Snake Venom: A Promising Source of Neurotoxins Targeting Voltage-Gated Potassium Channels
Abstract
:1. Introduction
2. Voltage-Gated Potassium (Kv) Channels
3. Snake Venom
3.1. Polypeptides of the BPTI-Kunitz Type
3.1.1. Dendrotoxins
The Molecular Structures of Dendrotoxins
The Pharmacology of Dendrotoxins
The Importance of Dendrotoxins in Targeting Neuronal Kv1 Channels
3.1.2. BF9
3.2. Phospholipase A2 Neurotoxins
3.2.1. Crotamine
The Molecular Structure of Crotamine
Crotamine: Interesting Molecule with Various Pharmacological Potentials
3.2.2. β-Bungarotoxin
The Molecular Structure of β-Bungarotoxin
The Pharmacology of Presynaptic Inhibition of Neurotransmission by β-Bungarotoxin
3.2.3. Natratoxin
The Molecular Structure of Natratoxin
Natrotoxin Is Targeting the Fast-Inactivation Kv Channels
3.2.4. MiDCA1
3.2.5. Taipoxin, Notexin, and Crotoxin
3.3. Cysteine-Rich Secretory Proteins (CRISPs)
3.3.1. BaltCRP
3.3.2. Natrin
3.3.3. Stecrisp
3.4. Snake Venom Serine Proteases (SVSPs)
Collinein-1, Gyroxin_B1.3, and BjSP
3.5. Three-Finger Toxins
Cardiotoxin-I
3.6. Crotalphine: A Peptide Agonist for Pain Management
4. Snake Venom Neurotoxins as Therapeutics
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Auerbach, P.S. Venomous and Poisonous Animals: A Handbook for Biologists, Toxicologists and Toxinologists, Physicians and Pharmacists. Wilderness Environ. Med. 2003, 14, 281. [Google Scholar] [CrossRef]
- Casewell, N.R.; Wüster, W.; Vonk, F.J.; Harrison, R.A.; Fry, B.G. Complex Cocktails: The Evolutionary Novelty of Venoms. Trends Ecol. Evol. 2013, 28, 219–229. [Google Scholar] [CrossRef] [PubMed]
- Chan, Y.S.; Cheung, R.C.F.; Xia, L.; Wong, J.H.; Ng, T.B.; Chan, W.Y. Snake Venom Toxins: Toxicity and Medicinal Applications. Appl. Microbiol. Biotechnol. 2016, 100, 6165–6181. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez, J.M.; Calvete, J.J.; Habib, A.G.; Harrison, R.A.; Williams, D.J.; Warrell, D.A. Snakebite Envenoming. Nat. Rev. Dis. Primers 2017, 3, 17063. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez, J.M.; Williams, D.; Fan, H.W.; Warrell, D.A. Snakebite Envenoming from a Global Perspective: Towards an Integrated Approach. Toxicon 2010, 56, 1223–1235. [Google Scholar] [CrossRef] [PubMed]
- Teodoro, A.; Gonçalves, F.J.M.; Oliveira, H.; Marques, S. Venom of Viperidae: A Perspective of Its Antibacterial and AntitumorPotential. Curr. Drug Targets 2022, 23, 126–144. [Google Scholar] [CrossRef] [PubMed]
- Diniz-Sousa, R.; da S. Caldeira, C.A.; Pereira, S.S.; Da Silva, S.L.; Fernandes, P.A.; Teixeira, L.M.C.; Zuliani, J.P.; Soares, A.M. Therapeutic applications of snake venoms: An invaluable potential of new drug candidates. Int. J. Biol. Macromol. 2023, 238, 124357. [Google Scholar] [CrossRef]
- Offor, B.C.; Piater, L.A. Snake Venom Toxins: Potential Anticancer Therapeutics. J. Appl. Toxicol. 2023. early view. [Google Scholar] [CrossRef]
- Oliveira, A.L.; Viegas, M.F.; da Silva, S.L.; Soares, A.M.; Ramos, M.J.; Fernandes, P.A. The Chemistry of Snake Venom and Its Medicinal Potential. Nat. Rev. Chem. 2022, 6, 451–469. [Google Scholar] [CrossRef]
- Teixeira, S.C.; Da Silva, M.S.; Gomes, A.A.S.; Moretti, N.S.; Lopes, D.S.; Ferro, E.A.V.; Rodrigues, V.D.M. Panacea within a Pandora’s Box: The Antiparasitic Effects of Phospholipases A2 (PLA2s) from Snake Venoms. Trends Parasitol. 2022, 38, 80–94. [Google Scholar] [CrossRef]
- Almeida, J.R.; Palacios, A.L.V.; Patiño, R.S.P.; Mendes, B.; Teixeira, C.A.S.; Gomes, P.; Da Silva, S.L. Harnessing Snake Venom Phospholipases A2 to Novel Approaches for Overcoming Antibiotic Resistance. Drug Dev. Res. 2019, 80, 68–85. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Huang, J.; Lin, Y. Snake Venoms in Cancer Therapy: Past, Present and Future. Toxins 2018, 10, 346. [Google Scholar] [CrossRef] [PubMed]
- Zhou, K.; Luo, W.; Liu, T.; Ni, Y.; Qin, Z. Neurotoxins Acting at Synaptic Sites: A Brief Review on Mechanisms and Clinical Applications. Toxins 2022, 15, 18. [Google Scholar] [CrossRef] [PubMed]
- Gutman, G.A.; Chandy, K.G.; Grissmer, S.; Lazdunski, M.; Mckinnon, D.; Pardo, L.A.; Robertson, G.A.; Rudy, B.; Sanguinetti, M.C.; Stühmer, W.; et al. International Union of Pharmacology. LIII. Nomenclature and Molecular Relationships of Voltage-Gated Potassium Channels. Pharmacol. Rev. 2005, 57, 473–508. [Google Scholar] [CrossRef]
- Alexander, S.P.; Mathie, A.; Peters, J.A.; Veale, E.L.; Striessnig, J.; Kelly, E.; Armstrong, J.F.; Faccenda, E.; Harding, S.D.; Pawson, A.J.; et al. The Concise Guide to Pharmacology 2021/22: Ion Channels. Br. J. Pharmacol. 2021, 178, S157–S245. [Google Scholar] [CrossRef]
- Yellen, G. The Moving Parts of Voltage-Gated Ion Channels. Quart. Rev. Biophys. 1998, 31, 239–295. [Google Scholar] [CrossRef]
- Armstrong, C.M. Voltage-Gated K Channels. Sci. Signal. 2003, 2003, re10. [Google Scholar] [CrossRef]
- Lewis, R.J.; Garcia, M.L. Therapeutic Potential of Venom Peptides. Nat. Rev. Drug Discov. 2003, 2, 790–802. [Google Scholar] [CrossRef]
- Zelanis, A.; Keiji Tashima, A. Unraveling Snake Venom Complexity with ‘Omics’ Approaches: Challenges and Perspectives. Toxicon 2014, 87, 131–134. [Google Scholar] [CrossRef]
- Finol-Urdaneta, R.K.; Belovanovic, A.; Micic-Vicovac, M.; Kinsella, G.K.; McArthur, J.R.; Al-Sabi, A. Marine Toxins Targeting Kv1 Channels: Pharmacological Tools and Therapeutic Scaffolds. Mar. Drugs 2020, 18, 173. [Google Scholar] [CrossRef]
- Gilquin, B.; Bourgoin, M.; Ménez, R.; Le Du, M.-H.; Servent, D.; Zinn-Justin, S.; Ménez, A. Motions and Structural Variability within Toxins: Implication for Their Use as Scaffolds for Protein Engineering. Protein Sci. 2003, 12, 266–277. [Google Scholar] [CrossRef] [PubMed]
- Mouhat, S.; Jouirou, B.; Mosbah, A.; De Waard, M.; Sabatier, J.-M. Diversity of Folds in Animal Toxins Acting on Ion Channels. Biochem. J. 2004, 378, 717–726. [Google Scholar] [CrossRef] [PubMed]
- Keynes, R.D. The Ionic Channels in Excitable Membranes. In Novartis Foundation Symposia; Wolstenholme, G.E.W., Fitzsimons, D.W., Eds.; Wiley: Hoboken, NJ, USA, 1975; Volume 31, pp. 191–203. ISBN 978-0-470-66323-3. [Google Scholar]
- Rudy, B. Diversity and Ubiquity of K Channels. Neuroscience 1988, 25, 729–749. [Google Scholar] [CrossRef] [PubMed]
- Vacher, H.; Mohapatra, D.P.; Trimmer, J.S. Localization and Targeting of Voltage-Dependent Ion Channels in Mammalian Central Neurons. Physiol. Rev. 2008, 88, 1407–1447. [Google Scholar] [CrossRef] [PubMed]
- Barry, D.M.; Trimmer, J.S.; Merlie, J.P.; Nerbonne, J.M. Differential Expression of Voltage-Gated K+ Channel Subunits in Adult Rat Heart: Relation to Functional K+ Channels? Circ. Res. 1995, 77, 361–369. [Google Scholar] [CrossRef] [PubMed]
- Kalman, K.; Nguyen, A.; Tseng-Crank, J.; Dukes, I.D.; Chandy, G.; Hustad, C.M.; Copeland, N.G.; Jenkins, N.A.; Mohrenweiser, H.; Brandriff, B.; et al. Genomic Organization, Chromosomal Localization, Tissue Distribution, and Biophysical Characterization of a Novel Mammalian Shaker-Related Voltage-Gated Potassium Channel, Kv1.7. J. Biol. Chem. 1998, 273, 5851–5857. [Google Scholar] [CrossRef] [PubMed]
- Matsubara, H.; Liman, E.R.; Hess, P.; Koren, G. Pretranslational Mechanisms Determine the Type of Potassium Channels Expressed in the Rat Skeletal and Cardiac Muscles. J. Biol. Chem. 1991, 266, 13324–13328. [Google Scholar] [CrossRef] [PubMed]
- Tan, Y.P.; Llano, I. Modulation by K+ Channels of Action Potential-evoked Intracellular Ca2+ Concentration Rises in Rat Cerebellar Basket Cell Axons. J. Physiol. 1999, 520, 65–78. [Google Scholar] [CrossRef]
- Wulff, H.; Castle, N.A.; Pardo, L.A. Voltage-Gated Potassium Channels as Therapeutic Targets. Nat. Rev. Drug Discov. 2009, 8, 982–1001. [Google Scholar] [CrossRef]
- Long, S.B.; Tao, X.; Campbell, E.B.; MacKinnon, R. Atomic Structure of a Voltage-Dependent K+ Channel in a Lipid Membrane-like Environment. Nature 2007, 450, 376–382. [Google Scholar] [CrossRef]
- Long, S.B.; Campbell, E.B.; MacKinnon, R. Crystal Structure of a Mammalian Voltage-Dependent Shaker Family K+ Channel. Science 2005, 309, 897–903. [Google Scholar] [CrossRef] [PubMed]
- Kurata, H.T.; Fedida, D. A Structural Interpretation of Voltage-Gated Potassium Channel Inactivation. Prog. Biophys. Mol. Biol. 2006, 92, 185–208. [Google Scholar] [CrossRef] [PubMed]
- Pau, V.; Zhou, Y.; Ramu, Y.; Xu, Y.; Lu, Z. Crystal Structure of an Inactivated Mutant Mammalian Voltage-Gated K+ Channel. Nat. Struct. Mol. Biol. 2017, 24, 857–865. [Google Scholar] [CrossRef] [PubMed]
- Valiyaveetil, F.I. A Glimpse into the C-Type-Inactivated State for a Potassium Channel. Nat. Struct. Mol. Biol. 2017, 24, 787–788. [Google Scholar] [CrossRef] [PubMed]
- Aldrich, R.W. Fifty Years of Inactivation. Nature 2001, 411, 643–644. [Google Scholar] [CrossRef]
- Fan, C.; Sukomon, N.; Flood, E.; Rheinberger, J.; Allen, T.W.; Nimigean, C.M. Ball-and-Chain Inactivation in a Calcium-Gated Potassium Channel. Nature 2020, 580, 288–293. [Google Scholar] [CrossRef]
- Matthies, D.; Bae, C.; Toombes, G.E.; Fox, T.; Bartesaghi, A.; Subramaniam, S.; Swartz, K.J. Single-Particle Cryo-EM Structure of a Voltage-Activated Potassium Channel in Lipid Nanodiscs. eLife 2018, 7, e37558. [Google Scholar] [CrossRef]
- Rettig, J.; Heinemann, S.H.; Wunder, F.; Lorra, C.; Parcej, D.N.; Oliver Dolly, J.; Pongs, O. Inactivation Properties of Voltage-Gated K+ Channels Altered by Presence of β-Subunit. Nature 1994, 369, 289–294. [Google Scholar] [CrossRef]
- Rhodes, K.J.; Keilbaugh, S.A.; Barrezueta, N.X.; Lopez, K.L.; Trimmer, J.S. Association and Colocalization of K+ Channel Alpha- and Beta-Subunit Polypeptides in Rat Brain. J. Neurosci. 1995, 15, 5360–5371. [Google Scholar] [CrossRef]
- Isacoff, E.Y.; Jan, Y.N.; Jan, L.Y. Evidence for the Formation of Heteromultimeric Potassium Channels in Xenopus Oocytes. Nature 1990, 345, 530–534. [Google Scholar] [CrossRef]
- Koch, R.O.; Wanner, S.G.; Koschak, A.; Hanner, M.; Schwarzer, C.; Kaczorowski, G.J.; Slaughter, R.S.; Garcia, M.L.; Knaus, H.-G. Complex Subunit Assembly of Neuronal Voltage-Gated K+ Channels. J. Biol. Chem. 1997, 272, 27577–27581. [Google Scholar] [CrossRef] [PubMed]
- Shamotienko, O.G.; Parcej, D.N.; Dolly, J.O. Subunit Combinations Defined for K+ Channel Kv1 Subtypes in Synaptic Membranes from Bovine Brain. Biochemistry 1997, 36, 8195–8201. [Google Scholar] [CrossRef] [PubMed]
- Bieber, A.L. Metal and Nonprotein Constituents in Snake Venoms. In Snake Venoms; Lee, C.-Y., Ed.; Handbook of Experimental Pharmacology; Springer: Berlin/Heidelberg, Germany, 1979; Volume 52, pp. 295–306. ISBN 978-3-642-66915-6. [Google Scholar]
- McCauley, T.G.; Hamaguchi, N.; Stanton, M. Aptamer-Based Biosensor Arrays for Detection and Quantification of Biological Macromolecules. Anal. Biochem. 2003, 319, 244–250. [Google Scholar] [CrossRef] [PubMed]
- Mehraban, F.; Haines, A.; Dolly, J. Monoclonal and Polyclonal Antibodies against Dendrotoxin: Their Effects on Its Convulsive Activity and Interaction with Neuronal Acceptors. Neurochem. Int. 1986, 9, 11–22. [Google Scholar] [CrossRef] [PubMed]
- Benishin, C.G.; Sorensen, R.G.; Brown, W.E.; Krueger, B.K.; Blaustein, M.P. Four Polypeptide Components of Green Mamba Venom Selectively Block Certain Potassium Channels in Rat Brain Synaptosomes. Mol. Pharmacol. 1988, 34, 152–159. [Google Scholar]
- Black, A.R.; Donegan, C.M.; Denny, B.J.; Dolly, J.O. Solubilization and Physical Characterization of Acceptors for Dendrotoxin and Beta-Bungarotoxin from Synaptic Membranes of Rat Brain. Biochemistry 1988, 27, 6814–6820. [Google Scholar] [CrossRef]
- Rehm, H.; Lazdunski, M. Purification and Subunit Structure of a Putative K+-Channel Protein Identified by Its Binding Properties for Dendrotoxin I. Proc. Natl. Acad. Sci. USA 1988, 85, 4919–4923. [Google Scholar] [CrossRef]
- Hopkins, W.F.; Miller, J.L.; Miljanich, G.P. Voltage-Gated Potassium Channel Inhibitors. Curr. Pharm. Des. 1996, 2, 389–396. [Google Scholar] [CrossRef]
- Tytgat, J.; Vandenberghe, I.; Ulens, C.; Van Beeumen, J. New Polypeptide Components Purified from Mamba Venom. FEBS Lett. 2001, 491, 217–221. [Google Scholar] [CrossRef]
- Dolly, J.O.; Parcej, D.N. Molecular Properties of Voltage-Gated K+ Channels. J. Bioenerg. Biomembr. 1996, 28, 231–253. [Google Scholar] [CrossRef]
- Halliwell, J.V.; Othman, I.B.; Pelchen-Matthews, A.; Dolly, J.O. Central Action of Dendrotoxin: Selective Reduction of a Transient K Conductance in Hippocampus and Binding to Localized Acceptors. Proc. Natl. Acad. Sci. USA 1986, 83, 493–497. [Google Scholar] [CrossRef] [PubMed]
- Harvey, A.L. Recent Studies on Dendrotoxins and Potassium Ion Channels. Gen. Pharmacol. Vasc. Syst. 1997, 28, 7–12. [Google Scholar] [CrossRef] [PubMed]
- Schweitz, H.; Moinier, D. Mamba toxins. Perspect. Drug Discov. Des. 1999, 15, 83–110. [Google Scholar] [CrossRef]
- Katoh, E.; Nishio, H.; Inui, T.; Nishiuchi, Y.; Kimura, T.; Sakakibara, S.; Yamazaki, T. Structural Basis for the Biological Activity of Dendrotoxin-I, a Potent Potassium Channel Blocker. Biopolymers 2000, 54, 44–57. [Google Scholar] [CrossRef]
- Grissmer, S.; Nguyen, A.N.; Aiyar, J.; Hanson, D.C.; Mather, R.J.; Gutman, G.A.; Karmilowicz, M.J.; Auperin, D.D.; Chandy, K.G. Pharmacological Characterization of Five Cloned Voltage-Gated K+ Channels, Types Kv1.1, 1.2, 1.3, 1.5, and 3.1, Stably Expressed in Mammalian Cell Lines. Mol. Pharmacol. 1994, 45, 1227–1234. [Google Scholar] [PubMed]
- Grupe, A.; Schröter, K.H.; Ruppersberg, J.P.; Stocker, M.; Drewes, T.; Beckh, S.; Pongs, O. Cloning and Expression of a Human Voltage-Gated Potassium Channel. A Novel Member of the RCK Potassium Channel Family. EMBO J. 1990, 9, 1749–1756. [Google Scholar] [CrossRef]
- Imredy, J.P.; Chen, C.; MacKinnon, R. A Snake Toxin Inhibitor of Inward Rectifier Potassium Channel ROMK1. Biochemistry 1998, 37, 14867–14874. [Google Scholar] [CrossRef]
- Smith, L.A.; Reid, P.F.; Wang, F.C.; Parcej, D.N.; Schmidt, J.J.; Olson, M.A.; Dolly, J.O. Site-Directed Mutagenesis of Dendrotoxin K Reveals Amino Acids Critical for Its Interaction with Neuronal K+ Channels. Biochemistry 1997, 36, 7690–7696. [Google Scholar] [CrossRef]
- Skarżyński, T. Crystal Structure of α-Dendrotoxin from the Green Mamba Venom and Its Comparison with the Structure of Bovine Pancreatic Trypsin Inhibitor. J. Mol. Biol. 1992, 224, 671–683. [Google Scholar] [CrossRef]
- Lancelin, J.-M.; Foray, M.-F.; Poncin, M.; Hollecker, M.; Marion, D. Proteinase Inhibitor Homologues as Potassium Channel Blockers. Nat. Struct. Mol. Biol. 1994, 1, 246–250. [Google Scholar] [CrossRef]
- Berndt, K.D.; Güntert, P.; Wüthrich, K. Nuclear Magnetic Resonance Solution Structure of Dendrotoxin K from the Venom of Dendroaspis Polylepis Polylepis. J. Mol. Biol. 1993, 234, 735–750. [Google Scholar] [CrossRef] [PubMed]
- Bidard, J.-N.; Mourre, C.; Gandolfo, G.; Schweitz, H.; Widmann, C.; Gottesmann, C.; Lazdunski, M. Analogies and Differences in the Mode of Action and Properties of Binding Sites (Localization and Mutual Interactions) of Two K+ Channel Toxins, MCD Peptide and Dendrotoxin I. Brain Res. 1989, 495, 45–57. [Google Scholar] [CrossRef] [PubMed]
- Richards, D.A.; Morrone, L.A.; Bagetta, G.; Bowery, N.G. Effects of α-Dendrotoxin and Dendrotoxin K on Extracellular Excitatory Amino Acids and on Electroencephalograph Spectral Power in the Hippocampus of Anaesthetised Rats. Neurosci. Lett. 2000, 293, 183–186. [Google Scholar] [CrossRef] [PubMed]
- Hall, A.; Stow, J.; Sorensen, R.; Dolly, J.O.; Owen, D. Blockade by Dendrotoxin Homologues of Voltage-Dependent K+ Currents in Cultured Sensory Neurones from Neonatal Rats. Br. J. Pharmacol. 1994, 113, 959–967. [Google Scholar] [CrossRef] [PubMed]
- Harvey, A.L. Twenty Years of Dendrotoxins. Toxicon 2001, 39, 15–26. [Google Scholar] [CrossRef] [PubMed]
- Danse, J.M.; Rowan, E.G.; Gasparini, S.; Ducancel, F.; Vatanpour, H.; Young, L.C.; Poorheidari, G.; Lajeunesse, E.; Drevet, P.; Ménez, R.; et al. On the Site by Which α-Dendrotoxin Binds to Voltage-Dependent Potassium Channels: Site-Directed Mutagenesis Reveals That the Lysine Triplet 28-30 Is Not Essential for Binding. FEBS Lett. 1994, 356, 153–158. [Google Scholar] [CrossRef] [PubMed]
- Gasparini, S.; Danse, J.-M.; Lecoq, A.; Pinkasfeld, S.; Zinn-Justin, S.; Young, L.C.; de Medeiros, C.C.L.; Rowan, E.G.; Harvey, A.L.; Ménez, A. Delineation of the Functional Site of α-Dendrotoxin. J. Biol. Chem. 1998, 273, 25393–25403. [Google Scholar] [CrossRef]
- Wang, F.C.; Bell, N.; Reid, P.; Smith, L.A.; McIntosh, P.; Robertson, B.; Dolly, J.O. Identification of Residues in Dendrotoxin K Responsible for Its Discrimination between Neuronal K+ Channels Containing Kv1.1 and 1.2 Alpha Subunits. Eur. J. Biochem. 1999, 263, 222–229. [Google Scholar] [CrossRef]
- Harvey, A.L.; Robertson, B. Dendrotoxins: Structure-Activity Relationships and Effects on Potassium Ion Channels. Curr. Med. Chem. 2004, 11, 3065–3072. [Google Scholar] [CrossRef]
- Imredy, J.P.; MacKinnon, R. Energetic and Structural Interactions between δ-Dendrotoxin and a Voltage-Gated Potassium Channel 1 1Edited by G. von Heijne. J. Mol. Biol. 2000, 296, 1283–1294. [Google Scholar] [CrossRef]
- Bagchi, B.; Al-Sabi, A.; Kaza, S.; Scholz, D.; O’Leary, V.B.; Dolly, J.O.; Ovsepian, S.V. Disruption of Myelin Leads to Ectopic Expression of KV1.1 Channels with Abnormal Conductivity of Optic Nerve Axons in a Cuprizone-Induced Model of Demyelination. PLoS ONE 2014, 9, e87736. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Chen, Y.; Zhang, Q.; Li, C. Silencing of KCNA1 Suppresses the Cervical Cancer Development via Mitochondria Damage. Channels 2019, 13, 321–330. [Google Scholar] [CrossRef] [PubMed]
- Jang, S.H.; Ryu, P.D.; Lee, S.Y. Dendrotoxin-κ Suppresses Tumor Growth Induced by Human Lung Adenocarcinoma A549 Cells in Nude Mice. J. Vet. Sci. 2011, 12, 35–40. [Google Scholar] [CrossRef] [PubMed]
- Jeon, W.I.; Ryu, P.D.; Lee, S.Y. Effects of Voltage-Gated K+ Channel Blockers in Gefitinib-Resistant H460 Non-Small Cell Lung Cancer Cells. Anticancer. Res. 2012, 32, 5279–5284. [Google Scholar] [PubMed]
- Ovsepian, S.V.; O’Leary, V.B.; Ayvazyan, N.M.; Al-Sabi, A.; Ntziachristos, V.; Dolly, J.O. Neurobiology and Therapeutic Applications of Neurotoxins Targeting Transmitter Release. Pharmacol. Ther. 2019, 193, 135–155. [Google Scholar] [CrossRef]
- Smart, S.L.; Lopantsev, V.; Zhang, C.L.; Robbins, C.A.; Wang, H.; Chiu, S.Y.; Schwartzkroin, P.A.; Messing, A.; Tempel, B.L. Deletion of the KV1.1 Potassium Channel Causes Epilepsy in Mice. Neuron 1998, 20, 809–819. [Google Scholar] [CrossRef]
- Brew, H.M.; Hallows, J.L.; Tempel, B.L. Hyperexcitability and Reduced Low Threshold Potassium Currents in Auditory Neurons of Mice Lacking the Channel Subunit Kv1.1. J. Physiol. 2003, 548, 1–20. [Google Scholar] [CrossRef]
- Wlodawer, A.; Nachman, J.; Gilliland, G.L.; Gallagher, W.; Woodward, C. Structure of Form III Crystals of Bovine Pancreatic Trypsin Inhibitor. J. Mol. Biol. 1987, 198, 469–480. [Google Scholar] [CrossRef]
- Yang, W.; Feng, J.; Wang, B.; Cao, Z.; Li, W.; Wu, Y.; Chen, Z. BF9, the First Functionally Characterized Snake Toxin Peptide with Kunitz-Type Protease and Potassium Channel Inhibiting Properties: Kunitz-Type Protease and Potassium Channel Inhibitor from Snake. J. Biochem. Mol. Toxicol. 2014, 28, 76–83. [Google Scholar] [CrossRef]
- Chen, C.; Hsu, C.-H.; Su, N.-Y.; Lin, Y.-C.; Chiou, S.-H.; Wu, S.-H. Solution Structure of a Kunitz-Type Chymotrypsin Inhibitor Isolated from the Elapid Snake Bungarus fasciatus. J. Biol. Chem. 2001, 276, 45079–45087. [Google Scholar] [CrossRef]
- Valentin, E.; Lambeau, G. Increasing Molecular Diversity of Secreted Phospholipases A2 and Their Receptors and Binding Proteins. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2000, 1488, 59–70. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, A.K. Correlation between the Phospholipids Domains of the Target Cell Membrane and the Extent of Naja Kaouthia PLA(2)-Induced Membrane Damage: Evidence of Distinct Catalytic and Cytotoxic Sites in PLA(2) Molecules. Biochim. Biophys. Acta 2007, 1770, 187–195. [Google Scholar] [CrossRef] [PubMed]
- Harris, J.; Scott-Davey, T. Secreted Phospholipases A2 of Snake Venoms: Effects on the Peripheral Neuromuscular System with Comments on the Role of Phospholipases A2 in Disorders of the CNS and Their Uses in Industry. Toxins 2013, 5, 2533–2571. [Google Scholar] [CrossRef] [PubMed]
- Fathi, H.B.; Rowan, E.G.; Harvey, A.L. The Facilitatory Actions of Snake Venom Phospholipase A2 Neurotoxins at the Neuromuscular Junction Are Not Mediated through Voltage-Gated K+ Channels. Toxicon 2001, 39, 1871–1882. [Google Scholar] [CrossRef] [PubMed]
- Goncalves, J.M. Purification and Properties of Crotamine. In Venoms; Bucley, E.E., Porgee, N., Eds.; American Association for the Advancement of Science: Washington, DC, USA, 1956. [Google Scholar]
- Schenberg, S. Geographical Pattern of Crotamine Distribution in the Same Rattlesnake Subspecies. Science 1959, 129, 1361–1363. [Google Scholar] [CrossRef] [PubMed]
- Bober, M.A.; Glenn, J.L.; Straight, R.C.; Ownby, C.L. Detection of Myotoxin A-like Proteins in Various Snake Venoms. Toxicon 1988, 26, 665–673. [Google Scholar] [CrossRef] [PubMed]
- Nicastro, G.; Franzoni, L.; de Chiara, C.; Mancin, A.C.; Giglio, J.R.; Spisni, A. Solution Structure of Crotamine, a Na+ Channel Affecting Toxin from Crotalus durissus terrificus Venom. Eur. J. Biochem. 2003, 270, 1969–1979. [Google Scholar] [CrossRef] [PubMed]
- Rádis-Baptista, G.; de la Torre, B.G.; Andreu, D. Insights into the Uptake Mechanism of NrTP, A Cell-Penetrating Peptide Preferentially Targeting the Nucleolus of Tumour Cells: Uptake Mechanism of Nuclear Targeting Peptides. Chem. Biol. Drug Des. 2012, 79, 907–915. [Google Scholar] [CrossRef]
- Fadel, V.; Bettendorff, P.; Herrmann, T.; de Azevedo Jr, W.F.; Oliveira, E.B.; Yamane, T.; Wüthrich, K. Automated NMR Structure Determination and Disulfide Bond Identification of the Myotoxin Crotamine from Crotalus durissus terrificus. Toxicon 2005, 46, 759–767. [Google Scholar] [CrossRef]
- Coronado, M.A.; Gabdulkhakov, A.; Georgieva, D.; Sankaran, B.; Murakami, M.T.; Arni, R.K.; Betzel, C. Structure of the Polypeptide Crotamine from the Brazilian Rattlesnake Crotalus durissus terrificus. Acta Crystallogr. D Biol. Crystallogr. 2013, 69, 1958–1964. [Google Scholar] [CrossRef]
- Oguiura, N.; Boni-Mitake, M.; Rádis-Baptista, G. New View on Crotamine, a Small Basic Polypeptide Myotoxin from South American Rattlesnake Venom. Toxicon 2005, 46, 363–370. [Google Scholar] [CrossRef] [PubMed]
- Kerkis, A.; Kerkis, I.; Rádis-Baptista, G.; Oliveira, E.B.; Vianna-Morgante, A.M.; Pereira, L.V.; Yamane, T. Crotamine Is a Novel Cell-penetrating Protein from the Venom of Rattlesnake Crotalus durissus terrificus. FASEB J. 2004, 18, 1407–1409. [Google Scholar] [CrossRef] [PubMed]
- Camillo, M.; Paes, P.A.; Troncone, L.; Rogero, J. Gyroxin Fails to Modify in Vitro Release of Labelled Dopamine and Acetylcholine from Rat and Mouse Striatal Tissue. Toxicon 2001, 39, 843–853. [Google Scholar] [CrossRef] [PubMed]
- Mancin, A.C.; Soares, A.M.; Giglio, C.A.; Andrião-Escarso, S.H.; Vieira, C.A.; Giglio, C.A. The Histamine Releasers Crotamine, Protamine and Compound 48/80 Activate Specific Proteases and Phospholipases A2. IUBMB Life 1997, 42, 1171–1177. [Google Scholar] [CrossRef] [PubMed]
- Mancin, A.C.; Soares, A.M.; Andrião-Escarso, S.H.; Faça, V.M.; Greene, L.J.; Zuccolotto, S.; Pelá, I.R.; Giglio, J.R. The Analgesic Activity of Crotamine, a Neurotoxin from Crotalus durissus terrificus (South American Rattlesnake) Venom: A Biochemical and Pharmacological Study. Toxicon 1998, 36, 1927–1937. [Google Scholar] [CrossRef] [PubMed]
- Toyama, M. Biochemical Characterization of Two Crotamine Isoforms Isolated by a Single Step RP-HPLC from Crotalus durissus terrificus (South American Rattlesnake) Venom and Their Action on Insulin Secretion by Pancreatic Islets. Biochim. Biophys. Acta Gen. Subj. 2000, 1474, 56–60. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.J.; Kim, Y.K.; Krupa, M.; Nguyen, A.N.; Do, B.H.; Chung, B.; Vu, T.T.T.; Kim, S.C.; Choe, H. Crotamine Stimulates Phagocytic Activity by Inducing Nitric Oxide and TNF-α via P38 and NFκ-B Signaling in RAW 264.7 Macrophages. BMB Rep. 2016, 49, 185–190. [Google Scholar] [CrossRef]
- Vargas, L.S.; Lara, M.V.S.; Gonçalves, R.; Mandredini, V.; Ponce-Soto, L.A.; Marangoni, S.; Dal Belo, C.A.; Mello-Carpes, P.B. The Intrahippocampal Infusion of Crotamine from Crotalus durissus terrificus Venom Enhances Memory Persistence in Rats. Toxicon 2014, 85, 52–58. [Google Scholar] [CrossRef]
- Chen, P.-C.; Hayashi, M.A.F.; Oliveira, E.B.; Karpel, R.L. DNA-Interactive Properties of Crotamine, a Cell-Penetrating Polypeptide and a Potential Drug Carrier. PLoS ONE 2012, 7, e48913. [Google Scholar] [CrossRef]
- Kerkis, I.; de Sa Silva, F.; Pereira, A.; Kerkis, A.; Rádis-Baptista, G. Biological Versatility of Crotamine—A Cationic Peptide from the Venom of a South American Rattlesnake. Expert. Opin. Investig. Drugs 2010, 19, 1515–1525. [Google Scholar] [CrossRef]
- Hayashi, M.A.F.; Nascimento, F.D.; Kerkis, A.; Oliveira, V.; Oliveira, E.B.; Pereira, A.; Rádis-Baptista, G.; Nader, H.B.; Yamane, T.; Kerkis, I.; et al. Cytotoxic Effects of Crotamine Are Mediated through Lysosomal Membrane Permeabilization. Toxicon 2008, 52, 508–517. [Google Scholar] [CrossRef] [PubMed]
- Boni-Mitake, M.; Costa, H.; Vassilieff, V.S.; Rogero, J.R. Distribution of 125I-Labeled Crotamine in Mice Tissues. Toxicon 2006, 48, 550–555. [Google Scholar] [CrossRef] [PubMed]
- Peigneur, S.; Orts, D.J.B.; Prieto da Silva, A.R.; Oguiura, N.; Boni-Mitake, M.; de Oliveira, E.B.; Zaharenko, A.J.; de Freitas, J.C.; Tytgat, J. Crotamine Pharmacology Revisited: Novel Insights Based on the Inhibition of KV Channels. Mol. Pharmacol. 2012, 82, 90–96. [Google Scholar] [CrossRef] [PubMed]
- Kerkis, I.; Hayashi, M.A.F.; Prieto da Silva, A.R.B.; Pereira, A.; De Sá Júnior, P.L.; Zaharenko, A.J.; Rádis-Baptista, G.; Kerkis, A.; Yamane, T. State of the Art in the Studies on Crotamine, a Cell Penetrating Peptide from South American Rattlesnake. BioMed Res. Int. 2014, 2014, 675985. [Google Scholar] [CrossRef]
- da Cunha, D.B.; Silvestrini, A.; da Silva, A.C.G.; Estevam, D.M.D.P.; Pollettini, F.L.; de Oliveira Navarro, J.; Alves, A.A.; Beretta, A.L.R.Z.; Bizzacchi, J.M.A.; Pereira, L.C.; et al. Mechanistic Insights into Functional Characteristics of Native Crotamine. Toxicon 2018, 146, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Cameron, D.L.; Tu, A.T. Chemical and Functional Homology of Myotoxin a from Prairie Rattlesnake Venom and Crotamine from South American Rattlesnake Venom. Biochim. Biophys. Acta 1978, 532, 147–154. [Google Scholar] [CrossRef] [PubMed]
- Nascimento, F.D.; Sancey, L.; Pereira, A.; Rome, C.; Oliveira, V.; Oliveira, E.B.; Nader, H.B.; Yamane, T.; Kerkis, I.; Tersariol, I.L.S.; et al. The Natural Cell-Penetrating Peptide Crotamine Targets Tumor Tissue in Vivo and Triggers a Lethal Calcium-Dependent Pathway in Cultured Cells. Mol. Pharm. 2012, 9, 211–221. [Google Scholar] [CrossRef]
- Cheymol, J.; Gonçalves, J.M.; Bourillet, F.; Roch-Arveiller, M. Action neuromusculaire comparee de la crotamine et du venin de Crotalus durissus terrificus var. crotaminicus—I. Sur preparations neuromusculaires in situ. Toxicon 1971, 9, 279–286. [Google Scholar] [CrossRef]
- Vital Brazil, O.; Fontana, M.D. Toxins as Tools in the Study of Sodium Channel Distribution in the Muscle Fibre Membrane. Toxicon 1993, 31, 1085–1098. [Google Scholar] [CrossRef]
- Chang, C.C.; Tseng, K.H. Effect of Crotamine, a Toxin of South American Rattlesnake Venom, on the Sodium Channel of Murine Skeletal Muscle. Br. J. Pharmacol. 1978, 63, 551–559. [Google Scholar] [CrossRef]
- Rizzi, C.T.; Carvalho-de-Souza, J.L.; Schiavon, E.; Cassola, A.C.; Wanke, E.; Troncone, L.R.P. Crotamine Inhibits Preferentially Fast-Twitching Muscles but Is Inactive on Sodium Channels. Toxicon 2007, 50, 553–562. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.C.; Hong, S.J.; Su, M.J. A Study on the Membrane Depolarization of Skeletal Muscles Caused by a Scorpion Toxin, Sea Anemone Toxin II and Crotamine and the Interaction between Toxins. Br. J. Pharmacol. 1983, 79, 673–680. [Google Scholar] [CrossRef] [PubMed]
- Yount, N.Y.; Kupferwasser, D.; Spisni, A.; Dutz, S.M.; Ramjan, Z.H.; Sharma, S.; Waring, A.J.; Yeaman, M.R. Selective Reciprocity in Antimicrobial Activity versus Cytotoxicity of hBD-2 and Crotamine. Proc. Natl. Acad. Sci. USA 2009, 106, 14972–14977. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.C.; Lee, C.Y. Isolation of Neurotoxins from The Venom of Bungarus multicinctus and Their Modes of Neuromuscular Blocking Action. Arch. Int. Pharmacodyn. Ther. 1963, 144, 241–257. [Google Scholar] [PubMed]
- Kelly, R.B.; Brown, F.R. Biochemical and Physiological Properties of a Purified Snake Venom Neurotoxin Which Acts Presynaptically. J. Neurobiol. 1974, 5, 135–150. [Google Scholar] [CrossRef] [PubMed]
- Kondo, K.; Narita, K.; Lee, C.-Y. Amino Acid Sequences of the Two Polypeptide Chains in β1-Bungarotoxin from the Venom of Bungarus multicinctus. J. Biochem. 1978, 83, 101–115. [Google Scholar] [CrossRef] [PubMed]
- Chu, C.-C.; Li, S.-H.; Chen, Y.-H. Resolution of Isotoxins in the β-Bungarotoxin Family. J. Chromatogr. A 1995, 694, 492–497. [Google Scholar] [CrossRef]
- Kwong, P.D.; McDonald, N.Q.; Sigler, P.B.; Hendrickson, W.A. Structure of β2-Bungarotoxin: Potassium Channel Binding by Kunitz Modules and Targeted Phospholipase Action. Structure 1995, 3, 1109–1119. [Google Scholar] [CrossRef]
- Sharma, S.; Karthikeyan, S.; Betzel, C.; Singh, T.P. Isolation, Purification, Crystallization and Preliminary X-Ray Analysis of β1 -Bungarotoxin from Bungarus caeruleus (Indian Common Krait). Acta Crystallogr. D Biol. Crystallogr. 1999, 55, 1093–1094. [Google Scholar] [CrossRef]
- Kondo, K.; Narita, K.; Lee, C.-Y. Chemical Properties and Amino Acid Composition of β1-Bungarotoxin from the Venom of Bungarus multicinctus (Formosan Banded Krait). J. Biochem. 1978, 83, 91–99. [Google Scholar] [CrossRef]
- Kondo, K.; Toda, H.; Narita, K. Characterization of Phospholipase A Activity of β 1-Bungarotoxin from Bungarus multicinctus Venom. J. Biochem. 1978, 84, 1291–1300. [Google Scholar] [CrossRef] [PubMed]
- Wu, P.F.; Wu, S.N.; Chang, C.C.; Chang, L.S. Cloning and Functional Expression of B Chains of Beta-Bungarotoxins from Bungarus multicinctus (Taiwan Banded Krait). Biochem. J. 1998, 334 Pt 1, 87–92. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.C. Neurotoxins with Phospholipase A2 Activity in Snake Venoms. Proc. Natl. Sci. Counc. Repub. China B 1985, 9, 126–142. [Google Scholar] [PubMed]
- Miura, A.; Muramatsu, I.; Fujiwara, M.; Hayashi, K.; Lee, C.Y. Species and Regional Differences in Cholinergic Blocking Actions of Beta-Bungarotoxin. J. Pharmacol. Exp. Ther. 1981, 217, 505–509. [Google Scholar] [PubMed]
- Strong, P.N.; Goerke, J.; Oberg, S.G.; Kelly, R.B. Beta-Bungarotoxin, a Pre-Synaptic Toxin with Enzymatic Activity. Proc. Natl. Acad. Sci. USA 1976, 73, 178–182. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.C.; Chen, T.F.; Lee, C.Y. Studies of the Presynaptic Effect of β-Bungarotoxin on Neuromuscular Transmission. J. Pharmacol. Exp. Ther. 1973, 184, 339–345. [Google Scholar]
- Meier, J.; White, J. Clinical Toxicology of Animal Venoms and Poisons; CRC Press Inc.: Boca Raton, FL, USA, 1995. [Google Scholar]
- Othman, I.B.; Wilkin, G.P.; Dolly, J.O. Synaptic Binding Sites in Brain for [(3)H]?-Bungarotoxin—A Specific Probe That Perturbs Transmitter Release. Neurochem. Int. 1983, 5, 487–496. [Google Scholar] [CrossRef]
- Werkman, T.R.; Gustafson, T.A.; Rogowski, R.S.; Blaustein, M.P.; Rogawski, M.A. Tityustoxin-K Alpha, a Structurally Novel and Highly Potent K+ Channel Peptide Toxin, Interacts with the Alpha-Dendrotoxin Binding Site on the Cloned Kv1.2 K+ Channel. Mol. Pharmacol. 1993, 44, 430–436. [Google Scholar]
- Dreyer, F.; Penner, R. The Actions of Presynaptic Snake Toxins on Membrane Currents of Mouse Motor Nerve Terminals. J. Physiol. 1987, 386, 455–463. [Google Scholar] [CrossRef]
- Rowan, E.G.; Harvey, A.L. Potassium Channel Blocking Actions of β-Bungarotoxin and Related Toxins on Mouse and Frog Motor Nerve Terminals. Br. J. Pharmacol. 1988, 94, 839–847. [Google Scholar] [CrossRef]
- Petersen, M.; Penner, R.; Pierau, F.K.; Dreyer, F. Beta-Bungarotoxin Inhibits a Non-Inactivating Potassium Current in Guinea Pig Dorsal Root Ganglion Neurones. Neurosci. Lett. 1986, 68, 141–145. [Google Scholar] [CrossRef] [PubMed]
- Bräu, M.E.; Dreyer, F.; Jonas, P.; Repp, H.; Vogel, W. A K+ Channel in Xenopus Nerve Fibres Selectively Blocked by Bee and Snake Toxins: Binding and Voltage-Clamp Experiments. J. Physiol. 1990, 420, 365–385. [Google Scholar] [CrossRef] [PubMed]
- Guillemare, E.; Honore, E.; Pradier, L.; Lesage, F.; Schweitz, H.; Attali, B.; Barhanin, J.; Lazdunski, M. Effects of the Level of mRNA Expression on Biophysical Properties, Sensitivity to Neurotoxins, and Regulation of the Brain Delayed-Rectifier K+ Channel Kv1.2. Biochemistry 1992, 31, 12463–12468. [Google Scholar] [CrossRef] [PubMed]
- Baker, M.D.; Ritchie, J.M. Characteristics of Type I and Type II K+ Channels in Rabbit Cultured Schwann Cells. J. Physiol. 1996, 490, 79–95. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.-L.; Wu, P.-F.; Wu, T.T.; Chang, L.-S. KChIP3: A Binding Protein for Taiwan Banded Krait β-Bungarotoxin. Toxicon 2006, 47, 265–270. [Google Scholar] [CrossRef] [PubMed]
- Hu, P.; Sun, L.; Zhu, Z.-Q.; Hou, X.-W.; Wang, S.; Yu, S.-S.; Wang, H.-L.; Zhang, P.; Wang, M.; Niu, L.-W.; et al. Crystal Structure of Natratoxin, a Novel Snake Secreted phospholipaseA2 Neurotoxin from Naja Atra Venom Inhibiting A-Type K+ Currents. Proteins 2008, 72, 673–683. [Google Scholar] [CrossRef]
- Dauplais, M.; Lecoq, A.; Song, J.; Cotton, J.; Jamin, N.; Gilquin, B.; Roumestand, C.; Vita, C.; de Medeiros, C.; Rowan, E.G.; et al. On the Convergent Evolution of Animal Toxins. J. Biol. Chem. 1997, 272, 4302–4309. [Google Scholar] [CrossRef]
- Amir, R.; Michaelis, M.; Devor, M. Membrane Potential Oscillations in Dorsal Root Ganglion Neurons: Role in Normal Electrogenesis and Neuropathic Pain. J. Neurosci. 1999, 19, 8589–8596. [Google Scholar] [CrossRef]
- Malin, S.A.; Nerbonne, J.M. Elimination of the Fast Transient in Superior Cervical Ganglion Neurons with Expression of KV4.2W362F: Molecular Dissection of IA. J. Neurosci. 2000, 20, 5191–5199. [Google Scholar] [CrossRef]
- Stewart, T.; Beyak, M.J.; Vanner, S. Ileitis Modulates Potassium and Sodium Currents in Guinea Pig Dorsal Root Ganglia Sensory Neurons. J. Physiol. 2003, 552, 797–807. [Google Scholar] [CrossRef]
- Tan, Z.Y.; Donnelly, D.F.; LaMotte, R.H. Effects of a Chronic Compression of the Dorsal Root Ganglion on Voltage-Gated Na+ and K+ Currents in Cutaneous Afferent Neurons. J. Neurophysiol. 2006, 95, 1115–1123. [Google Scholar] [CrossRef] [PubMed]
- Winkelman, D.L.B.; Beck, C.L.; Ypey, D.L.; O’Leary, M.E. Inhibition of the A-Type K+ Channels of Dorsal Root Ganglion Neurons by the Long-Duration Anesthetic Butamben. J. Pharmacol. Exp. Ther. 2005, 314, 1177–1186. [Google Scholar] [CrossRef] [PubMed]
- Fedulova, S.A.; Vasilyev, D.V.; Veselovsky, N.S. Voltage-Operated Potassium Currents in the Somatic Membrane of Rat Dorsal Root Ganglion Neurons: Ontogenetic Aspects. Neuroscience 1998, 85, 497–508. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, S.; Hoffman, D.A.; Migliore, M.; Johnston, D. Dendritic K+ Channels Contribute to Spike-Timing Dependent Long-Term Potentiation in Hippocampal Pyramidal Neurons. Proc. Natl. Acad. Sci. USA 2002, 99, 8366–8371. [Google Scholar] [CrossRef]
- Ramakers, G.M.J.; Storm, J.F. A Postsynaptic Transient K+ Current Modulated by Arachidonic Acid Regulates Synaptic Integration and Threshold for LTP Induction in Hippocampal Pyramidal Cells. Proc. Natl. Acad. Sci. USA 2002, 99, 10144–10149. [Google Scholar] [CrossRef]
- Hoshi, T.; Zagotta, W.N.; Aldrich, R.W. Biophysical and Molecular Mechanisms of Shaker Potassium Channel Inactivation. Science 1990, 250, 533–538. [Google Scholar] [CrossRef]
- Zagotta, W.N.; Hoshi, T.; Aldrich, R.W. Restoration of Inactivation in Mutants of Shaker Potassium Channels by a Peptide Derived from ShB. Science 1990, 250, 568–571. [Google Scholar] [CrossRef]
- Jerng, H.H.; Shahidullah, M.; Covarrubias, M. Inactivation Gating of Kv4 Potassium Channels. J. Gen. Physiol. 1999, 113, 641–660. [Google Scholar] [CrossRef]
- Belo, C.A.D.; Leite, G.B.; Toyama, M.H.; Marangoni, S.; Corrado, A.P.; Fontana, M.D.; Southan, A.; Rowan, E.G.; Hyslop, S.; Rodrigues-Simioni, L. Pharmacological and Structural Characterization of a Novel Phospholipase A2 from Micrurus dumerilii carinicauda Venom. Toxicon 2005, 46, 736–750. [Google Scholar] [CrossRef]
- Belo, C.A.D.; Toyama, M.H.; Toyama, D.D.O.; Marangoni, S.; Moreno, F.B.; Cavada, B.S.; Fontana, M.D.; Hyslop, S.; Carneiro, E.M.; Boschero, A.C. Determination of the Amino Acid Sequence of a New Phospholipase A(2) (MIDCA1) Isolated from Micrurus dumerilii carinicauda Venom. Protein J. 2005, 24, 147–153. [Google Scholar] [CrossRef]
- Schütter, N.; Barreto, Y.C.; Vardanyan, V.; Hornig, S.; Hyslop, S.; Marangoni, S.; Rodrigues-Simioni, L.; Pongs, O.; Dal Belo, C.A. Inhibition of Kv2.1 Potassium Channels by MiDCA1, A Pre-Synaptically Active PLA2-Type Toxin from Micrurus dumerilii carinicauda Coral Snake Venom. Toxins 2019, 11, 335. [Google Scholar] [CrossRef] [PubMed]
- Fohlman, J.; Eaker, D.; Karlsson, E.; Thesleff, S. Taipoxin, an Extremely Potent Presynaptic Neurotoxin from the Venom of the Australian Snake Taipan (Oxyuranus s. Scutellatus). Isolation, Characterization, Quaternary Structure and Pharmacological Properties. Eur. J. Biochem. 1976, 68, 457–469. [Google Scholar] [CrossRef] [PubMed]
- Harris, J.B.; Grubb, B.D.; Maltin, C.A.; Dixon, R. The Neurotoxicity of the Venom Phospholipases A2, Notexin and Taipoxin. Exp. Neurol. 2000, 161, 517–526. [Google Scholar] [CrossRef] [PubMed]
- Faure, G.; Xu, H.; Saul, F.A. Crystal Structure of Crotoxin Reveals Key Residues Involved in the Stability and Toxicity of This Potent Heterodimeric β-Neurotoxin. J. Mol. Biol. 2011, 412, 176–191. [Google Scholar] [CrossRef] [PubMed]
- Cendron, L.; Mičetić, I.; Polverino de Laureto, P.; Paoli, M. Structural Analysis of Trimeric Phospholipase A2 Neurotoxin from the Australian Taipan Snake Venom. FEBS J. 2012, 279, 3121–3135. [Google Scholar] [CrossRef]
- Westerlund, B.; Nordlund, P.; Uhlin, U.; Eaker, D.; Eklund, H. The Three-Dimensional Structure of Notexin, a Presynaptic Neurotoxic Phospholipase A2 at 2.0 Å Resolution. FEBS Lett. 1992, 301, 159–164. [Google Scholar] [CrossRef]
- Sampaio, S.C.; Hyslop, S.; Fontes, M.R.M.; Prado-Franceschi, J.; Zambelli, V.O.; Magro, A.J.; Brigatte, P.; Gutierrez, V.P.; Cury, Y. Crotoxin: Novel Activities for a Classic β-Neurotoxin. Toxicon 2010, 55, 1045–1060. [Google Scholar] [CrossRef]
- Tu, A.T.; Passey, R.B.; Tu, T. Proteolytic Enzyme Activities of Snake Venoms. Toxicon 1966, 4, 59–60. [Google Scholar] [CrossRef]
- Wang, J.; Shen, B.; Guo, M.; Lou, X.; Duan, Y.; Cheng, X.P.; Teng, M.; Niu, L.; Liu, Q.; Huang, Q.; et al. Blocking Effect and Crystal Structure of Natrin Toxin, a Cysteine-Rich Secretory Protein from Naja atra Venom That Targets the BKCa Channel. Biochemistry 2005, 44, 10145–10152. [Google Scholar] [CrossRef]
- Wang, F.; Li, H.; Liu, M.; Song, H.; Han, H.; Wang, Q.; Yin, C.; Zhou, Y.; Qi, Z.; Shu, Y.; et al. Structural and Functional Analysis of Natrin, a Venom Protein That Targets Various Ion Channels. Biochem. Biophys. Res. Commun. 2006, 351, 443–448. [Google Scholar] [CrossRef]
- Bernardes, C.P.; Menaldo, D.L.; Zoccal, K.F.; Boldrini-França, J.; Peigneur, S.; Arantes, E.C.; Rosa, J.C.; Faccioli, L.H.; Tytgat, J.; Sampaio, S.V. First Report on BaltCRP, a Cysteine-Rich Secretory Protein (CRISP) from Bothrops alternatus Venom: Effects on Potassium Channels and Inflammatory Processes. Int. J. Biol. Macromol. 2019, 140, 556–567. [Google Scholar] [CrossRef] [PubMed]
- Guo, M.; Teng, M.; Niu, L.; Liu, Q.; Huang, Q.; Hao, Q. Crystal Structure of the Cysteine-Rich Secretory Protein Stecrisp Reveals That the Cysteine-Rich Domain Has a K+ Channel Inhibitor-like Fold. J. Biol. Chem. 2005, 280, 12405–12412. [Google Scholar] [CrossRef]
- Tu, X.; Wang, J.; Guo, M.; Zheng, D.; Teng, M.; Niu, L.; Liu, Q.; Huang, Q.; Hao, Q. Purification, Partial Characterization, Crystallization and Preliminary X-Ray Diffraction of Two Cysteine-Rich Secretory Proteins from Naja Atra and Trimeresurus Stejnegeri Venoms. Acta Crystallogr. D Biol. Crystallogr. 2004, 60, 1108–1111. [Google Scholar] [CrossRef]
- Szyperski, T.; Fernández, C.; Mumenthaler, C.; Wüthrich, K. Structure Comparison of Human Glioma Pathogenesis-Related Protein GliPR and the Plant Pathogenesis-Related Protein P14a Indicates a Functional Link between the Human Immune System and a Plant Defense System. Proc. Natl. Acad. Sci. USA 1998, 95, 2262–2266. [Google Scholar] [CrossRef]
- Milne, T.J.; Abbenante, G.; Tyndall, J.D.A.; Halliday, J.; Lewis, R.J. Isolation and Characterization of a Cone Snail Protease with Homology to CRISP Proteins of the Pathogenesis-Related Protein Superfamily. J. Biol. Chem. 2003, 278, 31105–31110. [Google Scholar] [CrossRef]
- El-Aziz, T.M.A.; Soares, A.G.; Stockand, J.D. Stockand Snake Venoms in Drug Discovery: Valuable Therapeutic Tools for Life Saving. Toxins 2019, 11, 564. [Google Scholar] [CrossRef]
- Serrano, S.M.T.; Maroun, R.C. Snake Venom Serine Proteinases: Sequence Homology vs. Substrate Specificity, a Paradox to Be Solved. Toxicon 2005, 45, 1115–1132. [Google Scholar] [CrossRef]
- Kang, T.S.; Georgieva, D.; Genov, N.; Murakami, M.T.; Sinha, M.; Kumar, R.P.; Kaur, P.; Kumar, S.; Dey, S.; Sharma, S.; et al. Enzymatic Toxins from Snake Venom: Structural Characterization and Mechanism of Catalysis: Enzymatic Toxins from Snake Venom. FEBS J. 2011, 278, 4544–4576. [Google Scholar] [CrossRef]
- Markland, F.S. Snake Venoms and the Hemostatic System. Toxicon 1998, 36, 1749–1800. [Google Scholar] [CrossRef]
- Boldrini-França, J.; Pinheiro-Junior, E.L.; Arantes, E.C. Functional and Biological Insights of rCollinein-1, a Recombinant Serine Protease from Crotalus Durissus Collilineatus. J. Venom. Anim. Toxins Incl. Trop. Dis. 2019, 25, e147118. [Google Scholar] [CrossRef]
- Boldrini-Franca, J.; Pinheiro-Junior, E.L.; Peigneur, S.; Pucca, M.B.; Cerni, F.A.; Borges, R.J.; Costa, T.R.; Carone, S.E.I.; Fontes, M.R.D.M.; Sampaio, S.V.; et al. Beyond Hemostasis: A Snake Venom Serine Protease with Potassium Channel Blocking and Potential Antitumor Activities. Sci. Rep. 2020, 10, 4476. [Google Scholar] [CrossRef]
- Sousa, I.D.L.; Barbosa, A.R.; Salvador, G.H.M.; Frihling, B.E.F.; Santa-Rita, P.H.; Soares, A.M.; Pessôa, H.L.F.; Marchi-Salvador, D.P. Secondary Hemostasis Studies of Crude Venom and Isolated Proteins from the Snake Crotalus durissus terrificus. Int. J. Biol. Macromol. 2019, 131, 127–133. [Google Scholar] [CrossRef]
- Carone, S.E.I.; Menaldo, D.L.; Sartim, M.A.; Bernardes, C.P.; Caetano, R.C.; Da Silva, R.R.; Cabral, H.; Barraviera, B.; Ferreira Junior, R.S.; Sampaio, S.V. BjSP, a Novel Serine Protease from Bothrops jararaca Snake Venom That Degrades Fibrinogen without Forming Fibrin Clots. Toxicol. Appl. Pharmacol. 2018, 357, 50–61. [Google Scholar] [CrossRef]
- Chang, L.; Huang, H.; Lin, S. The Multiplicity of Cardiotoxins from Naja naja atra (Taiwan Cobra) Venom. Toxicon 2000, 38, 1065–1076. [Google Scholar] [CrossRef]
- Jahnke, W.; Mierke, D.F.; Béress, L.; Kessler, H. Structure of Cobra Cardiotoxin CTXI as Derived from Nuclear Magnetic Resonance Spectroscopy and Distance Geometry Calculations. J. Mol. Biol. 1994, 240, 445–458. [Google Scholar] [CrossRef]
- Dubovskii, P.; Utkin, Y. Antiproliferative Activity of Cobra Venom Cytotoxins. Curr. Top. Med. Chem. 2015, 15, 638–648. [Google Scholar] [CrossRef]
- Su, S.-H.; Su, S.-J.; Lin, S.-R.; Chang, K.-L. Cardiotoxin-III Selectively Enhances Activation-Induced Apoptosis of Human CD8+ T Lymphocytes. Toxicol. Appl. Pharmacol. 2003, 193, 97–105. [Google Scholar] [CrossRef]
- Koster, J.C.; Permutt, M.A.; Nichols, C.G. Diabetes and Insulin Secretion. Diabetes 2005, 54, 3065–3072. [Google Scholar] [CrossRef]
- Nguyen, T.T.N.; Folch, B.; Létourneau, M.; Vaudry, D.; Truong, N.H.; Doucet, N.; Chatenet, D.; Fournier, A. Cardiotoxin-I: An Unexpectedly Potent Insulinotropic Agent. ChemBioChem 2012, 13, 1805–1812. [Google Scholar] [CrossRef]
- Konno, K.; Picolo, G.; Gutierrez, V.P.; Brigatte, P.; Zambelli, V.O.; Camargo, A.C.M.; Cury, Y. Crotalphine, a Novel Potent Analgesic Peptide from the Venom of the South American Rattlesnake Crotalus durissus terrificus. Peptides 2008, 29, 1293–1304. [Google Scholar] [CrossRef]
- Brigatte, P.; Konno, K.; Gutierrez, V.P.; Sampaio, S.C.; Zambelli, V.O.; Picolo, G.; Curi, R.; Cury, Y. Peripheral Kappa and Delta Opioid Receptors Are Involved in the Antinociceptive Effect of Crotalphine in a Rat Model of Cancer Pain. Pharmacol. Biochem. Behav. 2013, 109, 1–7. [Google Scholar] [CrossRef]
- Rodrigues, A.R.A.; Duarte, I.D.G. The Peripheral Antinociceptive Effect Induced by Morphine Is Associated with ATP-Sensitive K+ Channels: Morphine: Peripheral Analgesia and K+ Channels. Br. J. Pharmacol. 2000, 129, 110–114. [Google Scholar] [CrossRef] [PubMed]
- Picolo, G.; Cassola, A.C.; Cury, Y. Activation of Peripheral ATP-Sensitive K+ Channels Mediates the Antinociceptive Effect of Crotalus durissus terrificus Snake Venom. Eur. J. Pharmacol. 2003, 469, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Ocaña, M.; Cendán, C.M.; Cobos, E.J.; Entrena, J.M.; Baeyens, J.M. Potassium Channels and Pain: Present Realities and Future Opportunities. Eur. J. Pharmacol. 2004, 500, 203–219. [Google Scholar] [CrossRef] [PubMed]
- Mathie, A.; Veale, E.L.; Golluscio, A.; Holden, R.G.; Walsh, Y. Pharmacological Approaches to Studying Potassium Channels. In Pharmacology of Potassium Channels; Gamper, N., Wang, K., Eds.; Handbook of Experimental Pharmacology; Springer International Publishing: Cham, Switzerland, 2021; Volume 267, pp. 83–111. ISBN 978-3-030-84051-8. [Google Scholar]
- King, G.F. Venoms as a Platform for Human Drugs: Translating Toxins into Therapeutics. Expert. Opin. Biol. Ther. 2011, 11, 1469–1484. [Google Scholar] [CrossRef] [PubMed]
- Ang, W.F.; Koh, C.Y.; Kini, R.M. From Snake Venoms to Therapeutics: A Focus on Natriuretic Peptides. Pharmaceuticals 2022, 15, 1153. [Google Scholar] [CrossRef] [PubMed]
- Osipov, A.; Utkin, Y. What Are the Neurotoxins in Hemotoxic Snake Venoms? Int. J. Mol. Sci. 2023, 24, 2919. [Google Scholar] [CrossRef]
- Bordon, K.C.F.; Perino, M.G.; Giglio, J.R.; Arantes, E.C. Isolation, Enzymatic Characterization and Antiedematogenic Activity of the First Reported Rattlesnake Hyaluronidase from Crotalus durissus terrificus Venom. Biochimie 2012, 94, 2740–2748. [Google Scholar] [CrossRef]
- Chuang, P.-C.; Chang, K.-W.; Cheng, F.-J.; Wu, M.-H.; Tsai, M.-T.; Li, C.-J. Risk Factors Associated with Snake Antivenom Reaction and the Role of Skin Test. Acta Trop. 2020, 203, 105293. [Google Scholar] [CrossRef]
- Cushman, D.W.; Ondetti, M.A. History of the Design of Captopril and Related Inhibitors of Angiotensin Converting Enzyme. Hypertension 1991, 17, 589–592. [Google Scholar] [CrossRef]
- Alama, A.; Bruzzo, C.; Cavalieri, Z.; Forlani, A.; Utkin, Y.; Casciano, I.; Romani, M. Inhibition of the Nicotinic Acetylcholine Receptors by Cobra Venom α-Neurotoxins: Is There a Perspective in Lung Cancer Treatment? PLoS ONE 2011, 6, e20695. [Google Scholar] [CrossRef] [PubMed]
- Al-Sabi, A.; Daly, D.; Hoefer, P.; Kinsella, G.K.; Metais, C.; Pickering, M.; Herron, C.; Kaza, S.K.; Nolan, K.; Dolly, J.O. A Rational Design of a Selective Inhibitor for Kv1.1 Channels Prevalent in Demyelinated Nerves That Improves Their Impaired Axonal Conduction. J. Med. Chem. 2017, 60, 2245–2256. [Google Scholar] [CrossRef] [PubMed]
- Shi, G.; Liu, Y.; Lin, H.; Yang, S.; Feng, Y.; Reid, P.F.; Qin, Z. Involvement of Cholinergic System in Suppression of Formalin-Induced Inflammatory Pain by Cobratoxin. Acta Pharmacol. Sin. 2011, 32, 1233–1238. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Zhang, H.; Gu, Z.; Chen, B.; Han, R.; Reid, P.F.; Raymond, L.N.; Qin, Z. A Long-Form Alpha-Neurotoxin from Cobra Venom Produces Potent Opioid-Independent Analgesia1. Acta Pharmacol. Sin. 2006, 27, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Smith, H.H.; Deer, T.R. Safety and Efficacy of Intrathecal Ziconotide in the Management of Severe Chronic Pain. Ther. Clin. Risk Manag. 2009, 5, 521–534. [Google Scholar] [CrossRef] [PubMed]
- Vink, S.; Alewood, P. Targeting Voltage-Gated Calcium Channels: Developments in Peptide and Small-Molecule Inhibitors for the Treatment of Neuropathic Pain: VGCC Ligands and Pain. Br. J. Pharmacol. 2012, 167, 970–989. [Google Scholar] [CrossRef] [PubMed]
- Almeida, J.R.; Resende, L.M.; Watanabe, R.K.; Carregari, V.C.; Huancahuire-Vega, S.; Caldeira, C.D.S.; Coutinho-Neto, A.; Soares, A.M.; Vale, N.; Gomes, P.D.C.; et al. Snake Venom Peptides and Low Mass Proteins: Molecular Tools and Therapeutic Agents. Curr. Med. Chem. 2017, 24, 3254–3282. [Google Scholar] [CrossRef] [PubMed]
- Kini, R.M.; Koh, C.Y. Snake Venom Three-Finger Toxins and Their Potential in Drug Development Targeting Cardiovascular Diseases. Biochem. Pharmacol. 2020, 181, 114105. [Google Scholar] [CrossRef]
- Meyer, C.; Hahn, U.; Rentmeister, A. Cell-Specific Aptamers as Emerging Therapeutics. J. Nucleic Acids 2011, 2011, 904750. [Google Scholar] [CrossRef]
- Nirthanan, S.; Awal, W.; Niranjan, N.R. Snake α-Neurotoxins and the Nicotinic Acetylcholine Receptor. In Snake Venoms; Inagaki, H., Vogel, C.-W., Mukherjee, A.K., Rahmy, T.R., Eds.; Springer: Dordrecht, The Netherlands, 2017; pp. 215–252. ISBN 978-94-007-6409-5. [Google Scholar]
- Sridharan, S.; Kini, R.M.; Richards, A.M. Venom Natriuretic Peptides Guide the Design of Heart Failure Therapeutics. Pharmacol. Res. 2020, 155, 104687. [Google Scholar] [CrossRef]
- Chakrabarty, D.; Chanda, C. Snake Venom Disintegrins. In Snake Venoms; Inagaki, H., Vogel, C.-W., Mukherjee, A.K., Rahmy, T.R., Eds.; Springer: Dordrecht, The Netherlands, 2017; pp. 437–449. ISBN 978-94-007-6409-5. [Google Scholar]
- Golubkov, V.; Hawes, D.; Markland, F.S. Anti-Angiogenic Activity of Contortrostatin, a Disintegrin from Agkistrodon contortrix contortrix Snake Venom. Angiogenesis 2003, 6, 213–224. [Google Scholar] [CrossRef] [PubMed]
- Vonk, F.J.; Jackson, K.; Doley, R.; Madaras, F.; Mirtschin, P.J.; Vidal, N. Snake Venom: From Fieldwork to the Clinic: Recent Insights into Snake Biology, Together with New Technology Allowing High-Throughput Screening of Venom, Bring New Hope for Drug Discovery. Bioessays 2011, 33, 269–279. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Sherwin, R.P.; Parrish, C.; Richters, V.; Groshen, S.G.; Tsao-Wei, D.; Markland, F.S. Contortrostatin, a Dimeric Disintegrin from Contortrix contortrix, Inhibits Breast Cancer Progression. Breast Cancer Res. Treat. 2000, 61, 249–259. [Google Scholar] [CrossRef] [PubMed]
Toxin | Source | Amino Acid Sequence Alignment | Target Channel (s) | References |
---|---|---|---|---|
BPTI | Bovine Pancreas | RPDFCLEPPYTGPCKARI IRYFYNAKAGI CQTFVYGGCRAKRNNFKSAED CMRTCGGA | -- | [46] |
αDTX | D. angusticeps | pEPRRKLCILHRDPGRCYDKIPAPYYNQKKKQCERFDWESGCGGNSNRFKTIEECRRTCIG | Kv1.1, 1.2 1.6 | [57,58] |
DTX-I | D. polylepis | pEPIRKLCILHRDPGRCYQKIPAFYYNQKKKQCEGFTWESGCGGNSNRFKTIEECRRTCIRK | Kv1.1, 1.2 | [57,58] |
δDTX | D. angusticeps | AAKYCKLPVRYGPCKKKIPSFYYKWKAKQCLPFDYSGCGGNANRFKTIEECRRTCVG | Kv1.1, 1.6 | [50,59] |
DTX-K | D. polylepis | AAKYCKLPLRI GPCKRKIPSFYYKWKAKQCLPFDYSGCGGNANRFKTIEE E CRRTCVG | Kv1.1 | [43] |
DaE | D. angusticeps | LQHRTFCKLPAEPGPCKASIPAFYYNWAAKKCQLFHYGGCKGNANRFSTIEKCRRACVG | Kv1.1 | [51] |
DV14 | D. viridis | AAKYCKLP VRYGPCKKKIPSFYYKWKAKQCLPFDYSGCGGNANRFKTIEECRRTCVG | Kv1.1/2 | [46] |
Snake Polypeptides | Source | Molecular Mass (kDa) | Potassium Channel Targets | References |
---|---|---|---|---|
BPTI-Kunitz type | ||||
DTXs | Dendroapis angusticeps Dendroapis polylepis Dendroapis viridis | 7 | Kv1.1, Kv1.2, and Kv1.6 antagonists | [43,50,57,58,59] |
BF9 | Bungarus fasciatus | 9 | Kv1.3 antagonist | [81] |
PLA2 | ||||
Crotamine | Crotalus durissus terrificus | 4.8 | Kv1.1, Kv1.2, and Kv1.3 antagonists | [93,106] |
β-Bungarotoxin | Bungarus multicinctus | 22 | Inhibition of Kv currents (including Kv1.2 and Kv1.1). | [123,124,135,136,137] |
Natratoxin | Naja atra | 13 | A-type Kv channels antagonist | [140] |
MiDCA1 | Micrurus dumerilii carinicauda | 15.5 | Kv2.1 antagonist | [154,155] |
Taipoxin | Oxyuranus s. scutellatus | 4.6 | Inhibition of slowly activating Kv channels | [133,158,159,160] |
Notexin | Oxyuranus s. scutellatus | Inhibition of slowly activating Kv channels | ||
Crotoxin | Crotalus durissus terrificus | 24 | Inhibition of slowly activating Kv channels | |
CRISPs | ||||
BaltCRP | Bothrops alternatus | 24 | Inhibition of Kv1.1, Kv1.3, Kv2.1, and Shaker channels | [165] |
Natrin | Naja atra | 25 | Inhibition of the Kv1.3 and BKCa channels | [163,164] |
Stecrisp | Trimeresurus stejnegeri | 25 | Possible Kv channels | [166] |
SVSPs | ||||
Collinein-1 | Crotalus durissus collilineatus | 29.5 | Inhibitor for hEAG1 (Kv10.1) channel (anticancer effect)Mild inhibitor for hERG1 (Kv11.1) channel | [174,175] |
Gyroxin_B1.3 | Crotalus durissus terrificus | 28 | Inhibitor for hEAG1 (Kv10.1) channel | |
BjSP | Bothrops jararaca | 28 | Inhibitor for hEAG1 (Kv10.1) channel | |
Three-finger toxins | ||||
Cardiotoxin-I | Naja kaouthia | 6.7 | Possible antagonist for KATP channel involved in stimulating insulin release | [179,182] |
Crotalphine | Crotalus durissus terrificus | 1.5 | Possible agonist for K+ channels mediating antinociceptive effect | [184,185] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
AlShammari, A.K.; Abd El-Aziz, T.M.; Al-Sabi, A. Snake Venom: A Promising Source of Neurotoxins Targeting Voltage-Gated Potassium Channels. Toxins 2024, 16, 12. https://doi.org/10.3390/toxins16010012
AlShammari AK, Abd El-Aziz TM, Al-Sabi A. Snake Venom: A Promising Source of Neurotoxins Targeting Voltage-Gated Potassium Channels. Toxins. 2024; 16(1):12. https://doi.org/10.3390/toxins16010012
Chicago/Turabian StyleAlShammari, Altaf K., Tarek Mohamed Abd El-Aziz, and Ahmed Al-Sabi. 2024. "Snake Venom: A Promising Source of Neurotoxins Targeting Voltage-Gated Potassium Channels" Toxins 16, no. 1: 12. https://doi.org/10.3390/toxins16010012
APA StyleAlShammari, A. K., Abd El-Aziz, T. M., & Al-Sabi, A. (2024). Snake Venom: A Promising Source of Neurotoxins Targeting Voltage-Gated Potassium Channels. Toxins, 16(1), 12. https://doi.org/10.3390/toxins16010012