Mycotoxins-Imprinted Polymers: A State-of-the-Art Review
Abstract
:1. Introduction
2. Drawbacks and Remedies in Mycotoxin Imprinting
2.1. The Template Mimic Approach
2.2. The Fragmental Template Approach
2.3. The Solid-Phase Polymer Synthesis Approach
3. Use of MIPs in Sample Preparation for Mycotoxin Detection
3.1. Solid-Phase Extraction with Commercial MIPs
3.2. Solid-Phase Extraction with Home-Made MIPs
3.3. On-Line Solid-Phase Extraction
3.4. Dispersive Solid-Phase Microextraction
3.5. Magnetic Solid-Phase Extraction and Stir Bar Sorptive Extraction
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Richard, J.L. Some major mycotoxins and their mycotoxicosis, an overview. Int. J. Food Microbiol. 2007, 119, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Alassane-Kpembi, I.; Schatzmayr, G.; Taranu, I.; Marin, D.; Puel, O.; Oswald, I.P. Mycotoxins co-contamination: Methodological aspects and biological relevance of combined toxicity studies. Crit. Rev. Food Sci. Nutr. 2017, 57, 3489–3507. [Google Scholar] [CrossRef] [PubMed]
- Vidal, A.; Mengelers, M.; Yang, S.P.; De Saeger, S.; De Boevre, M. Mycotoxin biomarkers of exposure: A comprehensive review. Comp. Rev. Food Sci. Food Safety 2018, 17, 1127–1155. [Google Scholar] [CrossRef]
- van Egmond, H.P.; Schothorst, R.C.; Jonker, M.A. Regulations relating to mycotoxins in food. Anal. Bioanal. Chem. 2007, 389, 147–157. [Google Scholar] [CrossRef] [PubMed]
- Streit, E.; Naehrer, K.; Rodrigues, I.; Schatzmayr, G. Mycotoxin occurrence in feed and feed raw materials worldwide: Long-term analysis with special focus on Europe and Asia. J. Food Sci. Agric. 2013, 93, 2892–2899. [Google Scholar] [CrossRef]
- Zheng, M.Z.; Richard, J.L.; Binder, J. A review of rapid methods for the analysis of mycotoxins. Mycopathologia 2006, 161, 261–273. [Google Scholar] [CrossRef]
- Dzantiev, B.B.; Byzova, N.A.; Urusov, A.E.; Zherdev, A.V. Immunochromatographic methods in food analysis. TrAC—Trend. Anal. Chem. 2014, 55, 81–93. [Google Scholar] [CrossRef]
- Turner, N.W.; Subrahmanyam, S.; Piletsky, S.A. Analytical methods for determination of mycotoxins: A review. Anal. Chim. Acta 2009, 632, 168–180. [Google Scholar] [CrossRef]
- Li, P.-W.; Zhang, Z.-W.; Hu, X.-F.; Zhang, Q. Advanced hyphenated chromatographic-mass spectrometry in mycotoxin determination: Current status and prospects. Mass Spectrom. Rev. 2013, 32, 420–452. [Google Scholar] [CrossRef]
- Pichon, V.; Delaunay-Bertoncini, M.; Hennion, M.C. Sampling and Sample Preparation for Field and Laboratory, 1st ed.; Pawliszyn, J., Ed.; Comprehensive Analytical Chemistry, Elsevier Science: Amsterdam, The Netherlands, 2002; Volume 37, pp. 1081–1100. [Google Scholar]
- Cichna-Markl, M. New strategies in sample clean-up for mycotoxin analysis. World Mycotox. J. 2011, 4, 203–215. [Google Scholar] [CrossRef]
- Agriopoulou, S.; Stamatelopoulou, E.; Varzakas, T. Advances in analysis and detection of major mycotoxins in foods. Foods 2020, 9, 518. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Li, G.-L.; Wu, D.; Liu, J.-H.; Li, X.-T.; Luo, P.-J.; Hu, N.; Wang, H.-L.; Wu, Y.-N. Recent advances on toxicity and determination methods of mycotoxins in foodstuffs. Trend. Food Sci. Technol. 2020, 96, 233–252. [Google Scholar] [CrossRef]
- Chen, L.; Wang, X.; Lu, W.; Wu, X.; Li, J. Molecular imprinting: Perspectives and applications. Chem. Soc. Rev. 2016, 45, 2137–2211. [Google Scholar] [CrossRef] [PubMed]
- BelBruno, J.J. Molecularly imprinted polymers. Chem. Rev. 2019, 119, 94–119. [Google Scholar] [CrossRef] [PubMed]
- Reville, E.K.; Sylvester, E.H.; Benware, S.J.; Negic, S.S.; Berda, E.B. Customizable molecular recognition: Advancements in design, synthesis, and application of molecularly imprinted polymers. Polym. Chem. 2022, 13, 3387–3411. [Google Scholar] [CrossRef]
- Pichon, V.; Delaunay, N.; Combès, A. Sample preparation using molecularly imprinted polymers. Anal. Chem. 2020, 92, 16–33. [Google Scholar] [CrossRef] [PubMed]
- Baggiani, C.; Anfossi, L.; Giovannoli, C. Molecular imprinted polymers as synthetic receptors for the analysis of myco- and phyco-toxins. Analyst 2008, 133, 719–730. [Google Scholar] [CrossRef]
- Lorenzo, R.A.; Carro, A.M.; Alvarez-Lorenzo, C.; Concheiro, A. To remove or not to remove? The challenge of extracting the template to make the cavities available in molecularly imprinted polymers (MIPs). Int. J. Mol. Sci. 2011, 12, 4327–4347. [Google Scholar] [CrossRef]
- Lamaoui, A.; Mani, V.; Durmus, C.; Salama, K.N.; Amine, A. Molecularly imprinted polymers: A closer look at the template removal and analyte binding. Biosens. Bioelectron. 2024, 243, 115774. [Google Scholar] [CrossRef]
- Chen, R.-N.; Kang, S.-H.; Li, J.; Lu, L.-N.; Luo, X.-P.; Wu, L. Comparison and recent progress of molecular imprinting technology and dummy template molecular imprinting technology. Anal. Meth. 2021, 13, 4538–4556. [Google Scholar] [CrossRef]
- Andersson, L.I.; Paprica, A.; Arvidsson, T. A highly selective solid phase extraction sorbent for pre-concentration of sameridine made by molecular imprinting. Chromatographia 1997, 46, 57–62. [Google Scholar] [CrossRef]
- Baggiani, C.; Giraudi, G.; Vanni, A. A molecular imprinted polymer with recognition properties towards the carcinogenic mycotoxin ochratoxin A. Bioseparation 2002, 10, 389–394. [Google Scholar] [CrossRef] [PubMed]
- Jodlbauer, J.; Maier, M.M.; Lindner, W. Towards ochratoxin A selective molecularly imprinted polymers for solid-phase extraction. J. Chromatogr. A 2002, 945, 45–63. [Google Scholar] [CrossRef] [PubMed]
- Turner, N.W.; Piletska, E.V.; Karim, K.; Whitcombe, M.; Malecha, M.; Magan, N.; Baggiani, C.; Piletsky, S.A. Effect of the solvent on recognition properties of molecularly imprinted polymer specific for ochratoxin A. Biosens. Bioelectron. 2004, 20, 1060–1067. [Google Scholar] [CrossRef] [PubMed]
- Yan, Z.; Fang, G.-Z. Molecularly imprinted polymer based on upconversion nanoparticles for highly selective and sensitive determination of ochratoxin A. J. Centr. South Univ. 2019, 26, 515–523. [Google Scholar] [CrossRef]
- Liu, J.-M.; Cao, F.-Z.; Fang, G.-Z.; Wang, S. Upconversion nanophosphor-involved molecularly imprinted fluorescent polymers for sensitive and specific recognition of sterigmatocystin. Polymers 2017, 9, 299. [Google Scholar] [CrossRef] [PubMed]
- Weiss, R.; Freudenschuss, M.; Krska, R.; Mizaikoff, B. Improving methods of analysis for mycotoxins: Molecularly imprinted polymers for deoxynivalenol and zearalenone. Food Additiv. Contam. 2003, 20, 386–395. [Google Scholar] [CrossRef]
- Urraca, J.L.; Marazuela, M.D.; Moreno-Bondi, M.C. Molecularly imprinted polymers applied to the clean-up of zearalenone and α-zearalenol from cereal and swine feed sample extracts. Anal. Bioanal. Chem. 2006, 385, 1155–1161. [Google Scholar] [CrossRef]
- Urraca, J.L.; Marazuela, M.D.; Merino, E.R.; Orellana, G.; Moreno-Bondi, M.C. Molecularly imprinted polymers with a streamlined mimic for zearalenone analysis. J. Chromatogr. A 2006, 1116, 127–134. [Google Scholar] [CrossRef]
- Gadzala-Kopciuch, R.; Kwasniewska, K.; Ludwiczak, A.; Skrzyniarz, P.; Jakubowski, R.; Nowak, W.; Wojtczak, A.; Buszewski, B. Towards a new approach for the description of cyclo–2,4-dihydroxybenzoate, a substance which effectively mimics zearalenone in imprinted polymers designed for analyzing selected mycotoxins in urine. Int. J. Mol. Sci. 2019, 20, 1588. [Google Scholar] [CrossRef]
- Cavaliere, C.; Antonelli, M.; Cerrato, A.; La Barbera, G.; Laganà, A.; Laus, M.; Piovesana, S.; Capriotti, A.L. A novel magnetic molecular imprinted polymer for selective extraction of zearalenone from cereal flours before liquid chromatography-tandem mass spectrometry determination. Toxins 2019, 11, 493. [Google Scholar] [CrossRef] [PubMed]
- Piovesana, S.; Capriotti, A.L.; Cavaliere, C.; Sparnacci, K.; Gianotti, V.; Laus, M.; Antonioli, D.; Lagana, A. Magnetic molecularly imprinted multishell particles for zearalenone recognition. Polymer 2020, 188, 122102. [Google Scholar] [CrossRef]
- Guo, B.-Y.; Wang, S.; Ren, B.; Li, X.; Qin, F.; Li, J. Citrinin selective molecularly imprinted polymers for SPE. J. Sep. Sci. 2010, 33, 1156–1160. [Google Scholar] [CrossRef] [PubMed]
- Appell, M.; Jackson, M.A.; Wang, L.C.; Bosma, W.B. Determination of citrinin using molecularly imprinted solid phase extraction purification, HPLC separation, and fluorescence detection. J. Liq. Chromatogr. Rel. Technol. 2015, 38, 1815–1819. [Google Scholar] [CrossRef]
- Abou-Hany, R.A.G.; Urraca, J.L.; Descalzo, A.B.; Gómez-Arribas, L.N.; Moreno-Bondi, M.C.; Orellana, G. Title: Tailoring molecularly imprinted polymer beads for alternariol recognition and analysis by a screening with mycotoxin surrogates. J. Chromatogr. A 2015, 1425, 231–239. [Google Scholar] [CrossRef]
- Rico-Yuste, A.; Walravens, J.; Urraca, J.L.; Abou-Hany, R.A.G.; Descalzo, A.B.; Orellana, G.; Rychlik, M.; De Saeger, M.; Moreno-Bondi, M.C. Title: Analysis of alternariol and alternariol monomethyl ether in foodstuffs by molecularly imprinted solid-phase extraction and ultra-high-performance liquid chromatography tandem mass spectrometry. Food Chem. 2018, 243, 357–364. [Google Scholar] [CrossRef] [PubMed]
- Fliege, R.; Metzler, M. Electrophilic properties of patulin. N-acetylcysteine and glutathione adducts. Chem. Res. Toxicol. 2000, 13, 373–381. [Google Scholar] [CrossRef] [PubMed]
- De Smet, D.; Dubruel, P.; Van Peteghem, C.; De Saeger, S. Development of a molecularly imprinted polymer for patulin in apple juice. World Mycotox. J. 2011, 4, 375–383. [Google Scholar] [CrossRef]
- Zhang, W.; Han, Y.; Chen, X.; Luo, X.; Wang, J.; Yue, T.; Li, Z. Surface molecularly imprinted polymer capped Mn-doped ZnS quantum dots as a phosphorescent nanosensor for detecting patulin in apple juice. Food Chem. 2017, 232, 145–154. [Google Scholar] [CrossRef]
- Zhao, M.-J.; Shao, H.; He, Y.-H.; Li, H.; Yan, M.-M.; Jiang, Z.-J.; Wang, J.; Abd El-Aty, A.M.; Hacimuftuoglu, A.; Yan, F.-Y.; et al. The determination of patulin from food samples using dual-dummy molecularly imprinted solid-phase extraction coupled with LC-MS/MS. J. Chromatogr. B 2019, 1125, 121714. [Google Scholar] [CrossRef]
- Khorrami, A.R.; Taherkhani, M. Synthesis and evaluation of a molecularly imprinted polymer for pre-concentration of patulin from apple juice. Chromatographia 2011, 73, S151–S156. [Google Scholar] [CrossRef]
- Regal, P.; Diaz-Bao, M.; Barreiro, R.; Fente, C.; Cepeda, A. Design of a molecularly imprinted stirbar for isolation of patulin in apple and LC-MS/MS detection. Separations 2017, 4, 11. [Google Scholar] [CrossRef]
- Fu, H.; Xu, W.; Wang, H.-X.; Liao, S.-H.; Chen, G.-T. Preparation of magnetic molecularly imprinted polymer for selective identification of patulin in juice. J. Chromatogr. B 2020, 1145, 122101. [Google Scholar] [CrossRef]
- Sodkrathok, P.; Karuwan, C.; Kamsong, W.; Tuantranont, A.; Amatatongchai, M. Patulin-imprinted origami 3D-ePAD based on graphene screen-printed electrode modified with Mn-ZnS quantum dot coated with a molecularly imprinted polymer. Talanta 2023, 262, 124695. [Google Scholar] [CrossRef]
- Appell, M.; Kendra, D.F.; Kim, E.K.; Maragos, C.M. Synthesis and evaluation of molecularly imprinted polymers as sorbents of moniliformin. Food Additiv. Contam. 2007, 24, 43–52. [Google Scholar] [CrossRef] [PubMed]
- Kubo, T.; Hosoya, K.; Watabe, Y.; Tanaka, N.; Sano, T.; Kaya, K. Recognition of hepatotoxic homologues of microcystin using a combination of selective adsorption media. J. Sep. Sci. 2004, 27, 316–324. [Google Scholar] [CrossRef]
- Wyszomirski, M.; Prus, W. Molecular modelling of a template substitute and monomers used in molecular imprinting for aflatoxin B1 micro-HPLC analysis. Mol. Simul. 2012, 38, 892–895. [Google Scholar] [CrossRef]
- Szumski, M.; Grzywinski, D.; Prus, W.; Buszewski, B. Monolithic molecularly imprinted polymeric capillary columns for isolation of aflatoxins. J. Chromatogr. A 2014, 1364, 163–170. [Google Scholar] [CrossRef]
- Díaz-Bao, M.; Regal, P.; Barreiro, R.; Fente, C.A.; Cepeda, A. A facile method for the fabrication of magnetic molecularly imprinted stir-bars: A practical example with aflatoxins in baby foods. J. Chromatogr. A 2017, 1471, 51–59. [Google Scholar] [CrossRef]
- Guo, P.; Yang, W.; Hu, H.; Wang, Y.; Li, P. Rapid detection of aflatoxin B1 by dummy template molecularly imprinted polymer capped CdTe quantum dots. Anal. Bioanal. Chem. 2019, 411, 2607–2617. [Google Scholar] [CrossRef]
- Chmangui, A.; Jayasinghe, G.; Driss, M.R.; Touil, S.; Bermejo-Barrera, P.; Bouabdallah, S.; Moreda-Pineiro, A. Assessment of trace levels of aflatoxins AFB1 and AFB2 in non-dairy beverages by molecularly imprinted polymer based micro solid-phase extraction and liquid chromatography-tandem mass spectrometry. Anal. Meth. 2021, 13, 3433–3443. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.-W.; Shao, R.; Li, W.-W.; Li, X.; Sun, J.-L.; Jiao, S.-S.; Dai, S.-J.; Dou, M.-H.; Xu, R.-M.; Li, Q.-J.; et al. Three-dimensional ordered macroporous magnetic inverse photonic crystal microsphere-based molecularly imprinted polymer for selective capture of Aflatoxin B1. ACS Appl. Mater. Interf. 2022, 14, 18845–18853. [Google Scholar] [CrossRef] [PubMed]
- Rui, C.; He, J.; Li, Y.; Liang, Y.; You, L.; He, L.; Li, K.; Zhang, S. Selective extraction and enrichment of aflatoxins from food samples by mesoporous silica FDU-12 supported aflatoxins imprinted polymers based on surface molecularly imprinting technique. Talanta 2019, 201, 342–349. [Google Scholar] [CrossRef] [PubMed]
- Fan, L.; Zhang, Q.; Wang, F.; Yang, H. Dummy molecularly imprinted solid-phase extraction-SERS determination of AFB1 in peanut. Spectrochim. Acta A 2023, 288, 122130. [Google Scholar] [CrossRef]
- Wu, C.-J.; He, J.; Li, Y.-Y.; Chen, N.-N.; Huang, Z.-P.; You, L.-Q.; He, L.-J.; Zhang, S.-S. Solid-phase extraction of aflatoxins using a nanosorbent consisting of a magnetized nanoporous carbon core coated with a molecularly imprinted polymer. Microchim. Acta 2018, 185, 515. [Google Scholar] [CrossRef] [PubMed]
- Sergeyeva, T.; Yarynka, D.; Piletska, E.; Lynnik, R.; Zaporozhets, O.; Brovko, O.; Piletsky, S.; El’skaya, A. Fluorescent sensor systems based on nanostructured polymeric membranes for selective recognition of Aflatoxin B1. Talanta 2017, 175, 101–107. [Google Scholar] [CrossRef]
- Song, L.-X.; Wang, H.-G.; Rui, C.-F.; Liu, Q.; Zhang, Y.-X.; Cheng, Y.; He, J. Preparation and properties of aflatoxins imprinted polymer grafted onto the surface of mesoporous silica SBA-15 functionalized with double bonds. J. Sep. Sci. 2021, 44, 4181–4189. [Google Scholar] [CrossRef]
- Palmieri, S.; Elfadil, D.; Fanti, F.; Della Pelle, F.; Sergi, M.; Amine, A.; Compagnone, D. Study on molecularly imprinted polymers obtained sonochemically for the determination of aflatoxins in food. Molecules 2023, 28, 703. [Google Scholar] [CrossRef]
- Baggiani, C.; Biagioli, F.; Anfossi, L.; Giovannoli, C.; Passini, C.; Giraudi, G. Effect of the mimic structure on the molecular recognition properties of molecularly imprinted polymers for ochratoxin A prepared by a fragmental approach. React. Funct. Polym. 2013, 73, 833–837. [Google Scholar] [CrossRef]
- Poma, A.; Guerreiro, A.; Whitcombe, M.J.; Piletska, E.V.; Turner, A.P.F.; Piletsky, S.A. Solid-phase synthesis of molecularly imprinted polymer nanoparticles with a reusable template: “Plastic antibodies”. Adv. Funct. Mater. 2013, 23, 2821–2827. [Google Scholar] [CrossRef]
- Ambrosini, S.; Beyazit, S.; Haupt, K.; Tse Sum Bui, B. Solid-phase synthesis of molecularly imprinted nanoparticles for protein recognition. Chem. Commun. 2013, 49, 6746–6748. [Google Scholar] [CrossRef] [PubMed]
- Canfarotta, F.; Poma, A.; Guerreiro, A.; Piletsky, S. Solid-phase synthesis of molecularly imprinted nanoparticles. Nat. Protoc. 2016, 11, 443–455. [Google Scholar] [CrossRef] [PubMed]
- Serra, T.; Anfossi, L.; Cavalera, S.; Chiarello, M.; Di Nardo, F.; Testa, V.; Baggiani, C. Ochratoxin A-imprinted nanoMIPs prepared by solid phase synthesis: Effect of mimic template on binding properties. Macromol 2023, 3, 234–244. [Google Scholar] [CrossRef]
- López-Puertollano, D.; Cowen, T.; García-Cruz, A.; Piletska, E.; Abad-Somovilla, A.; Abad-Fuentes, A.; Piletsky, S. Study of epitope imprinting for small templates: Preparation of nanoMIPs for ochratoxin A. ChemNanoMat 2019, 5, 651–657. [Google Scholar] [CrossRef]
- Smolinska-Kempisty, K.; Guerreiro, A.; Canfarotta, F.; Cáceres, C.; Whitcombe, M.J.; Piletsky, S. A comparison of the performance of molecularly imprinted polymer nanoparticles for small molecule targets and antibodies in the ELISA format. Sci. Rep. 2016, 6, 37638. [Google Scholar] [CrossRef]
- Munawar, H.; Safaryan, A.H.M.; De Girolamo, A.; Garcia-Cruz, A.; Marote, P.; Karim, K.; Lippolis, V.; Pascale, M.; Piletsky, S.A. Determination of fumonisin B1 in maize using molecularly imprinted polymer nanoparticles-based assay. Food Chem. 2019, 298, 125044. [Google Scholar] [CrossRef]
- Available online: https://www.sigmaaldrich.com/IT/it/technical-documents/technical-article/analytical-chemistry/solid-phase-extraction/supelmip (accessed on 3 October 2023).
- Available online: https://www.affinisep.com (accessed on 3 October 2023).
- Bryla, M.; Jedrzejczak, R.; Roszko, M.; Szymczyk, K.; Obiedzinski, M.W.; Sekul, J.; Rzepkowska, M. Application of molecularly imprinted polymers to determine B-1, B-2, and B-3 fumonisins in cereal products. J. Sep. Sci. 2013, 36, 578–584. [Google Scholar] [CrossRef]
- Cao, J.L.; Zhou, S.-J.; Kong, W.-J.; Yang, M.-H.; Wan, L.; Yang, S.-H. Molecularly imprinted polymer-based solid phase clean-up for analysis of ochratoxin A in ginger and LC-MS/MS confirmation. Food Contr. 2013, 33, 337–343. [Google Scholar] [CrossRef]
- Cao, J.-L.; Kong, W.-J.; Zhou, S.-J.; Yin, L.-H.; Wan, L.; Yang, M.-H. Molecularly imprinted polymer-based solid phase clean-up for analysis of ochratoxin A in beer, red wine, and grape juice. J. Sep. Sci. 2013, 36, 1291–1297. [Google Scholar] [CrossRef]
- Prelle, A.; Spadaro, D.; Denca, A.; Garibaldi, A.; Gullino, M.L. Comparison of clean-up methods for ochratoxin A on wine, beer, roasted coffee and chili commercialized in Italy. Toxins 2013, 5, 1827–1844. [Google Scholar] [CrossRef]
- Mishra, R.K.; Catanante, G.; Hayat, A.; Marty, J.L. Evaluation of extraction methods for ochratoxin A detection in cocoa beans employing HPLC. Food Additiv. Contam. A 2016, 33, 500–508. [Google Scholar] [CrossRef] [PubMed]
- Lucci, P.; Moret, S.; Bettin, S.; Conte, L. Selective solid-phase extraction using a molecularly imprinted polymer for the analysis of patulin in apple-based foods. J. Sep. Sci. 2017, 40, 458–465. [Google Scholar] [CrossRef] [PubMed]
- Lucci, P.; Derrien, D.; Alix, F.; Perollier, C.; Bayoudh, S. Molecularly imprinted polymer solid-phase extraction for detection of zearalenone in cereal sample extracts. Anal. Chim. Acta 2010, 672, 15–19. [Google Scholar] [CrossRef] [PubMed]
- Lucci, P.; David, S.; Conchione, C.; Milani, A.; Moret, S.; Pacetti, D.; Conte, L. Molecularly imprinted polymer as selective sorbent for the extraction of zearalenone in edible vegetable oils. Foods 2020, 9, 1439. [Google Scholar] [CrossRef]
- Lhotská, I.; Gajdošová, B.; Solich, P.; Šatínský, D. Molecularly imprinted vs. reversed-phase extraction for the determination of zearalenone: A method development and critical comparison of sample clean-up efficiency achieved in an on-line coupled SPE chromatography system. Anal. Bioanal. Chem. 2018, 410, 3265–3273. [Google Scholar] [CrossRef] [PubMed]
- Kholova, A.; Lhotska, I.; Erben, J.; Chvojka, J.; Svec, F.; Solich, P.; Satínský, D. Comparison of nanofibers, microfibers, nano/microfiber graphene doped composites, molecularly imprinted polymers, and restricted access materials for on-line extraction and chromatographic determination of citrinin, zearalenone, and ochratoxin A in plant-based milk beverages. Microchem. J. 2023, 193, 108937. [Google Scholar] [CrossRef]
- Kubo, T.; Otsuka, K. Recent progress in molecularly imprinted media by new preparation concepts and methodological approaches for selective separation of targeting compounds. TrAC—Trend. Anal. Chem. 2016, 81, 102–109. [Google Scholar] [CrossRef]
- Arabi, M.; Ostovan, A.; Bagheri, A.R.; Guo, X.; Wang, L.; Li, J.; Wang, X.; Li, B.; Chen, L. Strategies of molecular imprinting-based solid-phase extraction prior to chromatographic analysis. TrAC—Trend. Anal. Chem. 2020, 128, 115923. [Google Scholar] [CrossRef]
- Wei, S.; Liu, Y.; Yan, Z.; Liu, L. Molecularly imprinted solid phase extraction coupled to high performance liquid chromatography for determination of aflatoxin M1 and B1 in foods and feeds. RSC Adv. 2015, 5, 20951–20960. [Google Scholar] [CrossRef]
- Meydan, I.; Bilici, M.; Turan, E.; Zengin, A. Selective extraction and determination of citrinin in rye samples by a molecularly imprinted polymer (MIP) using reversible addition fragmentation chain transfer precipitation polymerization (RAFTPP) with high-performance liquid chromatography (HPLC) detection. Anal. Lett. 2021, 54, 1697–1708. [Google Scholar] [CrossRef]
- Liang, Y.; He, J.; Huang, Z.; Li, H.; Zhang, Y.; Wang, H.; Rui, C.; Li, Y.; You, L.; Li, K.; et al. An amino-functionalized zirconium-based metal-organic framework of type UiO-66-NH2 covered with a molecularly imprinted polymer as a sorbent for the extraction of aflatoxins AFB1, AFB2, AFG1 and AFG2 from grain. Microchim. Acta 2020, 187, 32. [Google Scholar] [CrossRef]
- Liang, G.; Zhai, H.; Huang, L.; Tan, X.; Zhou, Q.; Yu, X.; Lin, H. Title: Synthesis of carbon quantum dots-doped dummy molecularly imprinted polymer monolithic column for selective enrichment and analysis of aflatoxin B1 in peanut. J. Pharm. Biomed. Anal. 2018, 149, 258–264. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; He, J.; Wang, H.; Xu, P.; Wang, M.; Li, Y.; Chen, J.; He, L. Surface molecularly imprinted polymers based on NH2-MIL-53 for selective extraction ochratoxin A in real sample. Macromol. Res. 2022, 30, 719–730. [Google Scholar] [CrossRef]
- Zhao, D.-Y.; Jia, J.-F.; Yu, X.-L.; Sun, X.-J. Preparation and characterization of a molecularly imprinted polymer by grafting on silica supports: A selective sorbent for patulin toxin. Anal. Bioanal. Chem. 2011, 401, 2259–2273. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; He, J.; Song, L.; Zhang, Y.; Xu, M.; Huang, Z.; Jin, L.; Ba, X.; Li, Y.; You, L.; et al. Etching of halloysite nanotubes hollow imprinted materials as adsorbent for extracting of zearalenone from grain samples. Microchem. J. 2020, 157, 104953. [Google Scholar] [CrossRef]
- Huang, Z.-P.; He, J.; Li, Y.-Y.; Wu, C.-J.; You, L.-Q.; Wei, H.-L.; Li, K.; Zhang, S.-S. Preparation of dummy molecularly imprinted polymers for extraction of zearalenone in grain samples. J. Chromatogr. A 2019, 1602, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; He, J.; Song, L.; Wang, H.; Huang, Z.; Sun, Q.; Ba, X.; Li, Y.; You, L.; Zhang, S. Application of surface-imprinted polymers supported by hydroxyapatite in the extraction of zearalenone in various cereals. Anal. Bioanal. Chem. 2020, 412, 4045–4055. [Google Scholar] [CrossRef] [PubMed]
- De Smet, D.; Dubruel, P.; Van Peteghem, C.; Schacht, E.; De Saeger, S. Molecularly imprinted solid-phase extraction of fumonisin B analogues in bell pepper, rice and corn flakes. Food Additiv. Contam. 2009, 26, 874–884. [Google Scholar] [CrossRef]
- De Smet, D.; Monbaliu, S.; Dubruel, P.; Van Peteghem, C.; Schacht, E.; De Saeger, S. Synthesis and application of a T-2 toxin imprinted polymer. J. Chromatogr. A 2010, 1217, 2879–2886. [Google Scholar] [CrossRef]
- Maier, N.M.; Buttinger, G.; Welhartizki, S.; Gavioli, E.; Lindner, W. Molecularly imprinted polymer-assisted sample clean-up of ochratoxin A from red wine: Merits and limitations. J. Chromatogr. B 2004, 804, 103–111. [Google Scholar] [CrossRef]
- Bayram, E.; Yilmaz, E.; Uzun, L.; Say, R.; Denizli, A. Multiclonal plastic antibodies for selective aflatoxin extraction from food samples. Food Chem. 2017, 221, 829–837. [Google Scholar] [CrossRef] [PubMed]
- Moya-Cavas, T.; Navarro-Villoslada, F.; Urraca, J.L.; Serrano, L.A.; Orellana, G.; Moreno-Bondi, M.C. Simultaneous determination of zearalenone and alternariol mycotoxins in oil samples using mixed molecularly imprinted polymer beads. Food Chem. 2023, 412, 135538. [Google Scholar] [CrossRef]
- Giovannoli, C.; Passini, C.; Di Nardo, F.; Anfossi, L.; Baggiani, C. Determination of ochratoxin A in italian red wines by molecularly imprinted solid phase extraction and HPLC analysis. J. Agric. Food Chem. 2014, 62, 5220–5225. [Google Scholar] [CrossRef] [PubMed]
- Anene, A.; Hosni, K.; Chevalier, Y.; Kalfat, R.; Hbaieb, S. Molecularly imprinted polymer for extraction of patulin in apple juice samples. Food Contr. 2016, 70, 90–95. [Google Scholar] [CrossRef]
- Rodriguez-Mozaz, S.; Lopez de Alda, M.J.; Barcelò, D. Advantages and limitations of on-line solid phase extraction coupled to liquid chromatography–mass spectrometry technologies versus biosensors for monitoring of emerging contaminants in water. J. Chromatogr. A 2007, 1152, 97–115. [Google Scholar] [CrossRef]
- Lhotska, I.; Holznerova, A.; Solich, P.; Satinsky, D. Critical comparison of the on-line and off-line molecularly imprinted solid-phase extraction of patulin coupled with liquid chromatography. J. Sep. Sci. 2017, 40, 4599–4609. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.C.C.; Krushkova, S.; Lai, E.P.C.; Dabek-Zlotorzynska, E. Molecularly-imprinted polypyrrole-modified stainless steel frits for selective solid phase preconcentration of ochratoxin A. Anal. Bioanal. Chem. 2005, 382, 1534–1540. [Google Scholar] [CrossRef]
- Yu, J.C.C.; Lai, E.P.C. Molecularly imprinted polypyrrole modified carbon nanotubes on stainless steel frit for selective micro solid phase pre-concentration of ochratoxin A. React. Funct. Polym. 2006, 66, 702–711. [Google Scholar] [CrossRef]
- Yu, J.C.C.; Lai, E.P.C. Determination of ochratoxin A in red wines by multiple pulsed elutions from molecularly imprinted polypyrrole. Food Chem. 2007, 105, 301–310. [Google Scholar] [CrossRef]
- Liu, Y.; Su, Z.; Wang, J.; Gong, Z.; Lyu, H.; Xie, Z. Molecularly imprinted polymer with mixed-mode mechanism for selective extraction and on-line detection of ochratoxin A in beer sample. Microchem. J. 2021, 170, 106696. [Google Scholar] [CrossRef]
- Lyu, H.; Sun, H.; Zhu, Y.; Wang, J.; Xie, Z.; Li, J. A double-recognized aptamer-molecularly imprinted monolithic column for high-specificity recognition of ochratoxin A. Anal. Chim. Acta 2020, 1103, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.-N.; Lai, E.P.C.; Miller, J.D. Analysis of wheat extracts for ochratoxin A by molecularly imprinted solid-phase extraction and pulsed elution. Anal. Bioanal. Chem. 2004, 378, 1903–1906. [Google Scholar] [CrossRef] [PubMed]
- Vidal, J.C.; Duato, P.; Bonel, L.; Castillo, J.R. Molecularly imprinted on-line solid-phase extraction coupled with fluorescence detection for the determination of ochratoxin a in wheat samples. Anal. Lett. 2012, 45, 51–62. [Google Scholar] [CrossRef]
- Lhotska, I.; Kholova, A.; Machynakova, A.; Hrobonova, K.; Solich, P.; Svec, F.; Satinsky, D. Preparation of citrinin-selective molecularly imprinted polymer and its use for on-line solid-phase extraction coupled to liquid chromatography. Anal. Bioanal. Chem. 2019, 411, 2395–2404. [Google Scholar] [CrossRef] [PubMed]
- Moreno-González, D.; Jáč, P.; Riasová, P.; Nováková, L. In-line molecularly imprinted polymer solid phase extraction-capillary electrophoresis coupled with tandem mass spectrometry for the determination of patulin in apple-based food. Food Chem. 2021, 334, 127607. [Google Scholar] [CrossRef]
- Khezeli, T.; Daneshfar, A. Development of dispersive micro-solid phase extraction based on micro and nano sorbents. TrAC—Trends Anal. Chem. 2017, 89, 99–118. [Google Scholar] [CrossRef]
- Ghorbani, M.; Aghamohammadhassan, M.; Chamsaz, M.; Akhlaghi, H.; Pedramrad, T. Dispersive solid phase microextraction. TrAC—Trends Anal. Chem. 2019, 118, 793–809. [Google Scholar] [CrossRef]
- Jayasinghe, G.D.T.M.; Dominguez-Gonzalez, R.; Bermejo-Barrera, P.; Moreda-Pineiro, A. Miniaturized vortex assisted-dispersive molecularly imprinted polymer micro-solid phase extraction and HPLC-MS/MS for assessing trace aflatoxins in cultured fish. Anal. Methods 2020, 12, 4351–4362. [Google Scholar] [CrossRef]
- Thati, R.; Seetha, B.S.; Alegete, P.; Mudiam, M.K.R. Molecularly imprinted dispersive micro solid-phase extraction coupled with high-performance liquid chromatography for the determination of four aflatoxins in various foods. Food Chem. 2024, 433, 137342. [Google Scholar] [CrossRef]
- Yang, L.; Wang, J.; Li, C.Y.; Liu, Q.; Wang, J.; Wu, J.; Lv, H.; Ji, X.M.; Liu, J.M.; Wang, S. Hollow-structured molecularly imprinted polymers enabled specific enrichment and highly sensitive determination of aflatoxin B1 and sterigmatocystin against complex sample matrix. J. Hazard. Mater. 2023, 451, 131127. [Google Scholar] [CrossRef]
- Lee, T.P.; Saad, B.; Khayoon, W.S.; Salleh, B. Molecularly imprinted polymer as sorbent in micro-solid phase extraction of ochratoxin A in coffee, grape juice and urine. Talanta 2012, 88, 129–135. [Google Scholar] [CrossRef] [PubMed]
- Wierucka, M.; Biziuk, M. Application of magnetic nanoparticles for magnetic solid-phase extraction in preparing biological, environmental and food samples. TrAC—Trend. Anal. Chem. 2014, 59, 50–58. [Google Scholar] [CrossRef]
- Cui, Y.; Ding, L.; Ding, J. Recent advances of magnetic molecularly imprinted materials: From materials design to complex sample pretreatment. TrAc—Trends Anal. Chem. 2022, 147, 116514. [Google Scholar] [CrossRef]
- Suo, L.-L.; Hu, M.-H. One-step synthesis of polydopamine-coated dummy molecularly imprinted polymers on the surface of Fe3O4 for selective extraction and enrichment of aflatoxin B in foods prior to high-performance liquid chromatography detection. J. Anal. Chem. 2023, 78, 213–221. [Google Scholar] [CrossRef]
- Pezeshkpur, M.; Tadayon, F.; Sohrabi, M.R. A molecularly imprinted polymer based on Fe3O4@Au nanoparticles for detection of Aflatoxin B1 in food samples. ChemistrySelect 2023, 8, e202300112. [Google Scholar] [CrossRef]
- Erdem, V.Z.; Basegmez, H.I.O.; Pesint, G.B. AFB1 recognition from liver tissue via AFB1 imprinted magnetic nanoparticles. J. Chromatogr. B 2022, 1210, 123453. [Google Scholar] [CrossRef] [PubMed]
- Pan, S.D.; Ye, M.-J.; Gao, G.-S.; He, Q.; Wang, L.; Chen, X.-H.; Qiu, Q.-L.; Jin, M.-C. Synthesis of a monodisperse well-defined core–shell magnetic molecularly-imprinted polymer prior to LC-MS/MS for fast and sensitive determination of mycotoxin residues in rice. Anal. Methods 2017, 9, 5281–5292. [Google Scholar] [CrossRef]
- Hu, M.-H.; Huang, P.-C.; Suo, L.-L.; Wu, F.-Y. Polydopamine-based molecularly imprinting polymers on magnetic nanoparticles for recognition and enrichment of ochratoxins prior to their determination by HPLC. Microchim. Acta 2018, 185, 300. [Google Scholar] [CrossRef]
- Zhao, M.; Shao, H.; Ma, J.; Li, H.; He, Y.; Wang, M.; Jin, F.; Wang, J.; Abd El-Aty, A.M.; Hacımüftüoglu, H.; et al. Preparation of core-shell magnetic molecularly imprinted polymers for extraction of patulin from juice samples. J. Chromatogr. A 2020, 1615, 460751. [Google Scholar] [CrossRef]
- Du, Q.; Zhang, Y.; Yu, L.; He, H. Surface molecularly imprinted polymers fabricated by differential UV–vis spectra and reverse prediction method for the enrichment and determination of sterigmatocystin. Food Chem. 2022, 367, 130715. [Google Scholar] [CrossRef]
- Fu, H.; Xu, W.; Wang, H.; Liao, S.; Chen, G. Preparation of magnetic molecularly imprinted polymers for the identification of zearalenone in grains. Anal. Bioanal. Chem. 2020, 412, 4725–4737. [Google Scholar] [CrossRef] [PubMed]
- Fu, H.; Liu, J.; Xu, W.; Wang, H.; Liao, S.; Chen, G. A new type of magnetic molecular imprinted material combined with beta-cyclodextrin for the selective adsorption of zearalenone. J. Mater. Chem. B 2020, 8, 10966–10976. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.-Y.; He, J.; Zhang, Y.-X.; Tian, Y.; Xu, P.-F.; Zhang, X.; Li, Y.-Y.; Chen, J.; He, L.-J. Application of magnetic hydroxyapatite surface-imprinted polymers in pretreatment for detection of zearalenone in cereal samples. J. Chromatogr. B 2022, 1201, 123297. [Google Scholar] [CrossRef] [PubMed]
- Hu, M.; Ge, W.; Liu, X.; Zhu, Y. Preconcentration and determination of zearalenone in corn oil by a one-step prepared polydopamine-based magnetic molecularly imprinted polymer (MIP) with high-performance liquid chromatography with fluorescence (HPLC-FLD) detection. Anal. Lett. 2022, 55, 343–354. [Google Scholar] [CrossRef]
- Huang, Z.; He, J.; Li, H.; Zhang, M.; Wang, H.; Zhang, Y.; Li, Y.; You, L.; Zhang, S. Synthesis and application of magnetic-surfaced pseudo molecularly imprinted polymers for zearalenone pretreatment in cereal samples. Food Chem. 2020, 308, 125696. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, D.; Peng, J.; Cui, Y.; Shi, Y.; He, H. Magnetic hyperbranched molecularly imprinted polymers for selective enrichment and determination of zearalenone in wheat proceeded by HPLC-DAD analysis. Talanta 2020, 209, 120555. [Google Scholar] [CrossRef]
- David, F.; Ochiai, N.; Sandra, P. Two decades of stir bar sorptive extraction: A retrospective and future outlook. TrAC—Trends Anal. Chem. 2019, 112, 102–111. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cavalera, S.; Anfossi, L.; Di Nardo, F.; Baggiani, C. Mycotoxins-Imprinted Polymers: A State-of-the-Art Review. Toxins 2024, 16, 47. https://doi.org/10.3390/toxins16010047
Cavalera S, Anfossi L, Di Nardo F, Baggiani C. Mycotoxins-Imprinted Polymers: A State-of-the-Art Review. Toxins. 2024; 16(1):47. https://doi.org/10.3390/toxins16010047
Chicago/Turabian StyleCavalera, Simone, Laura Anfossi, Fabio Di Nardo, and Claudio Baggiani. 2024. "Mycotoxins-Imprinted Polymers: A State-of-the-Art Review" Toxins 16, no. 1: 47. https://doi.org/10.3390/toxins16010047
APA StyleCavalera, S., Anfossi, L., Di Nardo, F., & Baggiani, C. (2024). Mycotoxins-Imprinted Polymers: A State-of-the-Art Review. Toxins, 16(1), 47. https://doi.org/10.3390/toxins16010047