Production of AFB1 High-Specificity Monoclonal Antibody by Three-Stage Screening Combined with the De-Homologation of Antibodies and the Development of High-Throughput icELISA
Abstract
:1. Introduction
2. Results and Discussion
2.1. Antiserum Characterization
2.2. Effect of a Modified Limiting Dilution Method of Subclonal Screening on Antibody Positivity and Specificity
2.3. Evaluation of the Specificity of mAbs
2.4. Development and Condition Optimization of icELISA for AFB1
2.5. Recovery of the icCLEIA and Correlation between the icCLEIA and UPLC-MS/MS Analysis
3. Conclusions
4. Materials and Methods
4.1. Main Reagents and Consumables
4.2. Main Instruments
4.3. Animal Immunity and Cell Fusion
4.4. Hybridoma Cell Screening and Changes in Antibody Specificity in the Supernatant
4.5. Preparation and Evaluation of Monoclonal Antibodies
4.6. Optimization of Optimal Antigen–Antibody Combinations and icELISA Working Conditions
4.7. Method Establishment and Evaluation of Sample
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kurtzman, C.P.; Horn, B.W.; Hesseltine, C.W. Aspergillus nomius, a new aflatoxin-producing species related to Aspergillus flavus and Aspergillus tamarii. Antonie Van Leeuwenhoek 1987, 53, 147–158. [Google Scholar] [CrossRef] [PubMed]
- Richard, J.L. Some major mycotoxins and their mycotoxicoses—An overview. Int. J. Food. Microbiol. 2007, 119, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Squire, R.A. Ranking animal carcinogens: A proposed regulatory approach. Science 1981, 214, 877–880. [Google Scholar] [CrossRef] [PubMed]
- JECFA. Evaluation of certain food additives and contaminants. In Fifty-Seventh Report of the Joint FAO/WHO Expert Committee on Food Additives; World Health Organization: Geneva, Switzerland, 2001. [Google Scholar] [CrossRef]
- Vanegmond, H.; Schothorstr, C.; Jonker, M. Regulations relating to mycotoxins in food:perspectives in a global and European context. Anal. Bioanal. Chem. 2001, 389, 147–157. [Google Scholar] [CrossRef] [PubMed]
- Keller, N.P.; Turner, G.; Bennett, J.W. Fungal secondary metabolism—From biochemistry to genomics. Nat. Rev. Microbiol. 2005, 3, 937–947. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Duan, C.; Geng, X.; Li, S.; Ding, K.; Guan, Y. One step rapid dispersive liquid-liquid micro-extraction with in-situ derivatization for determination of aflatoxins in vegetable oils based on high performance liquid chromatography fluorescence detection. Food Chem. 2019, 287, 333–337. [Google Scholar] [CrossRef]
- Puntscher, H.; Kütt, M.-L.; Skrinjar, P.; Mikula, H.; Podlech, J.; Fröhlich, J.; Marko, D.; Warth, B. Tracking emerging mycotoxins in food: Development of an LC-MS/MS method for free and modified Alternaria toxins. Anal. Bioanal. Chem. 2018, 410, 4481–4494. [Google Scholar] [CrossRef]
- Lai, W.; Wei, Q.; Xu, M.; Zhuang, J.; Tang, D. Enzyme-controlled dissolution of MnO2 nanoflakes with enzyme cascade amplification for colorimetric immunoassay. Biosens. Bioelectron. 2017, 89, 645–651. [Google Scholar] [CrossRef]
- Zhong, T.; Li, S.S.; Li, X.; Ji, Y.; Mo, Y.; Chen, L.; Zhang, Z.Q.; Wu, H.J.; Li, M.; Luo, Q. A label-free electrochemical aptasensor based on AuNPs-loaded zeolitic imidazolate framework-8 for sensitive determination of aflatoxin B1. Food Chem. 2022, 384, 132495. [Google Scholar] [CrossRef]
- Xie, G.; Zhu, M.; Liu, Z.; Zhang, B.; Shi, M.; Wang, S. Development and evaluation of the magneticparticle-based chemiluminescence immunoassay for rapid and quantitative detection of aflatoxin B1 in foodstuff. Food Agric. Immunol. 2018, 29, 564–576. [Google Scholar] [CrossRef]
- Wang, Q.; Xiong, C.; Li, J.; Deng, Q.; Zhang, X.; Wang, S.; Chen, M.M. High-performance electrochemiluminescence sensors based on ultra-stable perovskite quantum dots@ ZIF-8 composites for aflatoxin B1 monitoring in corn samples. Food Chem. 2023, 410, 135325. [Google Scholar] [CrossRef] [PubMed]
- Bhardwaj, H.; Sumana, G.; Marquette, C.A. A label-free ultrasensitive microfluidic surface Plasmon resonance biosensor for Aflatoxin B1 detection using nanoparticles integrated gold chip. Food Chem. 2020, 307, 125530. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Li, C.; Ma, X.; Wang, Z.; Zhang, Y. A surface-enhanced Raman scattering aptasensor for ratiometric detection of aflatoxin B1 based on graphene oxide-Au@ Ag core-shell nanoparticles complex. Food Control. 2022, 134, 108748. [Google Scholar] [CrossRef]
- Babu, D.; Muriana, P.M. Immunomagnetic bead-based recovery and real time quantitative PCR (RT iq-PCR) for sensitive quantification of aflatoxin B1. J. Microbiol. Meth. 2011, 86, 188–194. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Yang, C.; Lu, W.; Chu, Z.; Zhang, J.; Wang, Q. Ultrasensitive immuno-PCR for detecting aflatoxin B1 based on magnetic separation and barcode DNA. Food Control. 2022, 138, 109028. [Google Scholar] [CrossRef]
- Jia, M.; Liao, X.; Fang, L.; Jia, B.Y.; Liu, M.; Li, D.H.; Zhou, L.D.; Kong, W.J. Recent advances on immunosensors for mycotoxins in foods and other commodities. Trac-trend. Anal. Chem. 2021, 136, 116193. [Google Scholar] [CrossRef]
- Iqbal, S.Z. Mycotoxins in food, recent development in food analysis and future challenges: A review. Curr. Opin. Food Sci. 2021, 42, 237–247. [Google Scholar] [CrossRef]
- Turner, N.W.; Subrahmanyam, S.; Piletsky, S.A. Analytical methods for determination of mycotoxins: A review. Anal. Chim. Acta 2009, 632, 168–180. [Google Scholar] [CrossRef]
- Köhler, G.; Milstein, C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 1975, 256, 495–497. [Google Scholar] [CrossRef]
- Zhang, D.; Li, P.; Zhang, Q.; Zhang, W.; Huang, Y.; Ding, X.; Jiang, J. Production of ultrasensitive generic monoclonal antibodies against major aflatoxins using a modified two-step screening procedure. Anal. Chim. Acta 2009, 636, 63–69. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, M.; Cui, Y.; Hong, X.; Du, D. Using of Tyramine Signal Amplification to Improve the Sensitivity of ELISA for Aflatoxin B1 in Edible Oil Samples. Food. Anal. Methods 2018, 11, 2553–2560. [Google Scholar] [CrossRef]
- Zhang, C. Hybridoma technology for the generation of monoclonal antibodies. Antib. Methods Protoc. 2012, 901, 117–135. [Google Scholar] [CrossRef]
- Berzofsky, J.A.; Schechter, A.N. The concepts of crossreactivity and specificity in immunology. Mol. Immunol. 1981, 18, 751–763. [Google Scholar] [CrossRef] [PubMed]
- Jacob, J.; Kelsoe, G.; Rajewsky, K.; Weiss, U. Intraclonal generation of antibody mutants in germinal centres. Nature 1991, 354, 389–392. [Google Scholar] [CrossRef] [PubMed]
- Kong, D.; Liu, L.; Song, S.; Suryoprabowo, S.; Li, A.; Kuang, H.; Wang, L.; Xu, C. A gold nanoparticle-based semi-quantitative and quantitative ultrasensitive paper sensor for the detection of twenty mycotoxins. Nanoscale 2016, 8, 5245–5253. [Google Scholar] [CrossRef] [PubMed]
- Cervino, C.; Weber, E.; Knopp, D.; Niessner, R. Comparison of hybridoma screening methods for the efficient detection of high-affinity hapten-specific monoclonal antibodies. J. Immunol. Methods 2008, 329, 184–193. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.W.; Lu, C.C.; Liu, B.H.; Yu, F.Y. Development of novel monoclonal antibodies-based ultrasensitive enzyme-linked immunosorbent assay and rapid immunochromatographic strip for aflatoxin B1 detection. Food Control 2016, 59, 700–707. [Google Scholar] [CrossRef]
- Kolosova, A.Y.; Shim, W.B.; Yang, Z.Y.; Eremin, S.A.; Chung, D.H. Direct competitive ELISA based on a monoclonal antibody for detection of aflatoxin B1. Stabilization of ELISA kit components and application to grain samples. Anal. Bioanal. Chem. 2006, 384, 286–294. [Google Scholar] [CrossRef]
- Oplatowska-Stachowiak, M.; Sajic, N.; Xu, Y.; Haughey, S.A.; Mooney, M.H.; Gong, Y.Y.; Verheijen, R.; Elliott, C.T. Fast and sensitive aflatoxin B1 and total aflatoxins ELISAs for analysis of peanuts, maize and feed ingredients. Food Control 2016, 63, 239–245. [Google Scholar] [CrossRef]
- Sun, Q.; Zhu, Z.; Deng, Q.M.; Liu, J.M.; Shi, G.Q. A “green” method to detect aflatoxin B1 residue in plant oil based on a colloidal gold immunochromatographic assay. Anal. Methods 2016, 8, 564–569. [Google Scholar] [CrossRef]
- Sun, X.; Zhao, X.; Tang, J.; Gu, X.; Zhou, J.; Chu, F.S. Development of an immunochromatographic assay for detection of aflatoxin B1 in foods. Food Control. 2006, 17, 256–262. [Google Scholar] [CrossRef]
Competitive Analogues | IC50 (ng/mL) | Cross-Reactivity (%) |
---|---|---|
AFB1 | 0.3162 | 100 |
AFB2 | 182.60 | 0.34 |
AFM1 | <182.60 | <0.34 |
AFG1 | <182.60 | <0.34 |
AFG2 | <182.60 | <0.34 |
Positive Strains | Measure | Monoclonal Antibody Type | IC50 (ng/mL) | CR (%) | Time | Reference | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AFB1 | AFB2 | AFG1 | AFG2 | AFM1 | AFB1 | AFB2 | AFG1 | AFG2 | AFM1 | |||||
7A1 | icELISA | Specificity | 0.04 | 0.15 | 0.40 | 0.45 | 0.40 | 100 | 26.7 | 10 | 8.9 | 10 | 2016 | [26] |
4D12 | Generality | 0.02 | 0.10 | 0.10 | 0.09 | 0.10 | 100 | 20 | 20 | 22.2 | 20 | |||
357 | icELISA | Specificity | 0.003 | 0.007 | 0.0034 | 0.016 | a | 100 | 42 | 88 | 19 | a | 2008 | [27] |
9c7c11 | cdELISA | Specificity | 0.045 | 0.057 | 2.530 | 2.120 | a | 100 | 78.9 | 1.78 | 21.2 | a | 2016 | [28] |
34 | cdELISA | Specificity | 0.62 | 12.4 | 2 | 25.8 | a | 100 | 5 | 31 | 2.4 | a | 2006 | [29] |
1NP-D | cdELISA | Specificity | 0.037 | 0.123 | 0.063 | 0.463 | 0.925 | 100 | 30 | 59 | 8 | 4 | 2016 | [30] |
2A4 | icELISA | Specificity | 0.12 | 1.3 | 0.8 | 10.3 | 3.1 | 100 | 9.2 | 15 | 1.2 | 3.9 | 2016 | [31] |
5D3 | icELISA | Specificity | 2 | 280 | 300 | 1050 | 86 | 100 | 0.71 | 0.67 | 0.19 | 2.33 | 2006 | [32] |
1C11 | icELISA | Generality | 0.0012 | 0.0013 | 0.0022 | 0.018 | 0.013 | 100 | 92.3 | 54.5 | 6.7 | 9.0 | 2009 | [21] |
4F12 | Specificity | 0.086 | 0.095 | 0.101 | 0.416 | 0.201 | 100 | 90 | 84 | 20.7 | 42.8 | |||
ZFG8 | icELISA | Specificity | 0.34 | 182.6 | >182.6 | >182 | >182 | 100 | 0.34 | <0.34 | <0.34 | <0.34 | 2022 | b |
A | B | C | |
---|---|---|---|
I | 1:1000 a, 0.3256 b | 1:1000, 0.3383 | 1:1000, 0.3194 |
II | 1:2000, 5.6755 | 1:4000, 1.5024 | 1:4000, 1.5173 |
III | 1:1000, 1.2563 | 1:1000, 1.2081 | 1:1000, 1.1535 |
Sample: Corn Flour | Spiked (μg/kg) | ELISA Measured ± SD | Recovery (%) | CV (%) | UPLC-MS/MS Measured ± SD | Recovery (%) | CV (%) |
---|---|---|---|---|---|---|---|
AFB1 | 0.5 | 0.451 ± 0.042 | 90 | 9.3 | 0.475 ± 0.031 | 94 | 6.6 |
5 | 4.636 ± 0.271 | 92 | 5.8 | 4.893 ± 0.124 | 97 | 2.5 | |
10 | 8.453 ± 0.114 | 84 | 1.3 | 9.626 ± 0.126 | 96 | 1.3 | |
AFB2 | 0.5 | 0.146 ± 0.022 | 29 | 15.1 | 0.488 ± 0.039 | 96 | 8.1 |
5 | 1.551 ± 0.063 | 31 | 4.1 | 5.039 ± 0.127 | 100 | 2.6 | |
10 | 2.458 ± 0.071 | 24 | 2.8 | 9.514 ± 0.115 | 95 | 1.2 | |
AFG1 | 0.5 | 0.012 ± 0.002 | 2 | 16.6 | 0.413 ± 0.035 | 82 | 8.5 |
5 | 0.112 ± 0.006 | 2 | 5.3 | 4.911 ± 0.141 | 98 | 2.8 | |
10 | 0.265 ± 0.012 | 2 | 4.5 | 9.217 ± 0.144 | 92 | 1.5 | |
AFG2 | 0.5 | 0.011 ± 0.001 | 2 | 9.0 | 0.526 ± 0.019 | 104 | 3.9 |
5 | 0.133 ± 0.007 | 2 | 5.2 | 4.919 ± 0.232 | 98 | 4.7 | |
10 | 0.228 ± 0.017 | 2 | 7.4 | 9.655 ± 0.174 | 96 | 1.8 | |
AFM1 | 0.5 | 0.014 ± 0.002 | 2 | 14.2 | 0.453 ± 0.017 | 90 | 3.7 |
5 | 0.116 ± 0.013 | 2 | 11.2 | 4.832 ± 0.066 | 96 | 1.3 | |
10 | 0.172 ± 0.004 | 1 | 2.3 | 9.215 ± 0.184 | 92 | 2.0 | |
Sample: Wheat meal | Spiked (μg/kg) | ELISA measured ± SD | Recovery (%) | CV (%) | UPLC-MS/MS measured ± SD | Recovery (%) | CV (%) |
AFB1 | 0.5 | 0.535 ± 0.012 | 107 | 1.8 | 0.498 ± 0.023 | 98 | 2.3 |
5 | 4.782 ± 0.026 | 95 | 0.4 | 4.684 ± 0.021 | 93 | 2.2 | |
10 | 9.327 ± 0.011 | 93 | 0.1 | 9.583 ± 0.131 | 95 | 13.6 | |
AFB2 | 0.5 | 0.043 ± 0.005 | 8 | 11.6 | 0.562 ± 0.091 | 100 | 9.1 |
5 | 0.564 ± 0.004 | 11 | 0.7 | 5.674 ± 0.087 | 113 | 7.6 | |
10 | 1.388 ± 0.008 | 13 | 0.5 | 9.598 ± 0.012 | 95 | 1.2 | |
AFG1 | 0.5 | 0.017 ± 0.002 | 3 | 11.7 | 0.483 ± 0.031 | 96 | 3.2 |
5 | 0.092 ± 0.012 | 1 | 13.0 | 4.691 ± 0.024 | 93 | 2.5 | |
10 | 0.288 ± 0.004 | 2 | 1.3 | 9.567 ± 0.141 | 95 | 14.7 | |
AFG2 | 0.5 | 0.013 ± 0.001 | 2 | 7.6 | 0.515 ± 0.016 | 102 | 3.1 |
5 | 0.163 ± 0.013 | 3 | 7.9 | 4.669 ± 0.011 | 93 | 1.1 | |
10 | 0.193 ± 0.011 | 1 | 5.7 | 9.632 ± 0.021 | 96 | 2.1 | |
AFM1 | 0.5 | 0.018 ± 0.002 | 3 | 11.1 | 0.529 ± 0.012 | 104 | 2.3 |
5 | 0.212 ± 0.013 | 4 | 6.1 | 4.703 ± 0.011 | 94 | 1.1 | |
10 | 0.537 ± 0.012 | 5 | 2.2 | 9.572 ± 0.123 | 95 | 1.2 |
Immunization Sequence | Interval (Day) | Immune Dose (μg/one) | Part/Method | Type of Adjuvant |
---|---|---|---|---|
I | 0 | 40 | Dorsal multisite injection | FCA |
II | 28 | 40 | Same as above | FIA |
III | 49 | 40 | Same as above | FIA |
IV | 70 | 40 | Same as above | FIA |
V | 91 | 40 | Same as above | FIA |
Shock immunization | 3 days before cell fusion | 30 | intraperitoneal injection | No adjuvant |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pang, C.; Liu, Q.; Chen, L.; Yuan, B.; Zha, C.; Nie, K.; Xu, H.; Ren, K.; Yu, C.; Guo, Y.; et al. Production of AFB1 High-Specificity Monoclonal Antibody by Three-Stage Screening Combined with the De-Homologation of Antibodies and the Development of High-Throughput icELISA. Toxins 2024, 16, 11. https://doi.org/10.3390/toxins16010011
Pang C, Liu Q, Chen L, Yuan B, Zha C, Nie K, Xu H, Ren K, Yu C, Guo Y, et al. Production of AFB1 High-Specificity Monoclonal Antibody by Three-Stage Screening Combined with the De-Homologation of Antibodies and the Development of High-Throughput icELISA. Toxins. 2024; 16(1):11. https://doi.org/10.3390/toxins16010011
Chicago/Turabian StylePang, Chengchen, Qiang Liu, Lin Chen, Bei Yuan, Chuanyun Zha, Kunying Nie, Haitao Xu, Keyun Ren, Chunlei Yu, Yemin Guo, and et al. 2024. "Production of AFB1 High-Specificity Monoclonal Antibody by Three-Stage Screening Combined with the De-Homologation of Antibodies and the Development of High-Throughput icELISA" Toxins 16, no. 1: 11. https://doi.org/10.3390/toxins16010011
APA StylePang, C., Liu, Q., Chen, L., Yuan, B., Zha, C., Nie, K., Xu, H., Ren, K., Yu, C., Guo, Y., & Yang, Q. (2024). Production of AFB1 High-Specificity Monoclonal Antibody by Three-Stage Screening Combined with the De-Homologation of Antibodies and the Development of High-Throughput icELISA. Toxins, 16(1), 11. https://doi.org/10.3390/toxins16010011