Unraveling Hematotoxicity of α-Amanitin in Cultured Hematopoietic Cells
Abstract
:1. Introduction
2. Results
2.1. α-Amanitin and β-Amanitin Decrease Viability of HL60 Cells
2.2. α-Amanitin Decreases Viability of Multiple Hematopoietic Cell Lines
2.3. Hit-and-Run Effect of α-Amanitin
2.4. α-Amanitin Decreases Viability of Primary CD34+ Stem Cells
2.5. Antidotes Do Not Prevent α-Amanitin-Induced Hematotoxicity
2.6. Increased Caspase Activity Is Involved in α-Amanitin-Induced Cell Death
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Materials
5.2. Cell Culture
5.3. Cell Number and Viability
5.4. Annexin V and PI Analysis
5.5. Colony-Forming Cell Formation Assays
5.6. Caspase Activation
5.7. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vetter, J. Toxins of Amanita Phalloides. Toxicon 1998, 36, 13–24. [Google Scholar] [CrossRef] [PubMed]
- Diaz, J.H. Syndromic Diagnosis and Management of Confirmed Mushroom Poisonings. Crit. Care Med. 2005, 33, 427–436. [Google Scholar] [CrossRef] [PubMed]
- Garcia, J.; Costa, V.M.; Carvalho, A.; Baptista, P.; de Pinho, P.G.; de Lourdes Bastos, M.; Carvalho, F. Amanita Phalloides Poisoning: Mechanisms of Toxicity and Treatment. Food Chem. Toxicol. 2015, 86, 41–55. [Google Scholar] [CrossRef] [PubMed]
- Enjalbert, F.; Gallion, C.; Jehl, F.; Monteil, H.; Faulstich, H. Amatoxins and Phallotoxins in Amanita Species: High-Performance Liquid Chromatographic Determination. Mycologia 1993, 85, 579–584. [Google Scholar] [CrossRef]
- Wieland, T.; Faulstich, H. Amatoxins, Phallotoxins, Phallolysin, and Antamanide: The Biologically Active Components of Poisonous Amanita Mushrooms. CRC Crit. Rev. Biochem. 1978, 5, 185–260. [Google Scholar] [CrossRef] [PubMed]
- Becker, C.E.; Tong, T.G.; Boerner, U.; Roe, R.L.; Scott, A.T.; MacQuarrie, M.B.; Bartter, F. Diagnosis and Treatment of Amanita Phalloides Type Mushroom Poisoning: Use of Thioctic Acid. West. J. Med. 1976, 125, 100–109. [Google Scholar]
- Homann, J.; Rawer, P.; Bleyl, H.; Matthes, K.-J.; Heinrich, D. Early Detection of Amatoxins in Human Mushroom Poisoning. Arch. Toxicol. 1986, 59, 190–191. [Google Scholar] [CrossRef]
- Faulstich, H. New Aspects of Amanita Poisoning. Klin. Wochenschr. 1979, 57, 1143–1152. [Google Scholar] [CrossRef]
- Letschert, K.; Faulstich, H.; Keller, D.; Keppler, D. Molecular Characterization and Inhibition of Amanitin Uptake into Human Hepatocytes. Toxicol. Sci. 2006, 91, 140–149. [Google Scholar] [CrossRef]
- Wieland, T. The Toxic Peptides from Amanita Mushrooms. Int. J. Pept. Protein Res. 1983, 22, 257–276. [Google Scholar] [CrossRef]
- Zheleva, A.; Tolekova, A.; Zhelev, M.; Uzunova, V.; Platikanova, M.; Gadzheva, V. Free Radical Reactions Might Contribute to Severe Alpha Amanitin Hepatotoxicity—A Hypothesis. Med. Hypotheses 2007, 69, 361–367. [Google Scholar] [CrossRef] [PubMed]
- Zheleva, A. Phenoxyl Radicals Formation Might Contribute to Severe Toxicity of Mushrooms Toxin Alpha-Amanitin-an Electron Paramagnetic Resonance Study. Tjs 2013, 11, 33–38. [Google Scholar]
- Magdalan, J.; Piotrowska, A.; Gomułkiewicz, A.; Sozański, T.; Podhorska-Okołów, M.; Szelag, A.; Dziegiel, P. Benzylpenicyllin and Acetylcysteine Protection from α-Amanitin-Induced Apoptosis in Human Hepatocyte Cultures. Exp. Toxicol. Pathol. 2011, 63, 311–315. [Google Scholar] [CrossRef] [PubMed]
- Leist, M.; Gantner, F.; Naumann, H.; Bluethmann, H.; Vogt, K.; Brigelius-Flohe, R.; Nicotera, P.; Volk, H.D.; Wendel, A. Tumor Necrosis Factor-Induced Apoptosis during the Poisoning of Mice with Hepatotoxins. Gastroenterology 1997, 112, 923–934. [Google Scholar] [CrossRef] [PubMed]
- Escudié, L.; Francoz, C.; Vinel, J.P.; Moucari, R.; Cournot, M.; Paradis, V.; Sauvanet, A.; Belghiti, J.; Valla, D.; Bernuau, J.; et al. Amanita Phalloides Poisoning: Reassessment of Prognostic Factors and Indications for Emergency Liver Transplantation. J. Hepatol. 2007, 46, 466–473. [Google Scholar] [CrossRef] [PubMed]
- Ganzert, M.; Felgenhauer, N.; Zilker, T. Indication of Liver Transplantation Following Amatoxin Intoxication. J. Hepatol. 2005, 42, 202–209. [Google Scholar] [CrossRef]
- Tan, J.L.; Stam, J.; van den Berg, A.P.; van Rheenen, P.F.; Dekkers, B.G.J.; Touw, D.J. Amanitin Intoxication: Effects of Therapies on Clinical Outcomes—A Review of 40 Years of Reported Cases. Clin. Toxicol. 2022, 60, 1251–1265. [Google Scholar] [CrossRef] [PubMed]
- Magdalan, J.; Ostrowska, A.; Piotrowska, A.; Gomułkiewicz, A.; Podhorska-Okołów, M.; Patrzałek, D.; Szelag, A.; Dziegiel, P. Benzylpenicillin, Acetylcysteine and Silibinin as Antidotes in Human Hepatocytes Intoxicated with α-Amanitin. Exp. Toxicol. Pathol. 2010, 62, 367–373. [Google Scholar] [CrossRef]
- Garcia, J.; Carvalho, A.; das Neves, R.P.; Malheiro, R.; Rodrigues, D.F.; Figueiredo, P.R.; Bovolini, A.; Duarte, J.A.; Costa, V.M.; Carvalho, F. Antidotal Effect of Cyclosporine A against α-Amanitin Toxicity in CD-1 Mice, at Clinical Relevant Doses. Food Chem. Toxicol. 2022, 166, 113198. [Google Scholar] [CrossRef]
- Enjalbert, F.; Rapior, S.; Nouguier-Soulé, J.; Guillon, S.; Amouroux, N.; Cabot, C. Treatment of Amatoxin Poisoning: 20-Year Retrospective Analysis. J. Toxicol.-Clin. Toxicol. 2002, 40, 715–757. [Google Scholar] [CrossRef]
- Giannini, L.; Vannacci, A.; Missanelli, A.; Mastroianni, R.; Mannaioni, P.F.; Moroni, F.; Masini, E. Amatoxin Poisoning: A 15-Year Retrospective Analysis and Follow-up Evaluation of 105 Patients. Clin. Toxicol. 2007, 45, 539–542. [Google Scholar] [CrossRef] [PubMed]
- Mengs, U.; Torsten Pohl, R.-; Mitchell, T. Legalon® SIL: The Antidote of Choice in Patients with Acute Hepatotoxicity from Amatoxin Poisoning. Curr. Pharm. Biotechnol. 2012, 13, 1964–1970. [Google Scholar] [CrossRef]
- Saller, R.; Meier, R.; Brignoli, R. The Use of Silymarin in the Treatment of Liver Diseases. Drugs 2001, 61, 2035–2063. [Google Scholar] [CrossRef] [PubMed]
- Visser, M.; Hof, W.F.J.; Broek, A.M.; Van Hoek, A.; De Jong, J.J.; Touw, D.J.; Dekkers, B.G.J. Unexpected Amanita Phalloides-Induced Hematotoxicity—Results from a Retrospective Study. Toxins, 2024; under review. [Google Scholar]
- Magdalan, J.; Ostrowska, A.; Piotrowska, A.; Izykowska, I.; Nowak, M.; Gomulkiewicz, A.; Podhorska-Okolów, M.; Szelag, A.; Dziegiel, P. α-Amanitin Induced Apoptosis in Primary Cultured Dog Hepatocytes. Folia Histochem. Cytobiol. 2010, 48, 58–62. [Google Scholar] [CrossRef] [PubMed]
- Magdalan, J.; Ostrowska, A.; Podhorska-Okołów, M.; Piotrowska, A.; Iżykowska, I.; Nowak, M.; Dolińska-Krajewska, B.; Zabel, M.; Szeląg, A.; Dzięgiel, P. Early Morphological and Functional Alterations in Canine Hepatocytes Due to α-Amanitin, a Major Toxin of Amanita Phalloides. Arch. Toxicol. 2009, 83, 55–60. [Google Scholar] [CrossRef] [PubMed]
- Thiel, K.; Schenk, M.; Sipos, B.; Sperveslage, J.; Peter, A.; Morgalla, M.H.; Grasshoff, C.; Königsrainer, A.; Thiel, C. Acute Liver Failure after Amanitin Poisoning: A Porcine Model to Detect Prognostic Markers for Liver Regeneration. Hepatol. Int. 2014, 8, 128–136. [Google Scholar] [CrossRef]
- Gu, X.; Zhang, L.; Sun, W.; Liu, K.; Xu, H.; Wu, P.; Gui, M.; Qu, W. Autophagy Promotes α-Amanitin-Induced Apoptosis of Hepa1-6 Liver Cells. Chem. Res. Toxicol. 2022, 35, 392–401. [Google Scholar] [CrossRef]
- Arima, Y.; Nitta, M.; Kuninaka, S.; Zhang, D.; Fujiwara, T.; Taya, Y.; Nakao, M.; Saya, H. Transcriptional Blockade Induces P53-Dependent Apoptosis Associated with Translocation of P53 to Mitochondria. J. Biol. Chem. 2005, 280, 19166–19176. [Google Scholar] [CrossRef]
- Le Daré, B.; Ferron, P.J.; Gicquel, T. Toxic Effects of Amanitins: Repurposing Toxicities toward New Therapeutics. Toxins 2021, 13, 417. [Google Scholar] [CrossRef]
- Rodrigues, D.F.; Pires das Neves, R.; Carvalho, A.T.P.; Lourdes Bastos, M.; Costa, V.M.; Carvalho, F. In Vitro Mechanistic Studies on α-Amanitin and Its Putative Antidotes. Arch. Toxicol. 2020, 94, 2061–2078. [Google Scholar] [CrossRef] [PubMed]
- Poucheret, P.; Fons, F.; Doré, J.C.; Michelot, D.; Rapior, S. Amatoxin Poisoning Treatment Decision-Making: Pharmaco-Therapeutic Clinical Strategy Assessment Using Multidimensional Multivariate Statistic Analysis. Toxicon 2010, 55, 1338–1345. [Google Scholar] [CrossRef] [PubMed]
- Lauterburg, B.H.; Corcoran, G.B.; Mitchell, J.R. Mechanism of Action of N-Acetylcysteine in the Protection against the Hepatotoxicity of Acetaminophen in Rats In Vivo. J. Clin. Investig. 1983, 71, 980–991. [Google Scholar] [CrossRef] [PubMed]
- Nusinow, D.P.; Szpyt, J.; Ghandi, M.; Rose, C.M.; McDonald, E.R.; Kalocsay, M.; Jané-Valbuena, J.; Gelfand, E.; Schweppe, D.K.; Jedrychowski, M.; et al. Quantitative Proteomics of the Cancer Cell Line Encyclopedia. Cell 2020, 180, 387–402.e16. [Google Scholar] [CrossRef] [PubMed]
- Zou, H.; Zhu, X.-X.; Zhang, G.-B.; Ma, Y.; Wu, Y.; Huang, D.-S. Silibinin: An Old Drug for Hematological Disorders. Oncotarget 2017, 8, 89307–89314. [Google Scholar] [CrossRef]
- Lee, Y.; Kim, Y.J.; Choi, Y.J.; Lee, J.W.; Lee, S.; Chung, H.W. Enhancement of Cisplatin Cytotoxicity by Benzyl Isothiocyanate in HL-60 Cells. Food Chem. Toxicol. 2012, 50, 2397–2406. [Google Scholar] [CrossRef]
- Weston, B.J.; Spackman, V.M.; Dewdney, J.M. Effect of Beta-Lactam Antibiotics on a Human Myeloid Cell Line: Investigation of Potential in Vivo Correlates in the Mouse. Cell Biol. Toxicol. 1986, 2, 549–557. [Google Scholar] [CrossRef]
- Vesconi, S.; Langer, M.; Iapichino, G.; Costantino, D.; Busi, C.; Fiume, L. Therapy of Cytotoxic Mushroom Intoxication. Crit. Care Med. 1985, 13, 402–406. [Google Scholar] [CrossRef]
- Jaeger, A.; Jehl, F.; Flesh, F.; Sauder, P.; Kopferschmitt, J. Kinetics of Amatoxins in Human Poisening: Therapeutic Implications. J. Toxicol. Clin. Toxicol. 1993, 31, 63–80. [Google Scholar] [CrossRef]
- Busi, C.; Fiume, L.; Costantino, D.; Borroni, M.; Ambrosino, G.; Olivotto, A.; Bernardini, D. Détermination Des Amanitines Dans Le Sérum de Patients Intoxiqués Par l’amanite Phalloïde. Nouv. Presse Med. 1977, 6, 2855–2857. [Google Scholar]
- Karlson-Stiber, C.; Persson, H. Cytotoxic Fungi—An Overview. Toxicon 2003, 42, 339–349. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Niu, Y.M.; Zhang, Y.T.; Li, H.J.; Yin, Y.; Zhang, Y.Z.; Ma, P.B.; Zhou, J.; Huang, L.; Zhang, H.S.; et al. Toxicity and Toxicokinetics of Amanita Exitialis in Beagle Dogs. Toxicon 2018, 143, 59–67. [Google Scholar] [CrossRef] [PubMed]
- Faulstich, H.; Talas, A.; Wellhöner, H.H. Toxicokinetics of Labeled Amatoxins in the Dog. Arch. Toxicol. 1985, 56, 190–194. [Google Scholar] [CrossRef] [PubMed]
- West, G.B.; Brown, J.H. The Origin of Allometric Scaling Laws in Biology from Genomes to Ecosystems: Towards a Quantitative Unifying Theory of Biological Structure and Organization. J. Exp. Biol. 2005, 208, 1575–1592. [Google Scholar] [CrossRef] [PubMed]
- Faulstich, H. Mushroom Poisoning. Lancet 1980, 316, 794–795. [Google Scholar] [CrossRef] [PubMed]
- Enjalbert, F.; Gallion, C.; Jehl, F.; Monteil, H. Toxin Content, Phallotoxin and Amatoxin Composition of Amanita Phalloides Tissues. Toxicon 1993, 31, 803–807. [Google Scholar] [CrossRef] [PubMed]
- Broussard, C.N.; Aggarwal, A.; Lacey, S.R.; Post, A.B.; Gramlich, T.; Henderson, J.M.; Younossi, Z.M. Mushroom Poisoning—From Diarrhea to Liver Transplantation. Am. J. Gastroenterol. 2001, 96, 3195–3198. [Google Scholar] [CrossRef] [PubMed]
- Olson, K.R.; Pond, S.M.; Seward, J.; Healey, K.; Woo, O.F.; Becker, C.E. Amanita Phalloides-Type Mushroom Poisoning. West. J. Med. 1982, 137, 282–289. [Google Scholar]
- Kaya, E.; Bayram, R.; Yaykaşli, K.O.; Yilmaz, I.; Bayram, S.; Yaykaşli, E.; Yavuz, M.Z.; Gepdiremen, A.A. Evaluation and Comparison of Alpha- and Beta-Amanitin Toxicity on MCF-7 Cell Line. Turkish J. Med. Sci. 2014, 44, 728–732. [Google Scholar] [CrossRef]
- Bambauer, T.P.; Wagmann, L.; Weber, A.A.; Meyer, M.R. Analysis of α- and β-Amanitin in Human Plasma at Subnanogram per Milliliter Levels by Reversed Phase Ultra-High Performance Liquid Chromatography Coupled to Orbitrap Mass Spectrometry. Toxins 2020, 12, 671. [Google Scholar] [CrossRef]
- Zhu, J.; Thompson, C.B. Metabolic Regulation of Cell Growth and Proliferation. Nat. Rev. Mol. Cell Biol. 2019, 20, 436–450. [Google Scholar] [CrossRef] [PubMed]
- Brueckner, F.; Cramer, P. Structural Basis of Transcription Inhibition by α-Amanitin and Implications for RNA Polymerase II Translocation. Nat. Struct. Mol. Biol. 2008, 15, 811–818. [Google Scholar] [CrossRef] [PubMed]
- Vale, J.A.; Meredith, T.J. Forced Diuresis, Dialysis and Haemoperfusion. In Poisoning Diagnosis and Treatment; Springer: Dordrecht, The Netherlands, 1981; pp. 59–68. [Google Scholar]
- Li, W.M.; Chou, Y.H.; Li, C.C.; Liu, C.C.; Huang, S.P.; Wu, W.J.; Chen, C.W.; Su, C.Y.; Lee, M.H.; Wei, Y.C.; et al. Association of Body Mass Index and Urine PH in Patients with Urolithiasis. Urol. Res. 2009, 37, 193–196. [Google Scholar] [CrossRef] [PubMed]
- Enjalbert, F.; Cassanas, G.; Salhi, S.L.; Guinchard, C.; Chaumont, J.-P. Distribution of the Amatoxins and Phallotoxins in Amanita Phalloides. Influence of the Tissues and the Collection Site. Comptes Rendus L’académie Sci.-Ser. III-Sci. La Vie 1999, 322, 855–862. [Google Scholar] [CrossRef]
- Schuringa, J.J.; Chung, K.Y.; Morrone, G.; Moore, M.A.S. Constitutive Activation of STAT5A Promotes Human Hematopoietic Stem Cell Self-Renewal and Erythroid Differentiation. J. Exp. Med. 2004, 200, 623–635. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hof, W.F.J.; Visser, M.; de Jong, J.J.; Rajasekar, M.N.; Schuringa, J.J.; de Graaf, I.A.M.; Touw, D.J.; Dekkers, B.G.J. Unraveling Hematotoxicity of α-Amanitin in Cultured Hematopoietic Cells. Toxins 2024, 16, 61. https://doi.org/10.3390/toxins16010061
Hof WFJ, Visser M, de Jong JJ, Rajasekar MN, Schuringa JJ, de Graaf IAM, Touw DJ, Dekkers BGJ. Unraveling Hematotoxicity of α-Amanitin in Cultured Hematopoietic Cells. Toxins. 2024; 16(1):61. https://doi.org/10.3390/toxins16010061
Chicago/Turabian StyleHof, Willemien F. J., Miranda Visser, Joyce J. de Jong, Marian N. Rajasekar, Jan Jacob Schuringa, Inge A. M. de Graaf, Daan J. Touw, and Bart G. J. Dekkers. 2024. "Unraveling Hematotoxicity of α-Amanitin in Cultured Hematopoietic Cells" Toxins 16, no. 1: 61. https://doi.org/10.3390/toxins16010061
APA StyleHof, W. F. J., Visser, M., de Jong, J. J., Rajasekar, M. N., Schuringa, J. J., de Graaf, I. A. M., Touw, D. J., & Dekkers, B. G. J. (2024). Unraveling Hematotoxicity of α-Amanitin in Cultured Hematopoietic Cells. Toxins, 16(1), 61. https://doi.org/10.3390/toxins16010061