Comparative Analysis of Maize Physico-Chemical Parameters and Mycotoxin Levels in Dual Environments
Abstract
:1. Introduction
2. Results and Discussion
2.1. Nutritional Composition
2.2. Pasting Properties
2.3. Mycotoxin Occurrence
2.4. Pearson’s Correlation Analysis between Quality Parameters and Climatic Conditions
3. Conclusions
4. Materials and Methods
4.1. Sampling
4.2. Climatic Conditions
4.3. Nutritional Quality
4.4. Pasting Properties
4.5. Fumonisin, Zearalenone, Aflatoxin, and Toxin T2 Analyses
4.6. Deoxynivalenol (DON) Analyses
4.7. Statistical Analyses
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Food and Agriculture Organization, FAOSTAT. 2017. Available online: http://www.fao.org/faostat/en/#home (accessed on 27 March 2024).
- Erenstein, O.; Jaleta, M.; Sonder, K.; Mottaleb, K.; Prasanna, B.M. Global maize production, consumption and trade: Trends and R&D implications. Food Secur. 2022, 14, 1295–1319. [Google Scholar] [CrossRef]
- García-Díaz, M.; Gil-Serna, J.; Vázquez, C.; Botia, M.N.; Patiño, B. A comprehensive study on the occurrence of mycotoxins and their producing fungi during the Maize production cycle in Spain. Microorganisms 2020, 8, 141. [Google Scholar] [CrossRef]
- Neme, K.; Mohammed, A. Mycotoxin occurrence in grains and the role of postharvest management as a mitigation strategies. A review. Food Control 2017, 78, 412–425. [Google Scholar] [CrossRef]
- Chen, X.; Abdallah, M.F.; Landschoot, S.; Audenaert, K.; De Saeger, S.; Chen, X.; Rajkovic, A. Aspergillus flavus and Fusarium verticillioides and Their Main Mycotoxins: Global Distribution and Scenarios of Interactions in Maize. Toxins 2023, 15, 577. [Google Scholar] [CrossRef] [PubMed]
- Kagot, V.; Okoth, S.; De Boevre, M.; De Saeger, S. Biocontrol of aspergillus and fusarium mycotoxins in Africa: Benefits and limitations. Toxins 2019, 11, 109. [Google Scholar] [CrossRef] [PubMed]
- Medina, A.; Akbar, A.; Baazeem, A.; Rodriguez, A.; Magan, N. Climate change, food security and mycotoxins: Do we know enough? Fungal Biol. Rev. 2017, 31, 143–154. [Google Scholar] [CrossRef]
- Tarazona, A.; Gómez, J.V.; Mateo, F.; Jiménez, M.; Romera, D.; Mateo, E.M. Study on mycotoxin contamination of maize kernels in Spain. Food Control 2020, 118, 107370. [Google Scholar] [CrossRef]
- Nada, S.; Nikola, T.; Bozidar, U.; Ilija, D.; Andreja, R. Prevention and practical strategies to control mycotoxins in the wheat and maize chain. Food Control 2022, 136, 108855. [Google Scholar] [CrossRef]
- Giorni, P.; Bertuzzi, T.; Battilani, P. Impact of fungi co-occurrence on mycotoxin contamination in maize during the growing season. Front. Microbiol. 2019, 10, 461889. [Google Scholar] [CrossRef]
- Yang, H.; Gu, X.; Ding, M.; Lu, W.; Lu, D. Heat stress during grain filling affects activities of enzymes involved in grain protein and starch synthesis in waxy maize. Sci. Rep. 2018, 8, 15665. [Google Scholar] [CrossRef]
- Moretti, A.; Pascale, M.; Logrieco, A.F. Mycotoxin risks under a climate change scenario in Europe. Trends Food Sci. Technol. 2019, 84, 38–40. [Google Scholar] [CrossRef]
- Perrone, G.; Ferrara, M.; Medina, A.; Pascale, M.; Magan, N. Toxigenic fungi and mycotoxins in a climate change scenario: Ecology, genomics, distribution, prediction and prevention of the risk. Microorganisms 2020, 8, 1496. [Google Scholar] [CrossRef] [PubMed]
- Kos, J.; Mastilović, J.; Hajnal, E.J.; Šarić, B. Natural occurrence of aflatoxins in maize harvested in Serbia during 2009–2012. Food Control 2013, 34, 31–34. [Google Scholar] [CrossRef]
- Zingales, V.; Taroncher, M.; Martino, P.A.; Ruiz, M.J.; Caloni, F. Climate Change and Effects on Molds and Mycotoxins. Toxins 2022, 14, 445. [Google Scholar] [CrossRef] [PubMed]
- Janić Hajnal, E.; Kos, J.; Radić, B.; Anić, M.; Radović, R.; Kudumija, N.; Vulić, A.; Đekić, S.; Pleadin, J. Impact of Climate Changes on the Natural Prevalence of Fusarium Mycotoxins in Maize Harvested in Serbia and Croatia. Foods 2023, 12, 1002. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; He, Q.; Wu, Y.; Xiao, X.; Sun, W.; Lin, Y.; Yi, R.; Pan, X. The Effect of Sowing Date on the Nutritional Quality of Kernels of Various Maize Varieties in Northeast China. Agronomy 2023, 13, 2543. [Google Scholar] [CrossRef]
- Wang, L.; Yu, X.; Gao, J.; Ma, D.; Guo, H.; Hu, S. Patterns of Influence of Meteorological Elements on Maize Grain Weight and Nutritional Quality. Agronomy 2023, 13, 424. [Google Scholar] [CrossRef]
- Butts-Wilmsmeyer, C.J.; Seebauer, J.R.; Singleton, L.; Below, F.E. Weather during key growth stages explains grain quality and yield of maize. Agronomy 2019, 9, 16. [Google Scholar] [CrossRef]
- Salvador-Reyes, R.; Rebellato, A.P.; Lima Pallone, J.A.; Ferrari, R.A.; Clerici, M.T.P.S. Kernel characterization and starch morphology in five varieties of Peruvian Andean maize. Food Res. Int. 2021, 140, 110044. [Google Scholar] [CrossRef]
- Wu, Y.; Messing, J. Proteome balancing of the maize seed for higher nutritional value. Front. Plant Sci. 2014, 5, 91369. [Google Scholar] [CrossRef]
- Begam, A.; Pramanick, M.; Dutta, S.; Paramanik, B.; Dutta, G.; Patra, P.S.; Kundu, A.; Biswas, A. Inter-cropping patterns and nutrient management effects on maize growth, yield and quality. Field Crops Res. 2024, 310, 109363. [Google Scholar] [CrossRef]
- Correndo, A.A.; Fernandez, J.A.; Vara Prasad, P.V.; Ciampitti, I.A. Do water and nitrogen management practices impact grain quality in maize? Agronomy 2021, 11, 1851. [Google Scholar] [CrossRef]
- Lu, D.; Sun, X.; Yan, F.; Wang, X.; Xu, R.; Lu, W. Effects of high temperature during grain filling under control conditions on the physicochemical properties of waxy maize flour. Carbohydr. Polym. 2013, 98, 302–310. [Google Scholar] [CrossRef]
- Jahangirlou, M.R.; Akbari, G.A.; Alahdadi, I.; Soufizadeh, S.; Parsons, D. Grain quality of maize cultivars as a function of planting dates, irrigation and nitrogen stress: A case study from semiarid conditions of Iran. Agriculture 2021, 11, 11. [Google Scholar] [CrossRef]
- Stutts, L.; Wang, Y.; Stapleton, A.E. Plant growth regulators ameliorate or exacerbate abiotic, biotic and combined stress interaction effects on Zea mays kernel weight with inbred-specific patterns. Environ. Exp. Bot. 2018, 147, 179–188. [Google Scholar] [CrossRef]
- Maitah, M.; Malec, K.; Maitah, K. Influence of precipitation and temperature on maize production in the Czech Republic from 2002 to 2019. Sci. Rep. 2021, 11, 10467. [Google Scholar] [CrossRef]
- Shevkani, K.; Kaur, A.; Singh, G.; Singh, B.; Singh, N. Composition, Rheological and Extrusion Behaviour of Fractions Produced by Three Successive Reduction Dry Milling of Corn. Food Bioprocess Technol. 2014, 7, 1414–1423. [Google Scholar] [CrossRef]
- Prasanthi, P.S.; Naveena, N.; Vishnuvardhana Rao, M.; Bhaskarachary, K. Compositional variability of nutrients and phytochemicals in corn after processing. J. Food Sci. Technol. 2017, 54, 1080–1090. [Google Scholar] [CrossRef] [PubMed]
- Martínez, R.D.; Cirilo, A.G.; Cerrudo, A.; Andrade, F.H.; Reinoso, L.; Valentinuz, O.R.; Balbi, C.N.; Izquierdo, N.G. Changes of starch composition by postflowering environmental conditions in kernels of maize hybrids with different endosperm hardness. Eur. J. Agron. 2017, 86, 71–77. [Google Scholar] [CrossRef]
- Ortiz, D.; Rocheford, T.; Ferruzzi, M.G. Influence of Temperature and Humidity on the Stability of Carotenoids in Biofortified Maize (Zea mays L.) Genotypes during Controlled Postharvest Storage. J. Agric. Food Chem. 2016, 64, 2727–2736. [Google Scholar] [CrossRef]
- Zhang, H.; Xu, G. Physicochemical properties of vitreous and floury endosperm flours in maize. Food Sci. Nutr. 2019, 7, 2605–2612. [Google Scholar] [CrossRef] [PubMed]
- Roucou, A.; Bergez, C.; Méléard, B.; Orlando, B. A Fumonisin Prevention Tool for Targeting and Ranking Agroclimatic Conditions Favoring Exposure in French Maize-Growing Areas. Toxins 2021, 13, 214. [Google Scholar] [CrossRef] [PubMed]
- González-Jartín, J.M.; Ferreiroa, V.; Rodríguez-Cañás, I.; Alfonso, A.; Sainz, M.J.; Aguín, O.; Vieytes, M.R.; Gomes, A.; Ramos, I.; Botana, L.M. Occurrence of mycotoxins and mycotoxigenic fungi in silage from the north of Portugal at feed-out. Int. J. Food Microbiol. 2022, 365, 109556. [Google Scholar] [CrossRef] [PubMed]
- Kos, J.; Janić Hajnal, E.; Malachová, A.; Steiner, D.; Stranska, M.; Krska, R.; Poschmaier, B.; Sulyok, M. Mycotoxins in maize harvested in Republic of Serbia in the period 2012–2015. Part 1: Regulated mycotoxins and its derivatives. Food Chem. 2020, 312, 126034. [Google Scholar] [CrossRef] [PubMed]
- Topi, D.; Babič, J.; Pavšič-Vrtač, K.; Tavčar-Kalcher, G.; Jakovac-Strajn, B. Incidence of Fusarium Mycotoxins in Wheat and Maize from Albania. Molecules 2021, 26, 172. [Google Scholar] [CrossRef] [PubMed]
- Fusilier, K.; Chilvers, M.I.; Limay-Rios, V.; Singh, M.P. Mycotoxin Co-Occurrence in Michigan Harvested Maize Grain. Toxins 2022, 14, 431. [Google Scholar] [CrossRef] [PubMed]
- Woo, S.Y.; Lee, S.Y.; Park, S.B.; Chun, H.S. Simultaneous determination of 17 regulated and non-regulated Fusarium mycotoxins co-occurring in foodstuffs by UPLC-MS/MS with solid-phase extraction. Food Chem. 2024, 438, 137624. [Google Scholar] [CrossRef]
- European Union. Commission of the European Communities Commission Regulation (EC) No 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs. Off. J. Eur. Union 2006, L364/5, 5–24. [Google Scholar]
- European Commission. Recomendations on the presence of T-2 and HT-2 toxin in cereals and cereal products. Off. J. Eur. Union 2013, L91/12, 11–15. [Google Scholar]
- Ferrigo, D.; Raiola, A.; Causin, R. Fusarium toxins in cereals: Occurrence, legislation, factors promoting the appearance and their management. Molecules 2016, 21, 627. [Google Scholar] [CrossRef]
- Chhaya, R.S.; Nag, R.; Cummins, E. Quantitative risk ranking of mycotoxins in milk under climate change scenarios. Environ. Res. 2024, 245, 117979. [Google Scholar] [CrossRef] [PubMed]
- Simões, D.; Carbas, B.; Soares, A.; Freitas, A.; Silva, A.S.; Brites, C.; Andrade, E. de Assessment of Agricultural Practices for Controlling Fusarium and Mycotoxins Contamination on Maize Grains: Exploratory Study in Maize Farms. Toxins 2023, 15, 136. [Google Scholar] [CrossRef] [PubMed]
- Carbas, B.; Simões, D.; Soares, A.; Freitas, A.; Ferreira, B.; Carvalho, A.R.F.; Silva, A.S.; Pinto, T.; Diogo, E.; Andrade, E.; et al. Occurrence of fusarium spp. In maize grain harvested in portugal and accumulation of related mycotoxins during storage. Foods 2021, 10, 375. [Google Scholar] [CrossRef] [PubMed]
- Li, H.T.; Kerr, E.D.; Schulz, B.L.; Gidley, M.J.; Dhital, S. Pasting properties of high-amylose wheat in conventional and high-temperature Rapid Visco Analyzer: Molecular contribution of starch and gluten proteins. Food Hydrocoll. 2022, 131, 107840. [Google Scholar] [CrossRef]
- Liu, S.; Yuan, T.Z.; Wang, X.; Reimer, M.; Isaak, C.; Ai, Y. Behaviors of starches evaluated at high heating temperatures using a new model of Rapid Visco Analyzer—RVA 4800. Food Hydrocoll. 2019, 94, 217–228. [Google Scholar] [CrossRef]
- Waqas, M.A.; Wang, X.; Zafar, S.A.; Noor, M.A.; Hussain, H.A.; Azher Nawaz, M.; Farooq, M. Thermal stresses in maize: Effects and management strategies. Plants 2021, 10, 293. [Google Scholar] [CrossRef] [PubMed]
- Gu, X.; Zhang, X.; Lu, W.; Lu, D. Starch structural and functional properties of waxy maize under different temperature regimes at grain formation stage. Food Chem. X 2022, 16, 100463. [Google Scholar] [CrossRef] [PubMed]
- Lu, D.; Cai, X.; Yan, F.; Sun, X.; Wang, X.; Lu, W. Effects of high temperature after pollination on physicochemical properties of waxy maize flour during grain development. J. Sci. Food Agric. 2014, 94, 1416–1421. [Google Scholar] [CrossRef] [PubMed]
- Maggiore, A.; Afonso, A.; Barrucci, F.; Sanctis, G. De Climate change as a driver of emerging risks for food and feed safety, plant, animal health and nutritional quality. EFSA Support. Publ. 2020, 17, 1881E. [Google Scholar] [CrossRef]
- Kos, J.; Anić, M.; Radić, B.; Zadravec, M.; Janić Hajnal, E.; Pleadin, J. Climate Change—A Global Threat Resulting in Increasing. Foods 2023, 12, 2704. [Google Scholar] [CrossRef]
- Pleadin, J.; Vahčić, N.; Perši, N.; Ševelj, D.; Markov, K.; Frece, J. Fusarium mycotoxins’ occurrence in cereals harvested from Croatian fields. Food Control 2013, 32, 49–54. [Google Scholar] [CrossRef]
- Cornes, R.C.; van der Schrier, G.; van den Besselaar, E.J.M.; Jones, P.D. An Ensemble Version of the E-OBS Temperature and Precipitation Data Sets. J. Geophys. Res. Atmos. 2018, 123, 9391–9409. [Google Scholar] [CrossRef]
- Almeida-Dominguez, H.D.; Suhendro, E.L.; Rooney, L.W. Factors affecting rapid visco analyser curves for the determination of maize kernel hardness. J. Cereal Sci. 1997, 25, 93–102. [Google Scholar] [CrossRef]
- Silva, A.S.; Brites, C.; Pouca, A.V.; Barbosa, J.; Freitas, A. UHPLC-ToF-MS method for determination of multi-mycotoxins in maize: Development and validation. Curr. Res. Food Sci. 2019, 1, 1–7. [Google Scholar] [CrossRef]
- Freitas, A.; Barros, S.; Brites, C.; Barbosa, J.; Silva, A.S. Validation of a Biochip Chemiluminescent Immunoassay for Multi-Mycotoxins Screening in Maize (Zea mays L.). Food Anal. Methods 2019, 12, 2675–2684. [Google Scholar] [CrossRef]
Location | Peak Viscosity (PV) | Holding Strength (HS) | Breakdown Viscosity (BD) | Final Viscosity (FV) | Pasting Temperature (PT) | Setback Viscosity (SB) | |
---|---|---|---|---|---|---|---|
H | Coruche | 7258 ± 1205.1 cd | 2750 ± 88.4 ab | 4508 ± 1124.9 cd | 6702 ± 152.5 a* | 74.5 ± 0.3 cd | 556 ± 1272.7 a |
Golegã | 6547 ± 1281.3 bc | 2845.2 ± 193.1 b | 3702 ± 1090.6 bc | 7941 ± 560.2 b | 74.1 ± 0.7 c | 1394 ± 808.7 abc | |
I | Coruche | 7208 ± 115.6 cd | 3011 ± 75.0 c | 4197 ± 104.8 cd | 81,623 ± 106.0 bc | 72.9 ± 0.4 ab* | 955 ± 89.6 abc |
Golegã | 6680 ± 886.3 bc | 3070 ± 74.3 c | 3610 ± 905.3 bc | 7861 ± 517.9 ab | 74.0 ± 0.5 c | 1181.8 ± 1324.5 abc | |
K | Coruche | 7899 ± 671.0 d* | 3181 ± 83.1 d* | 4718 ± 62.4 d* | 7787 ± 313.1 ab | 73.9 ± 0.0 c | 112 ± 897.1 a* |
Golegã | 5963 ± 851.3 b | 2850 ± 104.2 b | 3114 ± 778.3 ab | 8777 ± 342.5 bc | 74.4 ± 0.5 cd | 2814 ± 836.0 cd | |
M | Coruche | 7108 ± 295.2 cd* | 2990 ± 66.1 c* | 4119 ± 293.6 cd* | 8657 ± 140.5 bc | 73.2 ± 0.5 b* | 1549 ± 361.6 abcd |
Golegã | 4985 ± 362.2 a | 2729 ± 136.3 a | 2256 ± 450.1 a | 8768 ± 657.8 bc | 74.9 ± 0.7 d | 3783 ± 928.1 d | |
Y | Coruche | 7466 ± 906.1 cd | 2990 ± 91.7 c | 4477 ± 979.3 cd | 7861 ± 803.8 ab* | 72.4 ± 1.0 a* | 394.2 ± 1666.0 ab |
Golegã | 6775 ± 862.8 bc | 3066 ± 32.7 c | 3708 ± 867.7 bc | 9280 ± 1364.6 c | 74.1 ± 0.7 c | 2505 ± 2171.8 bcd |
Location | Fumonisin B1 (Fum B1) | Fumonisin B2 (Fum B2) | Deoxynivalenol (DON) | |
---|---|---|---|---|
H | Coruche | 1005.4 ± 1244.4 b* | 271.0 ± 334.1 b | 114.3 ± 14.6 ab |
Golegã | <LOD | <LOD | 144.1 ± 25.6 c | |
I | Coruche | 196.3 ± 207.3 a | 75.0 ± 30.5 a | 118.1 ± 22.1 abc |
Golegã | 390.9 ± 384.1 ab | 108.8 ± 77.1 ab | 123.5 ± 29.3 abc | |
K | Coruche | <LOD | <LOD | 106.7 ± 7.7 a |
Golegã | 419.1 ± 472.1 ab | 103.7 ± 64.8 ab | 112.3 ± 28.0 ab | |
M | Coruche | 549.4 ± 556.7 ab | 214.7 ± 133.6 ab | 119.6 ± 15.8 abc |
Golegã | <LOD | <LOD | 105.6 ± 6.6 a | |
Y | Coruche | 438.9 ± 289.4 ab | 95.5 ± 36.3 a | 136.0 ± 18.9 bc |
Golegã | 238.5 ± 286.1 a | 80.8 ± 44.7 a | 116.2 ± 19.0 abc |
Maize | Type of Hybrid | Grain Color | Type of Grain | Ability | Cycle Type | FAO Classification |
---|---|---|---|---|---|---|
H | Single-cross | Yellow | Dent | Double | Long | 600 |
I | Single-cross | Yellow | Dent | Double | Long | 600 |
K | Single-cross | Yellow | Dent | Double | Medium | 600 |
M | Single-cross | Yellow | Dent | Grain | Medium | 500 |
Y | Single-cross | Yellow | Dent | Double | Medium | 500 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carbas, B.; Barros, S.; Freitas, A.; Silva, A.S.; Brites, C. Comparative Analysis of Maize Physico-Chemical Parameters and Mycotoxin Levels in Dual Environments. Toxins 2024, 16, 275. https://doi.org/10.3390/toxins16060275
Carbas B, Barros S, Freitas A, Silva AS, Brites C. Comparative Analysis of Maize Physico-Chemical Parameters and Mycotoxin Levels in Dual Environments. Toxins. 2024; 16(6):275. https://doi.org/10.3390/toxins16060275
Chicago/Turabian StyleCarbas, Bruna, Sílvia Barros, Andreia Freitas, Ana Sanches Silva, and Carla Brites. 2024. "Comparative Analysis of Maize Physico-Chemical Parameters and Mycotoxin Levels in Dual Environments" Toxins 16, no. 6: 275. https://doi.org/10.3390/toxins16060275
APA StyleCarbas, B., Barros, S., Freitas, A., Silva, A. S., & Brites, C. (2024). Comparative Analysis of Maize Physico-Chemical Parameters and Mycotoxin Levels in Dual Environments. Toxins, 16(6), 275. https://doi.org/10.3390/toxins16060275