Gaston Ramon’s Big Four
1. Introduction
2. The Early Beginnings of Ramon’s Discoveries
3. First Discovery: The Flocculation Mechanism (1922)
4. Second Discovery: Toxoids (1923)
5. Third Discovery: Adjuvant (1925)
5.1. History of Adjuvants
5.2. Mode of Action of Adjuvants
Adjuvant | Discovery (D) or Registered (R) Dates | Mode of Action | Use in Human | References |
---|---|---|---|---|
Tapioca | 1925 (D) | Depot effect | No | [76] |
Aluminum-containing adjuvants: Aluminum hydroxide (AlOOH), AAHS | Alum: 1926 (D) AlOOH: 1938 (D) AAHS: 2006 (R) | Depot effect; High Th2 response; Stimulation of the innate immune response; APC recruitment and activation; Optimization of APC phagocytosis | AlOOH: DTP Pertussis; Poliomyelitis; Pneumococcus; Hepatitis A; Hepatitis B; Anthrax AAHS: Hemophilus-type B; Hepatitis A (inactivated); Hepatitis B (recombinant); Tetravalent Papillomavirus (recombinant) | [51,93,94] |
Glycoconjugation (PS + toxoid) | 1929 (D)–1985 (R) | PS = Increased production of specific antibodies; Toxoid = stimulation of immune memory | Hemophilus-type B; Meningitis AC; Pneumococcus 13 | [95,96] |
Calcium salts | 1931 (D)–1960 (R) | Depot effect; Stimulation of cell immunity; Increased production of specific antibodies; Th1 and Th2 responses | DTP Pertussis; Poliomyelitis | [97,98] |
Freund’s adjuvant (water-in-oil emulsion) | 1939 (D) | Depot effect; Stimulation of the innate immune response; Th1 response | No (except incomplete Freund’s adjuvant) | [99] |
Saponin | 1947 (D) | High Th1 and Th2 responses | Used in combination in adjuvant platforms | [90,100,101,102] |
Lipopolysaccharides (LPS, MPLA) | 1956 (D) | Activation of TLR4 | Used in combination in adjuvant platforms | [103] |
Liposomes | 1974 (D) | Depot effect; Optimization of APC phagocytosis; Increased production of specific antibodies; Stimulation of cell immunity; Moderate Th2 response | Hepatitis A; Papillomavirus; Influenza; Malaria | [104,105,106] |
Virosomes | 1975 (D)–1994 (R) | HA-mediated cytoplasmic antigen delivery; APC recruitment and activation; Optimization of APC phagocytosis; Cytokine production | Influenza; Hepatitis A | [106,107,108] |
Cytokines | 1983 (D)–19xx (R) | Depending on cytokines: Enhancement of other cytokine production; Increases MHC-II expression on APC; APC recruitment and activation; Stimulation of immunological memory | Licensed for therapeutic vaccines against skin cancers and autoimmune skin disorders; Experimental studies with Influenza, Hepatitis B, Malaria and Flaviviridae vaccine candidates; Not yet approved for infectious disease human vaccines | [73,109,110,111,112] |
Nucleic acid-based (dsRNA, Poly(I:C), CpG 1018) | 1988 (D)–2017 (R) | Activation of TLR3 (dsDNA, Poly(I:C)) or TLR9 (CpG 1018); APC recruitment and activation; Optimization of APC phagocytosis; Th1 response | Hepatitis B (recombinant); SARS-CoV-2 spike (recombinant) | [113,114,115,116] |
MF-59 (oil-in-water emulsion) | 1997 (R) | Depot effect; APC recruitment and activation; Optimization of APC phagocytosis; Th1 and Th2 responses | Influenza (inactivated) | [117] |
AS04 (MPLA + alum) | 2004 (R) | APC recruitment and activation; Activation of TLR 4; Enhancement of cytokine production; | Hepatitis B; Papillomavirus bivalent (recombinant) | [113,118] |
AS03 (oil-in-water emulsion) | 2009 (R) | Depot effect; Stimulation of the innate immune response; APC recruitment and activation; Optimization of antigen presentation to the lymphatic system | Influenza H5N1 (inactivated) | [119] |
AS01 (MPLA + QS-21) | 2015 (R) | Stimulation of the innate immune response; Recruitment and activation of leukocytes and APC; Activation of TLR 4; Optimization of antigen presentation to the lymphatic system | Malaria; Varicella-Zoster (recombinant) | [113,120] |
Lipid nanoparticles | 2020 (R) | Depot effect; Sustained antigen release; Protection and bioavailability of antigens; Optimization of antigen presentation to the lymphatic system | COVID-19 | [78] |
6. Fourth Discovery: Combined Vaccination (1926)
7. Conclusions
Funding
Conflicts of Interest
References
- Plotkin, S.A. Six revolutions in vaccinology. Pediatr. Infect. Dis. J. 2005, 24, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Cavaillon, J.M. Historical links between toxinology and immunology. Pathog. Dis. 2018, 76, fty019. [Google Scholar] [CrossRef] [PubMed]
- Lahaie, Y.M.; Watier, H. Contribution of physiologists to the identification of the humoral component of immunity in the 19th century. mABS 2017, 9, 774–780. [Google Scholar] [CrossRef] [PubMed]
- Héricourt, J.; Richet, C. Sur un microbe pyogène et septique (Staphylococcus pyosepticus) et sur la vaccination contre ses effets. C. R. Acad. Sci. 1888, 107, 690–692. [Google Scholar]
- Héricourt, J.; Richet, C. De la transfusion péritonéale et de l’immunité qu’elle confère. C. R. Acad. Sci. 1888, 107, 748–750. [Google Scholar]
- Behring, E.; Kitasato, S. Über das Zustandekommen der Diphtherie-Immunität und der Tetanus-Immunität bei Thieren. Dtsch. Med. Wochenschr. 1890, 16, 1113–1114. [Google Scholar]
- Behring, E. Untersuchungen uber das Zustandekommen der Diphtherie-Immunitat and der Tetanus-Immunitat bei Thieren. Dtsch. Med. Wochenschr. 1890, 16, 1145–1148. [Google Scholar]
- Charrin, A. Réflexions à propos de la communication de M. Richet sur les effets de la transfusion (Soc. Biol., 31 mai 1890). Expériences de M. Bouchard. C. R. Soc Biol. 1890, 42, 331–332. [Google Scholar]
- Ehrlich, P. Experimentelle Untersuchungen über Immunität. II. Ueber Abrin. Dtsch. Med. Wschr. 1891, 17, 1218–1219. [Google Scholar] [CrossRef]
- Gilbrin, E. Gaston Ramon. (1886–1963)—Le soixantième anniversaire des anatoxines. Hist. Sci. Med. 1984, 18, 53–60. [Google Scholar]
- Ebisawa, I. The encounter of Gaston Ramon (1886-1963) with formalin: A biographical study of a great scientist. Kitasato Arch. Exp. Med. 1987, 60, 55–70. [Google Scholar] [PubMed]
- Chevassus-au-Louis, N. Savants sous l’Occupation; Perrin, Coll. Tempus: Paris, France, 2008; 285p. [Google Scholar]
- Ramon, G. Sur une technique de titrage in vitro du sérum antidiphtérique. C. R. Soc. Biol. 1922, 86, 711–712. [Google Scholar]
- Ramon, G. Médecine expérimentale. Sur le pouvoir floculant et sur les propriétés immunisantes d’une toxine diphtérique rendue anatoxique (anatoxine). C. R. Acad. Sci. (Paris) 1923, 177, 1338–1340. [Google Scholar]
- Ramon, G. Sur la toxine et l’anatoxine diphtérique. Pouvoir floculant et propriétés immunisantes. Ann. Inst. Pasteur. 1924, 38, 1–10. [Google Scholar]
- Ramon, G.; Laffaille, A. Sur l’immunisation antitétanique. C. R. Soc. Biol. 1925, 93, 582–584. [Google Scholar]
- Ramon, G. Sur l’augmentation anormale de l’antitoxine chez les chevaux producteurs de sérum antidiphtérique. Bull. Soc. Centr. Med. Vet. 1925, 101, 227–234. [Google Scholar]
- Ramon, G. Procédé pour accroitre la production des antitoxines. Ann. Inst. Pasteur. 1926, 40, 1–10. [Google Scholar]
- Ramon, G.; Zoeller, C. Les vaccins associés d’une anatoxine et d’un vaccin microbien (T. A. B.) ou par mélanges d’anatoxines. C. R. Soc. Biol. 1926, 94, 106–109. [Google Scholar]
- Calmette, A. L’œuvre de l’Institut Pasteur pendant la guerre. Rev. Hyg. 1921, 53, 463–482. [Google Scholar]
- Larcan, A.; Ferrandis, J.J. Le Service de Santé aux Armées Pendant la Première Guerre Mondiale; LBM: Paris, France, 2008; 596p. [Google Scholar]
- Joy, R.J.T. Tetanus. In The Cambridge World History of Human Disease; Kiple, K.F., Ed.; Cambridge University Press: Cambridge, UK, 1993; pp. 1043–1046. [Google Scholar]
- Ramon, G. Sur l’association de l’aldéhyde formique et de la chaleur pour assurer la stérilité, la stabilité, etc., des sérums et de diverses substances thérapeutiques d’origine biologique. Bull. Acad. Med. 1946, 130, 525–529. [Google Scholar]
- Kraus, R. Ueber spezifische Reaktionen in keimfreien Filtraten aus Cholera-Typhus-Pestbouillonculturen erzeugt durch homologes Serum. Wien. Klin. Wochenschr. 1897, 10, 736–739. [Google Scholar]
- Gay, F.P.; Stone, R.L. The fate of various antibodies in the precipitin reaction. J. Immunol. 1916, 1, 83–104. [Google Scholar] [CrossRef]
- Ramon, G. Floculation dans un mélange neutre de toxine et d’antitoxine diphtériques. C. R. Soc. Biol. 1922, 86, 661–663. [Google Scholar]
- Ramon, G. Sur la spécificité et la signification du phénomène de floculation dans les mélanges toxine-antitoxine diphtériques. C. R. Soc. Biol. 1927, 97, 538–540. [Google Scholar]
- Ramon, G. A propos de la vitesse de floculation du sérum antidiphtérique vis-à-vis de la toxine spécifique. C. R. Soc. Biol. 1927, 97, 635–637. [Google Scholar]
- Ramon, G.; Grasset, E. La réaction de floculation et le dosage du pouvoir antitoxique du sérum antidiphtérique purifié. C. R. Soc. Biol. 1926, 115, 436–438. [Google Scholar]
- Ramon, G.; Richou, R. La méthode de floculation. Vingt années d’application au titrage des sérums antidiphtériques destinés à l’usage thérapeutique. C. R. Soc. Biol. 1944, 138, 210–211. [Google Scholar]
- Ramon, G. A propos du titrage in vitro du sérum antidiphtérique par la floculation. C. R. Soc. Biol. 1922, 86, 813–815. [Google Scholar]
- Ramon, G.; Zoeller, C. La floculation dans les mélanges antigène-diphtérique-sérum humain, et l’appréciation de l’immunité antidiphtérique chez l’homme. C. R. Soc. Biol. 1927, 97, 1153–1155. [Google Scholar]
- Ramon, G. Sur l’affinité de l’antitoxine diphtérique pour l’antigène spécifique (toxine ou anatoxine). C. R. Soc. Biol. 1930, 104, 31–33. [Google Scholar]
- Marrack, J.R.; Hoch, H.; Johns, R.G. The valency of antibodies. Br. J. Exp. Pathol. 1951, 32, 212–230. [Google Scholar]
- Tiselius, A.; Kabat, E.A. Electrophoresis of immune serum. Science 1938, 87, 416–417. [Google Scholar] [CrossRef]
- Merler, E.; Rosen, F.S. The gamma globulins. I. The structure and synthesis of the immunoglobulins. N. Engl. J. Med. 1966, 275, 480–486. [Google Scholar] [CrossRef]
- Merler, E.; Rosen, F.S. The gamma globulins. I. The structure and synthesis of the immunoglobulins (Concluded). N. Engl. J. Med. 1966, 275, 536–542. [Google Scholar] [CrossRef]
- Ouchterlony, O. In vitro method for testing the toxin-producing capacity of diphtheria bacteria. Acta Pathol. Microbiol. Scand. 1948, 25, 186–191. [Google Scholar] [CrossRef]
- Ouchterlony, O. Antigen-antibody reactions in gels. Acta Pathol. Microbiol. Scand. 1949, 26, 507–515. [Google Scholar] [CrossRef]
- Grabar, P.; Williams, C.A. Méthode permettant l’étude conjuguée des propriétés électrophorétiques et immunochimiques d’un mélange de protéines; application au sérum sanguin. Biochim. Biophys. Acta 1953, 10, 193–194. [Google Scholar] [CrossRef]
- Burton, D.R. Antibodies, viruses and vaccines. Nat. Rev. Immunol. 2002, 2, 706–713. [Google Scholar] [CrossRef]
- Chandler, T.L.; Yang, A.; Otero, C.E.; Permar, S.R.; Caddy, S.L. Protective mechanisms of nonneutralizing antiviral antibodies. PLoS Pathog. 2023, 19, e1011670. [Google Scholar] [CrossRef] [PubMed]
- Ramon, G. Pouvoir floculant et pouvoir toxique de la toxine diphtérique. C. R. Soc. Biol. 1923, 89, 2–4. [Google Scholar]
- Ehrlich, P. Die wertbemessung des Diphterieheilserums und deren theoretische Grundlagen. Klin. Jahrbuch. 1898, 6, 299–326. [Google Scholar]
- Greenberg, L.; Roblin, M. The biological assay of diphtherial toxoid. J. Immunol. 1948, 59, 221–230. [Google Scholar] [CrossRef]
- Silverstein, A.M. Paul Ehrlich’s passion: The origins of his receptor immunology. Cell Immunol. 1999, 194, 213–221. [Google Scholar] [CrossRef]
- Brieger, L.; Kitasato, S.; Wassermann, A. Ueber Immunität und Giftfestigung. Zeitschr. Hyg. 1892, 12, 137–182. [Google Scholar] [CrossRef]
- Vaillard, L. Sur quelques points concernant l’immunité contre le tétanos. Ann. Inst. Pasteur. 1892, 6, 224–232. [Google Scholar]
- Roux, E.; Vaillard, L. Contribution à l’étude du tétanos. Prévention et traitement par le sérum antitoxique. Ann. Inst. Pasteur. 1893, 7, 65–140. [Google Scholar]
- Hartley, P. The antigenic properties of precipitates produced by the interaction of diphtheria toxin and antitoxin. Br. J. Exp. Pathol. 1925, 6, 112–122. [Google Scholar]
- Glenny, A.T.; Pope, C.G.; Waddington, H.; Wallace, U. Immunological notes. XVII. The antigenic value of the toxin-antitoxin precipitate of Ramon. J. Pathol. Bacteriol. 1926, 29, 31–40. [Google Scholar] [CrossRef]
- Glenny, A.T.; Pope, C.G. Diphtheria toxoid-antitoxin floccules. J. Pathol. 1927, 30, 587–592. [Google Scholar] [CrossRef]
- Ramon, G. De la valeur comparée de l’anatoxine diphtérique et du floculat anatoxine-antitoxine pour la production de l’immunité antitoxique spécifique. C. R. Soc. Biol. 1928, 98, 351–354. [Google Scholar]
- Héricourt, J. La Sérothérapie: Historique, état Actuel, Bibliographie; Rueff: Paris, France, 1899; 336p. [Google Scholar]
- Roux, E.; Yersin, A. Contribution à l’étude de la diphtérie (2ème mémoire). Ann. Inst. Pasteur. 1889, 3, 273–288. [Google Scholar]
- Faber, K. Die Pathogenese des Tetanus. Berl. Klin. Wochensch. 1890, 27, 717–720. [Google Scholar]
- Ramon, G. Résultats de trente années d’application dans le monde, de la vaccination contre la diphtérie au moyen de l’anatoxine diphtérique. C. R. Acad. Sci. 1953, 237, 1609–1613. [Google Scholar]
- Ramon, G. Des anatoxines et des vaccinations anatoxiques et en particulier de la vaccination antidiphtérique. C. R. Acad. Sci. (Paris) 1961, 253, 1237–1239. [Google Scholar]
- Baron, S.; Bimet, F.; Lequellec-Nathan, M.; Patey, Q.; Rebière, L.; Vachon, F. Conduite à tenir lors de l’apparition d’un cas de diphtérie. Bull. Epidémiol Hebdo. 1998, 23, 97–101. [Google Scholar]
- WHO Immunization Data Portal. Available online: https://immunizationdata.who.int/compare.html (accessed on 13 November 2023).
- Acosta, A.M.; Pedro, L.; Moro, P.L.; Susan Hariri, S.; Tiwari, T.S.P. Diphtheria. In Centers for Disease Control and Prevention. Epidemiology and Prevention of Vaccine-Preventable Diseases, 14th ed.; Hall, E., Wodi, A.P., Hamborsky, J., Eds.; Public Health Foundation: Washington, DC, USA, 2021; pp. 97–110. Available online: https://www.cdc.gov/vaccines/pubs/pinkbook/dip.html (accessed on 13 November 2023).
- Boyd, J.S.K. Tetanus in the African and European theatres of war, 1939–1945. Lancet 1946, 1, 113–119. [Google Scholar] [CrossRef] [PubMed]
- Long, P.H. Medical progress and medical education during the war. J. Am. Med. Assoc. 1946, 130, 983–990. [Google Scholar] [CrossRef] [PubMed]
- Ramon, G. La vaccination contre le tétanos au moyen de l’anatoxine tétanique; résultats d’ensemble obtenus dans certaines armées alliées durant la guerre. Bull. Acad. Med. 1946, 130, 520–525. [Google Scholar]
- Ramon, G. Le principe des substances adjuvantes et stimulantes de l’immunité a été posé il y a trente ans. Ses. bases—Ses applications. Bull. Acad. Vét. 1955, 28, 337–340. [Google Scholar]
- Dresser, D.W. An assay for adjuvanticity. Clin. Exp. Immunol. 1968, 3, 877–888. [Google Scholar]
- Aguilar, J.C.; Rodríguez, E.G. Vaccine adjuvants revisited. Vaccine 2007, 25, 3752–3762. [Google Scholar] [CrossRef] [PubMed]
- McKee, A.S.; Munks, M.W.; Marrack, P. How do adjuvants work? Important considerations for new generation adjuvants. Immunity 2007, 27, 687–690. [Google Scholar] [CrossRef] [PubMed]
- Del Giudice, G.; Rappuoli, R.; Didierlaurent, A.M. Correlates of adjuvanticity: A review on adjuvants in licensed vaccines. Semin. Immunol. 2018, 39, 14–21. [Google Scholar] [CrossRef] [PubMed]
- Chedid, L. Adjuvants of immunity. Ann. Inst. Pasteur Immunol. 1985, 136, 283–291. [Google Scholar] [CrossRef] [PubMed]
- Edelman, R. The development and use of vaccine adjuvants. Mol. Biotechnol. 2002, 21, 129–148. [Google Scholar] [CrossRef] [PubMed]
- Cox, J.C.; Coulter, A.R. Adjuvants—A classification and review of their modes of action. Vaccine 1997, 15, 248–256. [Google Scholar] [CrossRef] [PubMed]
- Audibert, F.M.; Lise, L.D. Adjuvants: Current status, clinical perspectives and future prospects. Immunol. Today 1993, 14, 281–284. [Google Scholar] [CrossRef] [PubMed]
- Ramon, G. Sur le traitement sérique spécifique des plaies infectées. Bull. Soc. Centr. Med. Vet. 1913, 67, 166–167. [Google Scholar]
- Ramon, G. Sur un procédé d’immunisation antitoxique et de production des antitoxines. Bull. Soc. Centr. Med. Vet. 1925, 101, 348–351. [Google Scholar]
- Ramon, G. Sur la production des antitoxines. CR Acad. Sci. (Paris) 1925, 181, 157–159. [Google Scholar]
- Turley, J.L.; Lavelle, E.C. Resolving adjuvant mode of action to enhance vaccine efficacy. Curr. Opin. Immunol. 2022, 77, 102229. [Google Scholar] [CrossRef] [PubMed]
- Zhao, T.; Cai, Y.; Jiang, Y.; He, X.; Wei, Y.; Yu, Y.; Tian, X. Vaccine adjuvants: Mechanisms and platforms. Signal Transduct. Target. Ther. 2023, 8, 283. [Google Scholar] [CrossRef] [PubMed]
- Glenny, A.T.; Buttle, G.A.H.; Stevens, M.F. Rate of disappearance of diphtheria toxoid injected into rabbits and guinea-pigs: Toxoid precipitated with alum. J. Pathol. Bacteriol. 1931, 34, 267–275. [Google Scholar] [CrossRef]
- Goldenthal, K.L.; Cavagnaro, J.A.; Alving, C.R.; Vogel, F.R. Safety evaluation of vaccine adjuvants: National Cooperative Vaccine Development meeting working group. AIDS Res. Hum. Retroviruses 1993, 9, S45–S49. [Google Scholar]
- Vogel, F.R. Immunologic adjuvants for modern vaccine formulations. Ann. N. Y. Acad. Sci. 1995, 754, 153–160. [Google Scholar] [CrossRef] [PubMed]
- Shi, S.; Zhu, H.; Xia, X.; Liang, Z.; Ma, X.; Sun, B. Vaccine adjuvants: Understanding the structure and mechanism of adjuvanticity. Vaccine 2019, 37, 3167–3178. [Google Scholar] [CrossRef] [PubMed]
- Audibert, F. Adjuvants for vaccines, a quest. Int. Immunopharmacol. 2003, 3, 1187–1193. [Google Scholar] [CrossRef]
- Roche, P.A.; Furuta, K. The ins and outs of MHC class II-mediated antigen processing and presentation. Nat. Rev. Immunol. 2015, 15, 203–216. [Google Scholar] [CrossRef]
- Embgenbroich, M.; Burgdorf, S. Current Concepts of Antigen Cross-Presentation. Front. Immunol. 2018, 9, 1643. [Google Scholar] [CrossRef]
- Lee, W.; Suresh, M. Vaccine adjuvants to engage the cross-presentation pathway. Front. Immunol. 2022, 13, 940047. [Google Scholar] [CrossRef]
- Singleton, K.L.; Joffe, A.; Leitner, W.W. Review: Current trends, challenges, and success stories in adjuvant research. Front. Immunol. 2023, 14, 1105655. [Google Scholar] [CrossRef] [PubMed]
- Awate, S.; Babiuk, L.A.; Mutwiri, G. Mechanisms of action of adjuvants. Front. Immunol. 2013, 4, 114. [Google Scholar] [CrossRef]
- Petkar, K.C.; Patil, S.M.; Chavhan, S.S.; Kaneko, K.; Sawant, K.K.; Kunda, N.K.; Saleem, I.Y. An Overview of Nanocarrier-Based Adjuvants for Vaccine Delivery. Pharmaceutics 2021, 13, 455. [Google Scholar] [CrossRef] [PubMed]
- Schijns, V.E.; Lavelle, E.C. Trends in vaccine adjuvants. Expert. Rev. Vaccines 2011, 10, 539–550. [Google Scholar] [CrossRef] [PubMed]
- Roth, G.A.; Picece, V.C.T.M.; Ou, B.S.; Luo, W.; Pulendran, B.; Appel, E.A. Designing spatial and temporal control of vaccine responses. Nat. Rev. Mater. 2022, 7, 174–195. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.X.; Tseng, J.C.; Yu, G.Y.; Luo, Y.; Huang, C.F.; Hong, Y.R.; Chuang, T.H. Recent Advances in the Development of Toll-like Receptor Agonist-Based Vaccine Adjuvants for Infectious Diseases. Pharmaceutics 2022, 14, 423. [Google Scholar] [CrossRef] [PubMed]
- Brewer, J.M. (How) do aluminium adjuvants work? Immunol. Lett. 2006, 102, 10–15. [Google Scholar] [CrossRef]
- Lambrecht, B.N.; Kool, M.; Willart, M.A.; Hammad, H. Mechanism of action of clinically approved adjuvants. Curr. Opin. Immunol. 2009, 21, 23–29. [Google Scholar] [CrossRef]
- Avery, O.T.; Goebel, W.F. Chemo-immunological studies on conjugated carbohydrate-proteins: Ii. immunological specificity of synthetic sugar-protein antigens. J. Exp. Med. 1929, 30, 533–550. [Google Scholar] [CrossRef]
- van der Put, R.M.F.; Metz, B.; Pieters, R.J. Carriers and Antigens: New Developments in Glycoconjugate Vaccines. Vaccines 2023, 11, 219. [Google Scholar] [CrossRef]
- Ramon, G. Sur l’immunisation antitoxique et la production des antitoxines. Les mélanges d’antigène spécifique et de substances non spécifiques (tapioca, chlorure de calcium, etc.). Ann. Inst. Pasteur. 1931, 47, 339–357. [Google Scholar]
- Masson, J.D.; Thibaudon, M.; Bélec, L.; Crépeaux, G. Calcium phosphate: A substitute for aluminum adjuvants? Expert. Rev. Vaccines 2017, 16, 289–299. [Google Scholar] [CrossRef] [PubMed]
- Freund, J.; Casals, J.; Hosmer, E.P. Sensitization and antibody formation after injection of tubercle bacilli and paraffin oil. Proc. Soc. Exp. Biol. Med. 1937, 37, 509–513. [Google Scholar] [CrossRef]
- Mazzucchi, M. Il nuovo vaccino anticarbonchioso “Carbozoo” nella sua costituzione e nelle sue applicazioni pratiche. Clin. Vet. 1931, 54, 577–580. [Google Scholar]
- Mazzucchi, M. Le Charbon Hématique; Twelfth International Veterinary Congress: New York, NY, USA, 1934; pp. 138–167. Available online: https://books.google.fr/books?id=gi_8xjXyEy0C&printsec=frontcover&hl=fr&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=true (accessed on 6 December 2023).
- Campbell, J.B.; Peerbaye, Y.A. Saponin. Res. Immunol. 1992, 143, 526–530; discussion 577–578. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.Q.; Bazin-Lee, H.; Evans, J.T.; Casella, C.R.; Mitchell, T.C. MPL Adjuvant Contains Competitive Antagonists of Human TLR4. Front Immunol. 2020, 11, 577823. [Google Scholar] [CrossRef] [PubMed]
- Allison, A.G.; Gregoriadis, G. Liposomes as immunological adjuvants. Nature 1974, 252, 252. [Google Scholar] [CrossRef]
- Nisini, R.; Poerio, N.; Mariotti, S.; De Santis, F.; Fraziano, M. The Multirole of Liposomes in Therapy and Prevention of Infectious Diseases. Front. Immunol. 2018, 9, 155. [Google Scholar] [CrossRef]
- Wang, N.; Chen, M.; Wang, T. Liposomes used as a vaccine adjuvant-delivery system: From basics to clinical immunization. J. Control. Release 2019, 303, 130–150. [Google Scholar] [CrossRef]
- Almeida, J.D.; Edwards, D.C.; Brand, C.M.; Heath, T.D. Formation of virosomes from influenza subunits and liposomes. Lancet 1975, 2, 899–901. [Google Scholar] [CrossRef]
- Felnerova, D.; Viret, J.F.; Glück, R.; Moser, C. Liposomes and virosomes as delivery systems for antigens, nucleic acids and drugs. Curr. Opin. Biotechnol. 2004, 15, 518–529. [Google Scholar] [CrossRef] [PubMed]
- Staruch, M.J.; Wood, D.D. The adjuvanticity of interleukin 1 in vivo. J. Immunol. 1983, 130, 2191–2194. [Google Scholar] [CrossRef]
- Heath, A.W.; Playfair, J.H. Cytokines as immunological adjuvants. Vaccine 1992, 10, 427–434. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Gao, N.; Wu, J.; Zheng, X.; Li, J.; Fan, D.; An, J. Variable effects of the co-administration of a GM-CSF-expressing plasmid on the immune response to flavivirus DNA vaccines in mice. Immunol. Lett. 2014, 162 Pt A, 140–148. [Google Scholar] [CrossRef]
- Littauer, E.Q.; Mills, L.K.; Brock, N.; Esser, E.S.; Romanyuk, A.; Pulit-Penaloza, J.A.; Vassilieva, E.V.; Beaver, J.T.; Antao, O.; Krammer, F.; et al. Stable incorporation of GM-CSF into dissolvable microneedle patch improves skin vaccination against influenza. J. Control. Release 2018, 276, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Reed, S.G.; Orr, M.T.; Fox, C.B. Key roles of adjuvants in modern vaccines. Nat. Med. 2013, 19, 1597–1608. [Google Scholar] [CrossRef] [PubMed]
- Campbell, J.D. Development of the CpG Adjuvant 1018: A Case Study. Methods Mol Biol. 2017, 1494, 15–27. [Google Scholar] [CrossRef]
- Brown, K.; Puig, M.; Haile, L.; Ireland, D.; Martucci, J.; Verthelyi, D. Nucleic Acids as Adjuvants. In Oligonucleotide-Based Drugs and Therapeutics: Preclinical and Clinical Considerations for Development, 1st ed.; Ferrari, N., Seguin, R., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2018; pp. 411–444. [Google Scholar]
- Ziegler, A.; Hinz, T.; Kalinke, U. RNA-based adjuvants: Immunoenhancing effect on antiviral vaccines and regulatory considerations. Crit. Rev. Immunol. 2019, 39, 1–14. [Google Scholar] [CrossRef]
- De Gregorio, E.; Caproni, E.; Ulmer, J.B. Vaccine adjuvants: Mode of action. Front. Immunol. 2013, 4, 214. [Google Scholar] [CrossRef]
- Didierlaurent, A.M.; Morel, S.; Lockman, L.; Giannini, S.L.; Bisteau, M.; Carlsen, H.; Kielland, A.; Vosters, O.; Vanderheyde, N.; Schiavetti, F.; et al. AS04, an aluminum salt- and TLR4 agonist-based adjuvant system, induces a transient localized innate immune response leading to enhanced adaptive immunity. J. Immunol. 2009, 183, 6186–6197. [Google Scholar] [CrossRef]
- Garçon, N.; Vaughn, D.W.; Didierlaurent, A.M. Development and evaluation of AS03, an Adjuvant System containing α-tocopherol and squalene in an oil-in-water emulsion. Expert. Rev. Vaccines 2012, 11, 349–366. [Google Scholar] [CrossRef] [PubMed]
- Didierlaurent, A.M.; Laupèze, B.; Di Pasquale, A.; Hergli, N.; Collignon, C.; Garçon, N. Adjuvant system AS01: Helping to overcome the challenges of modern vaccines. Expert. Rev. Vaccines 2017, 16, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Ramon, G. Considérations sur la méthode des «vaccinations associées » et sur son application à la lutte contre certaines maladies infectieuses (diphtérie, tétanos, fièvres typhoïdes). La leçon des faits. Presse Méd. (Paris) 1945, 8, 93. [Google Scholar]
- Bonanni, P.; Steffen, R.; Schelling, J.; Balaisyte-Jazone, L.; Posiuniene, I.; Zatoński, M.; Van Damme, P. Vaccine co-administration in adults: An effective way to improve vaccination coverage. Hum. Vaccines Immunother. 2023, 19, 2195786. [Google Scholar] [CrossRef]
- Butler, D. Close but no Nobel: The scientists who never won. Nature 2016. [Google Scholar] [CrossRef]
- Ramon, G. A propos de la production du sérum antidiphtérique et au sujet des substances adjuvantes de l’immunité, du principe des anatoxines et de la méthode de floculation. Bull. Acad. Méd. 1945, 129, 501–511. [Google Scholar]
- Baxby, D. The discovery of diphtheria toxoid and the primary and secondary immune response: Glenny AT, Südmersen HJ. J. Hyg. 1921; 20: 176–220. Epidemiol. Infect. 2005, 133 (Suppl. S1), S21–S22. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chippaux, J.-P. Gaston Ramon’s Big Four. Toxins 2024, 16, 33. https://doi.org/10.3390/toxins16010033
Chippaux J-P. Gaston Ramon’s Big Four. Toxins. 2024; 16(1):33. https://doi.org/10.3390/toxins16010033
Chicago/Turabian StyleChippaux, Jean-Philippe. 2024. "Gaston Ramon’s Big Four" Toxins 16, no. 1: 33. https://doi.org/10.3390/toxins16010033
APA StyleChippaux, J. -P. (2024). Gaston Ramon’s Big Four. Toxins, 16(1), 33. https://doi.org/10.3390/toxins16010033