Effect of Temperature, pH, and aw on Cereulide Synthesis and Regulator Genes Transcription with Respect to Bacillus cereus Growth and Cereulide Production
Abstract
:1. Introduction
2. Results
2.1. Effect of Environments on Emetic B. cereus Behavior and Cereulide Production
2.1.1. B. cereus Survival
2.1.2. B. cereus Growth with or without Cereulide Production
2.2. Effect of Environments on Cereulide Synthesis-Related Gene Expression
2.2.1. Effect of a Single Factor
2.2.2. Effects of Two Factors
3. Discussion
3.1. The Effect of Temperature, pH, and aw on B. cereus Behavior and Cereulide Production
3.2. The Effect of Temperature, pH, and aw on Cereulide-Related Gene Expression
3.3. Relationship between B. cereus Growth and Cereulide Production
4. Conclusions
5. Materials and Methods
5.1. Preparation of Stock Culture
5.2. Experimental Design
5.3. Samples Inoculation and Growth Quantification
5.4. Growth Modelling
5.5. Cereulide Extraction
5.6. Cereulide Quantification
5.7. Quantitative RT-PCR
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jovanovic, J.; Ornelis, V.F.M.; Madder, A.; Rajkovic, A. Bacillus cereus food intoxication and toxicoinfection. Compr. Rev. Food Sci. Food Saf. 2021, 20, 3719–3761. [Google Scholar] [CrossRef] [PubMed]
- Rouzeau-Szynalski, K.; Stollewerk, K.; Messelhaeusser, U.; Ehling-Schulz, M. Why be serious about emetic Bacillus cereus: Cereulide production and industrial challenges. Food Microbiol. 2020, 85, 103279. [Google Scholar] [CrossRef] [PubMed]
- Grutsch, A.; Nimmer, P.; Pittsley, R.; Kornilow, K.; McKillip, J. Molecular pathogenesis of Bacillus spp., with emphasis on the dairy industry. Fine Focus 2018, 4, 203–222. [Google Scholar] [CrossRef]
- EFSA Panel on Biological Hazards. Risks for public health related to the presence of Bacillus cereus and other Bacillus spp. Including Bacillus thuringiensis in foodstuffs. EFSA J. 2016, 14, 4524. [Google Scholar] [CrossRef]
- Rajkovic, A.; Uyttendaele, M.; Vermeulen, A.; Andjelkovic, M.; Fitz-James, I.; In’t Veld, P.; Denon, Q.; Verhe, R.; Debevere, J. Heat resistance of Bacillus cereus emetic toxin, cereulide. Lett. Appl. Microbiol. 2008, 46, 536–541. [Google Scholar] [CrossRef] [PubMed]
- Delbrassinne, L.; Andjelkovic, M.; Rajkovic, A.; Bottledoorn, N.; Mahillon, J.; Van Loco, J. Follow-up of the Bacillus cereus emetic toxin production in penne pasta under household conditions using liquid chromatography coupled with mass spectrometry. Food Microbiol. 2011, 28, 1105–1109. [Google Scholar] [CrossRef]
- Lin, R.; Li, D.; Xu, Y.; Wei, M.; Chen, Q.; Deng, Y.; Wen, J. Chronic cereulide exposure causes intestinal inflammation and gut microbiota dysbiosis in mice. Environ. Pollut. 2021, 288, 117814. [Google Scholar] [CrossRef]
- Mahler, H.; Pasi, A.; Kramer, J.; Schulte, P.; Scoging, A.; Bar, W.; Krahenbuhl, S. 1997. Fulminant liver failure in association with the emetic toxin of Bacillus cereus. N. Engl. J. Med. 1997, 336, 1142–1148. [Google Scholar] [CrossRef]
- Dierick, K.; Van Coillie, E.; Swiecicka, I.; Meyfroidt, G.; Devlieger, H.; Meulemans, A.; Hoedemaekers, G.; Fourie, L.; Heyndrickx, M.; Mahillon, J. Fatal family outbreak of Bacillus cereus-associated food poisoning. J. Clin. Microbiol. 2005, 43, 4277–4279. [Google Scholar] [CrossRef]
- Shiota, M.; Saitou, K.; Mizumoto, H.; Matsusaka, M.; Agata, N.; Nakayama, M.; Kage, M.; Tatsumi, S.; Okamoto, A.; Yamaguchi, S.; et al. Rapid detoxification of cereulide in Bacillus cereus food poisoning. Pediatrics 2010, 125, e951–e955. [Google Scholar] [CrossRef]
- Naranjo, M.; Denayer, S.; Botteldoorn, N.; Delbrassinne, L.; Veys, J.; Waegenaere, J.; Sirtaine, N.; Driesen, R.; Sipido, K.; Mahillon, J.; et al. Sudden death of a young adult associated with Bacillus cereus food poisoning. J. Clin. Microbiol. 2011, 49, 4379–4381. [Google Scholar] [CrossRef] [PubMed]
- Lücking, G.; Frenzel, E.; Rütschle, A.; Marxen, S.; Stark, T.D.; Hofmann, T.; Scherer, S.; Ehling-Schulz, M. Ces locus embedded proteins control the non-ribosomal synthesis of the cereulide toxin in emetic Bacillus cereus on multiple levels. Front. Microbiol. 2015, 6, 1101. [Google Scholar] [CrossRef] [PubMed]
- Ehling-Schulz, M.; Frenzel, E.; Gohar, M.J. Food–bacteria interplay: Pathometabolism of emetic Bacillus cereus. Front. Microbiol. 2015, 6, 704. [Google Scholar] [CrossRef] [PubMed]
- Navaneethan, Y.; Esah, E.M.; Ismail, N. Toxins of foodborne pathogen Bacillus cereus and the regulatory factors controlling the biosynthesis of its toxins. Sains Malays. 2021, 50, 1651–1662. [Google Scholar] [CrossRef]
- Lucking, G.; Dommel, M.K.; Scherer, S.; Fouet, A.; Ehling-Schulz, M. Cereulide synthesis in emetic Bacillus cereus is controlled by the transition state regulator AbrB, but not by the virulence regulator PlcR. Microbiology 2009, 155, 922–931. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Wang, Y.; Ren, F.; Wang, X.; Zhang, W.; Pei, X.; Dong, Q. The sources of Bacillus cereus contamination and their association with cereulide production in dairy and cooked rice processing lines. Food Qual. Saf. 2023, 7, fyad023. [Google Scholar] [CrossRef]
- Augustin, M.A.; Riley, M.; Stockmann, R.; Bennett, L.; Kahl, A.; Lockett, T.; Osmond, M.; Sanguansri, P.; Stonehouse, W.; Zajac, I.; et al. Role of food processing in food and nutrition security. Trends Food Sci. Technol. 2016, 56, 115–125. [Google Scholar] [CrossRef]
- Rahman, M.S.; Rahman, M.R.T. pH in food preservation. In Handbook of Food Preservation, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2020. [Google Scholar] [CrossRef]
- Tapia, M.S.; Alzamora, S.M.; Chirife, J. Effects of water activity (aw) on microbial stability as a hurdle in food preservation. Water Act. Foods 2020, 14, 323–355. [Google Scholar] [CrossRef]
- Ellouze, M.; Buss Da Silva, N.; Rouzeau-Szynalski, K.; Coisne, L.; Cantergiani, F.; Baranyi, J. Modeling Bacillus cereus growth and cereulide formation in cereal-, dairy-, meat-, vegetable-based food and culture medium. Front. Microbiol. 2021, 12, 639546. [Google Scholar] [CrossRef]
- Kranzler, M.; Stollewerk, K.; Rouzeau-Szynalski, K.; Blayo, L.; Sulyok, M.; Ehling-Schulz, M. Temperature exerts control of Bacillus cereus emetic toxin production onpost-transcriptional levels. Front. Microbiol. 2016, 7, 1640. [Google Scholar] [CrossRef]
- Dommel, M.K.; Frenzel, E.; Strasser, B.; Blöchinger, C.; Scherer, S.; Ehling-Schulz, M. Identification of the main promoter directing cereulide biosynthesis in emetic Bacillus cereus and its application for real-time monitoring of ces gene expression in foods. Appl. Environ. Microbiol. 2010, 76, 1232–1240. [Google Scholar] [CrossRef]
- Rajkovic, A.; Uyttendaele, M.; Ombregt, S.A.; Jaaskelainen, E.; Salkinoja-Salonen, M.; Debevere, J. Influence of type of food on the kinetics and overall production of Bacillus cereus emetic toxin. J. Food Prot. 2006, 69, 847–852. [Google Scholar] [CrossRef] [PubMed]
- Dommel, M.K.; Lücking, G.; Scherer, S.; Ehling-Schulz, M. Transcriptional kinetic analyses of cereulide synthetase genes with respect to growth, sporulation and emetic toxin production in Bacillus cereus. Food Microbiol. 2011, 28, 284–290. [Google Scholar] [CrossRef]
- Carlin, F.; Albagnac, C.; Rida, A.; Guinebretiere, M.-H.; Couvert, O.; Christophe, N.-t. Variation of cardinal growth parameters and growth limits according to phylogenetic affiliation in the Bacillus cereus Group. Consequences for risk assessment. Food Microbiol. 2013, 33, 69–76. [Google Scholar] [CrossRef] [PubMed]
- Guinebretiere, M.-H.; Thompson, F.L.; Sorokin, A.; Normand, P.; Dawyndt, P.; Ehling-Schulz, M.; Svensson, B.; Sanchis, V.; Nguyen-The, C.; Heyndrickx, M.; et al. Ecological diversification in the Bacillus cereus Group. Environ. Microbiol. 2008, 10, 851–865. [Google Scholar] [CrossRef] [PubMed]
- Martínez, S.; Borrajo, R.; Franco, I.; Carballo, J. Effect of environmental parameters on growth kinetics of Bacillus cereus (ATCC 7004) after mild heat treatment. Int. J. Food Sci. 2007, 117, 223–227. [Google Scholar] [CrossRef] [PubMed]
- Troller, J.A. Water relations of foodborne bacterial pathogens-an updated review. J. Food Prot. 1986, 49, 656–670. [Google Scholar] [CrossRef]
- Ankolekar, C.; Labbé, R.G. Survival during cooking and growth from spores of diarrheal and emetic types of Bacillus cereus in rice. J. Food Prot. 2009, 72, 2386–2389. [Google Scholar] [CrossRef]
- Guérin, A.; Rønning, H.T.; Dargaignaratz, C.; Clavel, T.; Broussolle, V.; Mahillon, J.; Granum, P.E.; Nguyen-The, C.J. Cereulide production by Bacillus weihenstephanensis strains during growth at different pH values and temperatures. Food Microbiol. 2017, 65, 130–135. [Google Scholar] [CrossRef]
- Sonenshein, A. Control of key metabolic intersections in Bacillus subtilis. Nat. Rev. Microbiol. 2007, 5, 917–927. [Google Scholar] [CrossRef]
- Frenzel, E.; Doll, V.; Pauthner, M.; Lücking, G.; Scherer, S.; Ehling-Schulz, M. CodY orchestrates the expression of virulence determinants in emetic Bacillus cereus by impacting key regulatory circuits. Mol. Microbiol. 2012, 85, 67–88. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Tao, M.; Huang, K. Encapsulation of manuka essential oil in yeast microcarriers for enhanced thermal stability and antimicrobial activity. Food Bioprocess Technol. 2021, 14, 2195–2206. [Google Scholar] [CrossRef]
- Khajeh, M. Response surface modelling of lead pre-concentration from food samples by miniaturised homogenous liquid–liquid solvent extraction: Box–Behnken design. Food Chem. 2011, 129, 1832–1838. [Google Scholar] [CrossRef]
- Naghili, H.; Tajik, H.; Mardani, K.; Rouhani, S.M.R.; Ehsani, A.; Zare, P. Validation of drop plate technique for bacterial enumeration by parametric and nonparametric tests. Vet. Res. Forum. 2013, 4, 179–183. [Google Scholar] [PubMed]
- Liu, Y.; Wang, X.; Liu, B.; Yuan, S.; Qin, X.; Dong, Q. Microrisk Lab: An online freeware for predictive microbiology. Foodborne Pathog. Dis. 2021, 18, 607–615. [Google Scholar] [CrossRef] [PubMed]
- Heo, S.-K.; Lee, J.-Y.; Baek, S.-B.; Ha, S.-D. A response surface model to describe the effect of temperature and pH on the growth of Bacillus cereus in cooked rice. J. Food Prot. 2009, 72, 1296–1300. [Google Scholar] [CrossRef] [PubMed]
- Kalbhenn, E.M.; Bauer, T.; Stark, T.D.; Knüpfer, M.; Grass, G.; Ehling-Schulz, M. Detection and isolation of emetic Bacillus cereus toxin cereulide by reversed phase chromatography. Toxins 2021, 13, 115. [Google Scholar] [CrossRef] [PubMed]
- ISO 18465:2017; Microbiology of the Food Chain-Quantitative Determination of Emetic Toxin (Cereulide) Using LC-MS/MS. ISO: Geneva, Switzerland, 2017.
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Pieta, L.; Garcia, F.B.; Riboldi, G.P.; de Oliveira, L.A.; Frazzon, A.P.G.; Frazzon, J. Transcriptional analysis of genes related to biofilm formation, stress-response, and virulence in Listeria monocytogenes strains grown at different temperatures. Ann. Microbiol. 2014, 64, 1707–1714. [Google Scholar] [CrossRef]
- Li, Y.; Chen, N.; Wu, Q.; Liang, X.; Yuan, X.; Zhu, Z.; Zheng, Y.; Yu, S.; Chen, M.; Zhang, J. A flagella hook coding gene flgE positively affects biofilm formation and cereulide production in emetic Bacillus cereus. Front. Microbiol. 2022, 13, 897836. [Google Scholar] [CrossRef]
Group | Temperature (°C) | pH | aw | Ymax (log10 CFU/mL) | Cereulide Concentration (ng/g) 1 | Adj. R2 |
---|---|---|---|---|---|---|
| 15 | 6.5 | 0.945 | NG | - | - |
15 | 5 | 0.970 | NG | - | - | |
30 | 5 | 0.945 | NG | - | - | |
45 | 5 | 0.970 | NG | - | - | |
45 | 6.5 | 0.945 | NG | - | - | |
| 15 | 8 | 0.970 | 6.85 ± 0.04 | 3.15 ± 0.81 | 0.975 |
15 | 6.5 | 0.996 | 7.30 ± 0.07 | 119.16 ± 22.21 | 0.978 | |
30 | 8 | 0.996 | 8.15 ± 0.06 | 142.68 ± 13.82 | 0.995 | |
30 | 5 | 0.996 | 7.76 ± 0.07 | 220.73 ± 11.77 | 0.992 | |
30 | 6.5 | 0.970 | 7.10 ± 0.07 | 10.19 ± 2.26 | 0.988 | |
30 | 8 | 0.945 | 7.02 ± 0.06 | 11.73 ± 5.14 | 0.978 | |
| 45 | 6.5 | 0.996 | 7.16 ± 0.07 | <0.1 2 | 0.983 |
45 | 8 | 0.970 | 7.05 ± 0.06 | <0.1 2 | 0.946 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Liu, Y.; Yang, S.; Chen, Y.; Liu, Y.; Lu, D.; Niu, H.; Ren, F.; Xu, A.; Dong, Q. Effect of Temperature, pH, and aw on Cereulide Synthesis and Regulator Genes Transcription with Respect to Bacillus cereus Growth and Cereulide Production. Toxins 2024, 16, 32. https://doi.org/10.3390/toxins16010032
Wang Y, Liu Y, Yang S, Chen Y, Liu Y, Lu D, Niu H, Ren F, Xu A, Dong Q. Effect of Temperature, pH, and aw on Cereulide Synthesis and Regulator Genes Transcription with Respect to Bacillus cereus Growth and Cereulide Production. Toxins. 2024; 16(1):32. https://doi.org/10.3390/toxins16010032
Chicago/Turabian StyleWang, Yating, Yangtai Liu, Shuo Yang, Yuhang Chen, Yang Liu, Dasheng Lu, Hongmei Niu, Fanchong Ren, Anning Xu, and Qingli Dong. 2024. "Effect of Temperature, pH, and aw on Cereulide Synthesis and Regulator Genes Transcription with Respect to Bacillus cereus Growth and Cereulide Production" Toxins 16, no. 1: 32. https://doi.org/10.3390/toxins16010032
APA StyleWang, Y., Liu, Y., Yang, S., Chen, Y., Liu, Y., Lu, D., Niu, H., Ren, F., Xu, A., & Dong, Q. (2024). Effect of Temperature, pH, and aw on Cereulide Synthesis and Regulator Genes Transcription with Respect to Bacillus cereus Growth and Cereulide Production. Toxins, 16(1), 32. https://doi.org/10.3390/toxins16010032