 | n.s. |
MIN–MAX | 28.62–71.58 | 34.76–82.22 | 30.35–81.44 | 28.62–82.22 | ||
AOS (years) | MV/SD | 43.4/17.6 | 46.46/14.20 | 51.4/15.0 | 47.57/15.04 | n.s. |
MIN–MAX | 15.89–63.01 | 13.18–67.03 | 22.38–73.89 | 13.18–73.89 | ||
DURS (months) | MV/SD | 67.2/139.2 | 73.08/108.36 | 42/52.8 | 62.04/96.96 | n.s. |
MIN–MAX | 1.2–336.00 | 3.6–336.00 | 1.2–192.00 | 1.2–336.00 | ||
DURT (months) | MV/SD | 63.36/21.48 | 84/29.64 | 72/24 | 76.32/25.29 | n.s. |
MIN–MAX | 48.00–108.00 | 48.00–132.00 | 48.00–108.00 | 48.00–132.00 | ||
IDOSE | MV/SD | 202.86/69.63 | 105.50/71.95 | 218.64/58.66 | 163.86/84.91 | p < 0.009 |
MIN–MAX | 100.00–300.00 | 30.00–230.00 | 80.00–300.00 | 30.00–300.00 | ||
ADOSE | MV/SD | 314.29/69.01 | 198.67/108.31 | 309.55/100.56 | 260.15/111.52 | p < 0.01 |
MIN–MAX | 200.00–400.00 | 35.00–400.00 | 160.00–500.00 | 35.00– 500.00 | ||
INDOSE | MV/SD | 111.43/23.22 | 93.17/77.91 | 90.91/99.64 | 96.29/76.97 | n.s. |
MIN–MAX | 80.00–150.00 | 0.00–300.00 | −40.00–260.00 | −40.00–300.00 | ||
ITSUI | MV/SD | 9.67/3.67 | 5.57/2.15 | 7.75/2.96 | 7.57/3.25 | n.s. |
MIN–MAX | 6.00–16.00 | 4.00–10.00 | 4.00–12.00 | 4.00–16.00 | ||
ATSUI | MV/SD | 3.00/1.55 | 3.75/1.67 | 5.00/4.42 | 3.96/2.99 | n.s. |
MIN–MAX | 1.00–5.00 | 2.00–7.00 | 0.00–12.00 | 0.00–12.00 | ||
IMPTSUI | MV/SD | 6.67/3.88 | 1.86/2.73 | 3.63/5.13 | 3.60/3.5 | n.s. |
MIN–MAX | 1.00–12.00 | −1.00–7.00 | −4.00–12.00 | −4.00–12.00 | ||
IMPQ | MV/SD | 77.86/8.09 | 73.73/16.07 | 57.00/23.24 | 69.41/19.00 | p < 0.03 |
MIN–MAX | 65.00 -| 90.00 | 40.00–96.00 | 0.00–90.00 | 0.00–96.00 | ||
IMPD | MV/SD | 73.54/21.88 | 71.44/15.78 | 64.58/19.57 | 69.60/18.22 | n.s. |
MIN–MAX | 29.60–100.00 | 35.20–88.00 | 33.8–98.60 | 29.60–100.00 | ||
BDOSE | MV/SD | 274.29/95.54 | 185.00/70.91 | 301.67/73.40 | 249.42/92.42 | p < 0.01 |
MIN-MAX | 170.00–400.00 | 60.00–300.00 | 200.00–400.00 | 60.00–400.00 | ||
BTSUI | MV/SD | 1.86/1.68 | 0.89/1.17 | 1.78/1.79 | 1.48/1.56 | n.s. |
MIN–MAX | 0.00–4.00 | 0.00–3.00 | 0.00–5.00 | 0.00–5.00 | ||
TTP (min) | MV/SD | 48.86/3.13 | 48.54/3.55 | 46.00/2.49 | 47.71/3.28 | n.s. |
MIN–MAX | 44.00–52.00 | 43.00–55.00 | 41.00–51.00 | 41.00–55.00 |
Parameter | RR | CR | DR | ALL | Significance-Level (p < 0.05) | |
---|---|---|---|---|---|---|
N = | 9 | 18 | 6 | 33 | ||
Female/male | 2/7 | 12/6 | 4/2 | 18/15 | p = 0.05 | |
AGE (years) | MV/SD | 60.0/11.32 | 55.27/14.09 | 67.17/9.79 | 58.72/13.15 | n.s. |
MIN–MAX | 44.87–76.57 | 28.62–81.44 | 56.1–82.22 | 28.62–82.22 | ||
AOS (years) | MV/SD | 47.56/17.63 | 45.94/15.72 | 52.5/8.41 | 47.57/15.03 | n.s. |
MIN–MAX | 13.18–64.93 | 15.89–72.89 | 41.75–67.30 | 13.18–72.89 | ||
DURS (months) | MV/SD | 88.2/112.8 | 44.8/76.08 | 73.8/120.96 | 61.2/95.88 | n.s. |
MIN–MAX | 8.04–323.64 | 1.2–338.76 | 6.00–343.44 | 1.2–343.44 | ||
DURT (months) | MV/SD | 74.76/23.28 | 44.8/21.24 | 93.6/36 | 76.32/25.92 | n.s. |
MIN–MAX | 51.6–110.4 | 48.0–124.8 | 45.6–142.8 | 45.6–142.8 | ||
IDOSE | MV/SD | 140.83/92.94 | 186.11/76.50 | 131.67/91.91 | 163.86/84.91 | n.s. |
MIN–MAX | 30.00–300.00 | 30.00–300.00 | 35.00–275.00 | 30.00–300.00 | ||
ADOSE | MV/SD | 215.0/130.0 | 286.4/89.53 | 249.17/137.86 | 260.15/111.6 | n.s. |
MIN–MAX | 35.00–400.00 | 100.00–500.00 | 80.00–400.00 | 35.00–500.00 | ||
INDOSE | MV/SD | 74.17/70.47 | 100.27/72.52 | 117.5/102.99 | 96.29/76.97 | n.s. |
MIN–MAX | 0.00–200.00 | −40.00–260.00 | 0.00–300.00 | −40.00– 300.00 | ||
ITSUI | MV/SD | 6.20/2.28 | 7.54/2.75 | 10.0/6.0 | 7.6/3.25 | n.s. |
MIN–MAX | 4.00–9.00 | 4.00–12.00 | 4.00–16.00 | 4.00–16.00 | ||
ATSUI | MV/SD | 4.00/2.12 | 3.77/3.06 | 2.67/1.15 | 3.96/2.99 | n.s. |
MIN–MAX | 2.00–7.00 | 0.00–12.00 | 2.00–4.00 | 0.00–12.00 | ||
IMPTSUI | MV/SD | 1.25/3.49 | 3.77/4,7 | 7.33/5.03 | 3.9/4.36 | 0.24; n.s. |
MIN–MAX | 1.00–2.00 | −4.00–12.00 | 2.00–12.00 | −4.00–12.00 | ||
IMPQ | MV/SD | 70.11/29.9 | 67.06/11.18 | 75.0/18.71 | 69.4/18.99 | n.s. |
MIN–MAX | 60.00–96.00 | 0.00–80.00 | 40.00–90.00 | 0.00–96.00 | ||
IMPD | MV/SD | 67.61 | 70.52/16.44 | 69.82/19.49 | 69.6/18.22 | n.s. |
MIN–MAX | 29.60–91.50 | 33.80–100.00 | 35.20–88.00 | −29.6–100.00 | ||
BDOSE | MV/SD | 218.57/106.53 | 246.79/88.1 | 257.50/117.86 | 249.42/92.42 | n.s. |
MIN-MAX | 60.00–400.00 | 100.00–400.00 | 130.00–400.00 | 60.00–400.00 | ||
BTSUI | MV/SD | 1.43/1.81 | 1.26/1.49 | 2.67/1.15 | 1.68/1.8 | n.s. |
MIN-MAX | 0.00–5.00 | 0.00–4.00 | 0.00–4.00 | 0.00–5.00 | ||
TTP (min) | MV/SD | 48.56/3.32 | 47.7/3.41 | 46.20/2.77 | 47.71/3.28 | n.s. |
MIN–MAX | 44.00–55.00 | 41.00–52.00 | 44.00–51.00 | 41.00–55.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hefter, H.; Brauns, R.; Ürer, B.; Rosenthal, D.; Albrecht, P.; Samadzadeh, S. No Secondary Treatment Failure during Incobotulinumtoxin—A Long-Term Treatment Demonstrated by the Drawing of Disease Severity. Toxins 2023, 15, 454. https://doi.org/10.3390/toxins15070454
Hefter H, Brauns R, Ürer B, Rosenthal D, Albrecht P, Samadzadeh S. No Secondary Treatment Failure during Incobotulinumtoxin—A Long-Term Treatment Demonstrated by the Drawing of Disease Severity. Toxins. 2023; 15(7):454. https://doi.org/10.3390/toxins15070454
Chicago/Turabian StyleHefter, Harald, Raphaela Brauns, Beyza Ürer, Dietmar Rosenthal, Philipp Albrecht, and Sara Samadzadeh. 2023. "No Secondary Treatment Failure during Incobotulinumtoxin—A Long-Term Treatment Demonstrated by the Drawing of Disease Severity" Toxins 15, no. 7: 454. https://doi.org/10.3390/toxins15070454
APA StyleHefter, H., Brauns, R., Ürer, B., Rosenthal, D., Albrecht, P., & Samadzadeh, S. (2023). No Secondary Treatment Failure during Incobotulinumtoxin—A Long-Term Treatment Demonstrated by the Drawing of Disease Severity. Toxins, 15(7), 454. https://doi.org/10.3390/toxins15070454