Zearalenone in the Intestinal Tissues of Immature Gilts Exposed per os to Mycotoxins
Abstract
:1. Introduction
2. Results
Weeks of Exposure | Feed Intake (kg/day) | ZEN Intake (µg/kg feed) | Total ZEN Dose (µg/kg BW) | ZEN Concentrations ( and SD)/Carryover Factor (CF) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Duodenum | Jejunum | Ileum | Cecum | Ascending Colon | Transverse Colon | Descending Colon | Liver | ||||
I | 1,1 | 1014 | 280 | 8.60 ** ± 1.58 | 9.87 ●● ± 0.81 | 4.63 ▲▲ ± 1.20 | 4.54 **,▲▲ ± 2.09 | 1.53 ± 1.95 | 1.39 ●●,▲▲ ± 1.32 | 4.70 ●●,** ± 3.98 | 6.31 ●,**,▲▲ ± 6.16 |
0.031 | 0.035 | 0.016 | 0.0162 | 0.0054 | 0.0049 | 0.0167 | 0.0225 | ||||
II | 1,3 | 972 | 560 | 12.34 ** ± 1.75 | 19.72 ●●,▲▲ ± 2.75 | 4.99 ▲▲ ± 1.64 | 4.25 **,▲▲ ± 0.32 | 1.59 ± 2.76 | 4.63 ± 3.86 | 6.80 ●● ** ± 1.40 | 7.80 *,▲▲ ± 2.82 |
0.022 | 0.035 | 0.009 | 0.0075 | 0.0028 | 0.0082 | 0.0121 | 0.0139 | ||||
III | 1,4 | 1014 | 840 | 12.07 ** ± 3.48 | 13.85 ●● ± 0.48 | 7.22 ▲▲ ± 0.30 | 4.30 **,▲▲ ± 1.80 | 3.16 ± 1.79 | 3.94 ± 0.57 | 7.60 ●●,** ± 2.33 | 13.00 ± 1.78 |
0.014 | 0.016 | 0.008 | 0.0057 | 0.0037 | 0.0046 | 0.0090 | 0.0154 | ||||
IV | 1,5 | 987 | 1120 | 21.68 ** ± 4.01 | 43.82 ± 7.63 | 4.44 ▲▲ ± 1.52 | 3.45 **,▲▲ ± 0.67 | 4.69 ± 0.45 | 7.37 ± 1.66 | 205.01 ± 94.70 | 18.20 ± 5.92 |
0.019 | 0.039 | 0.004 | 0.0030 | 0.0042 | 0.0065 | 0.1830 | 0.0162 | ||||
V | 1,8 | 995 | 1400 | 128.18 ± 64.54 | 13.66 ●● ± 3.73 | 3.37 ▲▲ ± 0.35 | 18.17 ± 5.02 | 3.40 ± 0.54 | 6.49 ± 0.96 | 177.03 ± 50.64 | 20.01 ± 2.43 |
0.091 | 0.010 | 0.002 | 0.0129 | 0.0024 | 0.0046 | 0.1264 | 0.0142 | ||||
VI | 2,1 | 957 | 1680 | 80.74 ± 4.34 | 8.33 ●● ± 1.12 | 27.52 ± 10.28 | 13.70 ± 1.17 | 2.46 ± 1.92 | 6.70 ± 0.25 | 112.01 ± 13.69 | 23.00 ± 0.79 |
0.048 | 0.005 | 0.016 | 0.0081 | 0.0014 | 0.0039 | 0.0666 | 0.0136 | ||||
Average values | ZEN | 43.93 | 18.208 | 8.705 | 0.068 | 2.805 | 5.0086 | 85.525 | 14.72 | ||
CF | 0.0375 | 0.0233 | 0.0091 | 0.0089 | 0.0033 | 0.0054 | 0.0688 | 0.0159 |
3. Discussion
4. Materials and Methods
4.1. Experimental Section
4.2. Experimental Animals
4.3. Experimental Design
4.4. Chemicals
4.5. Tissue Samples
4.6. Extraction and Purification
4.7. HPLC Analysis of Zearalenone and Its Derivatives
4.8. Carryover Factor
4.9. Statistical Analysis
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
ZEN | zearalenone |
α-ZEL | α-zearalenol |
β-ZEL | β-zearalenol |
CF | carryover factor |
EDCs | endocrine disrupting chemicals |
ERs | estrogen receptors |
VBS | values below the sensitivity of the method |
BW | body weight |
DON | deoxynivalenol |
SD | standard deviation |
NOAEL | no observable adverse effect level |
PPB | parts per billion |
References
- Reddy, K.R.N.; Salleh, B.; Saad, B.; Abbas, H.K.; Abel, C.A.; Shier, W.T. An overview of mycotoxin contamination in foods and its implications for human health. Toxin Rev. 2010, 29, 3–26. [Google Scholar] [CrossRef]
- Hueza, I.M.; Raspantini, P.C.F.; Raspantini, L.E.R.; Latorre, A.O.; Górniak, S.L. Zearalenone, an estrogenic mycotoxin, is an immunotoxic compound. Toxins 2014, 6, 1080–1095. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panini, N.V.; Salinas, E.; Messina, G.A.; Raba, J. Modified paramagnetic beads in a microfluidic system for the determination of zearalenone in feedstuffs samples. Food Chem. 2011, 125, 791–796. [Google Scholar] [CrossRef]
- De Saeger, S.; van Egmond, H.P. Special issue: masked mycotoxins. World Mycotoxin J. 2012, 5, 203–206. [Google Scholar] [CrossRef]
- Zinedine, A.; Soriano, J.M.; Molto, J.C.; Manes, J. Review on the toxicity, occurrence, metabolism, detoxification, regulations and intake of zearalenone: An oestrogenic mycotoxin. Food Chem. Toxicol. 2007, 45, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Vandenberg, L.N.; Colborn, T.; Hayes, T.B.; Heindel, J.J.; Jacobs, D.R.; Lee, D.-H.; Shioda, T.; Soto, A.M.; vom Saal, F.S.; Welshons, W.V.; et al. Hormones and Endocrine-Disrupting Chemicals: Low-Dose Effects and Nonmonotonic Dose Responses. Endocr. Rev. 2012, 33, 378–445. [Google Scholar] [CrossRef] [PubMed]
- Zielonka, Ł.; Gajęcka, M.; Rozicka, A.; Dąbrowski, M.; Żmudzki, J.; Gajęcki, M. The Effect of Environmental Mycotoxins on Selected Ovarian Tissue Fragments of Multiparous Female Wild Boars at the Beginning of Astronomical Winter. Toxicon 2014, 89, 26–31. [Google Scholar] [CrossRef] [PubMed]
- Gajęcka, M. The effect of low-dose experimental zearalenone intoxication on the immunoexpression of estrogen receptors in the ovaries of pre-pubertal bitches. Pol. J. Vet. Sci. 2012, 15, 685–691. [Google Scholar] [CrossRef] [PubMed]
- Gajęcka, M.; Woźny, M.; Brzuzan, P.; Zielonka, Ł.; Gajęcki, M. Expression of CYPscc and 3β-HSD mRNA in bitches ovary after long-term exposure to zearalenone. Bull. Vet. Inst. Pulawy 2011, 55, 777–780. [Google Scholar]
- Soni, M.; Rahardjo, T.B.W.; Soekardi, R.; Sulistyowati, Y.; Lestariningsih; Yesufu-Udechuku, A.; Irsan, A.; Hogervorst, E. Phytoestrogens and cognitive function: A review. Maturitas 2014, 77, 209–220. [Google Scholar] [CrossRef] [PubMed]
- Gajęcka, M.; Rybarczyk, L.; Jakimiuk, E.; Zielonka, Ł.; Obremski, K.; Zwierzchowski, W.; Gajęcki, M. The effect of experimental long-term exposure to low-dose zearalenone on uterine histology in sexually immature gilts. Exp. Toxicol. Pathol. 2012, 64, 537–542. [Google Scholar] [CrossRef] [PubMed]
- Grenier, B.; Applegate, T.J. Modulation of intestinal functions following mycotoxin ingestion: Meta-analysis of published experiments in animals. Toxins 2013, 5, 396–430. [Google Scholar] [CrossRef] [PubMed]
- Gerez, J.R.; Pinton, P.; Callu, P.; Grosjean, F.; Oswald, I.P.; Bracarense, A.P.F. Deoxynivalenol alone or in combination with nivalenol and zearalenone induce systemic histological changes in pigs. Exp. Toxicol. Pathol. 2014. [Google Scholar] [CrossRef] [PubMed]
- Levast, B.; Berri, M.; Wilson, H.L.; Meurens, F.; Salmon, H. Development of gut immunoglobulin A production in piglet in response to innate and environmental factors. Dev. Comp. Immunol. 2014, 44, 235–244. [Google Scholar] [CrossRef] [PubMed]
- Marin, D.E.; Pistol, G.C.; Neagoe, I.V.; Calin, L.; Taranu, I. Effects of zearalenone on oxidative stress and inflammation in weanling piglets. Food Chem. Toxicol. 2013, 58, 408–415. [Google Scholar] [CrossRef] [PubMed]
- Bryden, W.L. Mycotoxin contamination of the feed supply chain: Implications for animal productivity and feed security. Anim. Feed Sci. Tech. 2012, 173, 134–158. [Google Scholar] [CrossRef]
- Signorini, M.L.; Gaggiotti, M.; Molineri, A.; Chiericatti, C.A.; Zapata de Basílico, M.L.; Basílico, J.C.; Pisani, M. Exposure assessment of mycotoxins in cow’s milk in Argentina. Food Chem. Toxicol. 2012, 50, 250–257. [Google Scholar] [CrossRef] [PubMed]
- Embry, M.R.; Bachman, A.N.; Bell, D.R.; Boobis, A.R.; Cohen, S.M.; Dellarco, M.; Dewhurst, I.C.; Doerrer, N.G.; Hines, R.N.; Moretto, A.; et al. Risk assessment in the 21st century: Roadmap and matrix. Crit. Rev. Toxicol. 2014, 44, 6–16. [Google Scholar] [CrossRef] [PubMed]
- Bakhru, S.H.; Furtado, S.; Morello, A.P.; Mathiowitz, E. Oral delivery of proteins by biodegradable nanoparticles. Adv. Drug Deliv. Rev. 2013, 65, 811–821. [Google Scholar] [CrossRef] [PubMed]
- Dänicke, S.; Brüssow, K.P.; Valenta, H.; Ueberschär, K.H.; Tiemann, U.; Schollenberger, M. On the effects of graded levels of Fusarium toxin contaminated wheat in diets for gilts on feed intake, growth performance and metabolism of deoxynivalenol and zearalenone. Mol. Nutr. Food Res. 2005, 49, 932–943. [Google Scholar] [CrossRef] [PubMed]
- Dänicke, S.; Goyarts, T.; Döll, S.; Grove, N.; Spolders, M.; Flachowsky, G. Effects of the Fusarium toxin deoxynivalenol on tissue protein synthesis in pigs. Toxicol. Lett. 2006, 165, 297–311. [Google Scholar] [CrossRef] [PubMed]
- Waśkiewicz, A.; Beszterda, M.; Kostecki, M.; Zielonka, Ł.; Goliński, P.; Gajęcki, M. Deoxynivalenol in the gastrointestinal tract of immature gilts under per os toxin application. Toxins 2014, 6, 973–987. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.Z.; Yang, Z.B.; Yang, W.R.; Gao, J.; Liu, F.X.; Broomhead, J.; Chi, F. Effects of purified zearalenone on growth performance, organ size, serum metabolites, and oxidative stress in postweaning gilts. J. Anim. Sci. 2011, 89, 3008–3015. [Google Scholar] [CrossRef] [PubMed]
- Gajęcka, M.; Jakimiuk, E.; Zielonka, Ł.; Obremski, K.; Gajęcki, M. The biotransformation of chosen mycotoxins. Pol. J. Vet. Sci. 2009, 12, 293–303. [Google Scholar] [PubMed]
- Carlson, S.J.; Chang, M.I.; Nandivada, P.; Cowan, E.; Puder, M. Neonatal intestinal physiology and failure. Semin. Pediatr. Surg. 2013, 22, 190–194. [Google Scholar] [CrossRef] [PubMed]
- Avantaggiato, G.; Havenaar, R.; Visconti, A. Evaluation of the intestinal absorption of deoxynivalenol and nivalenol by an in vitro gastrointestinal model, and the binding efficacy of activated carbon and other adsorbent materials. Food Chem. Toxicol. 2004, 42, 817–824. [Google Scholar] [CrossRef] [PubMed]
- Dänicke, S.; Swiech, E.; Buraczewska, L.; Ueberschär, K.H. Kinetics and metabolism of zearalenone in young female pigs. J. Anim. Physiol. Anim. Nutr. 2005, 89, 268–276. [Google Scholar] [CrossRef] [PubMed]
- Olsen, M.; Pettersson, H.; Sandholm, K.; Visconti, A.; Kiessling, K.H. Metabolism of zearalenone by sow intestinal mucosa in vitro. Food Chem. Toxicol. 1987, 25, 681–683. [Google Scholar] [CrossRef]
- Goyarts, T.; Danicke, S.; Valenta, H.; Ueberschar, K. Carry-over of the Fusarium toxins deoxynivalenol (DON) and zearalenone (ZON) from naturally contaminated wheat to the pig. Food Addit. Contam. 2007, 24, 369–380. [Google Scholar] [CrossRef] [PubMed]
- Dong, M.; Tulayakul, P.; Li, J.Y.; Dong, K.S.; Manabe, N.; Kumagai, S. Metabolic conversion of zearalenone to α-zearalenol by goat tissues. J. Vet. Med. Sci. 2010, 72, 307–312. [Google Scholar] [CrossRef] [PubMed]
- Zielonka, Ł.; Gajęcka, M.; Gajęcki, M. The effect of low doses of zearalenone and its metabolite on peripheral blood concentrations of testosterone and estradiol in pre-pubertal gilts. Toxicon 2015, in press. [Google Scholar]
- Dunbar, B.; Patel, M.; Fahey, J.; Wira, C. Endocrine control of mucosal immunity in the female reproductive tract: Impact of environmental disruptors. Mol. Cel. Endocrinol. 2012, 354, 85–93. [Google Scholar] [CrossRef] [PubMed]
- Kollarczik, B.; Gareis, M.; Hanelt, M. In vitro transformation of the Fusarium mycotoxins deoxynivalenol and zearalenone by the normal gut microflora of pigs. Nat. Toxins 1994, 2, 105–110. [Google Scholar] [CrossRef] [PubMed]
- Piotrowska, M.; Śliżewska, K.; Nowak, A.; Zielonka, Ł.; Żakowska, Z.; Gajęcka, M.; Gajęcki, M. The effect of experimental Fusarium. mycotoxicosis on microbiota diversity in porcine ascending colon contents. Toxins 2014, 6, 2064–2081. [Google Scholar] [CrossRef] [PubMed]
- Gajęcka, M.; Stopa, E.; Tarasiuk, M.; Zielonka, Ł.; Gajęcki, M. The expression of type-1 and type-2 nitric oxide synthase in selected tissues of the gastrointestinal tract during mixed mycotoxicosis. Toxins 2013, 5, 2281–2292. [Google Scholar]
- Grześk, E.; Grześk, G.; Koziński, M.; Stolarek, W.; Zieliński, M.; Kubica, J. Nitric oxide as a cause and a potential place therapeutic intervention in hypo responsiveness vascular in early sepsis. Folia Cardiol. 2011, 6, 36–43. [Google Scholar]
- Castro, M.; Muńoz, J.M.; Arruebo, M.P.; Murillo, M.D.; Arnal, C.; Bonafonte, J.I.; Plaza, M.A. Involvement of neuronal nitric oxide synthase (nNOS) in the regulation of migrating motor complex (MMC) in sheep. Vet. J. 2012, 192, 352–358. [Google Scholar] [CrossRef] [PubMed]
- Lucioli, J.; Pinton, P.; Callu, P.; Laffitte, J.; Grosjean, F.; Kolf-Clauw, M.; Oswald, I.P.; Bracarense, A.P. The food contaminant deoxynivalenol activates the mitogen activated protein kinases in the intestine: Interest of ex vivo models as an alternative to in vivo experiments. Toxicon 2013, 66, 31–36. [Google Scholar] [CrossRef] [PubMed]
- Sergent, T.; Ribonnet, L.; Kolosova, A.; Garsou, S.; Schaut, A.; de Saeger, S.; van Peteghem, C.; Larondelle, Y.; Pussemier, L.; Schneider, Y.J. Molecular and cellular effects of food contaminants and secondary plant components and their plausible interactions at the intestinal level. Food Chem. Toxicol. 2008, 46, 813–841. [Google Scholar] [CrossRef] [PubMed]
- Wan, L.Y.M.; Turner, P.C.; El-Nezami, H. Individual and combined cytotoxic effects of Fusarium toxins (deoxynivalenol, nivalenol, zearalenone and fumonisins B1) on swine jejunal epithelial cells. Food Chem. Toxicol. 2013, 57, 276–283. [Google Scholar] [CrossRef] [PubMed]
- Silva-Campa, E.; Mata-Haro, V.; Mateu, E.; Hernández, J. Porcine reproductive and respiratory syndrome virus induces CD4+CD8+CD25+Foxp3+ regulatory T cells (Tregs). Virology 2012, 430, 73–80. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.-J.; Feng, C.-C.; Liu, Q.; Zhang, L.-Y.; Dong, X.; Liu, Z.-L.; Cao, Z.-J.; Mo, J.-Z.; Li, Y.; Fang, J.-Y.; et al. Vagal afferents mediate antinociception of estrogen in a rat model of visceral pain: The involvement of intestinal mucosal mast cells and 5-hydroxytryptamine 3 signaling. J. Pain 2014, 15, 204–217. [Google Scholar] [CrossRef] [PubMed]
- Gajęcka, M.; Rybarczyk, L.; Zwierzchowski, W.; Jakimiuk, E.; Zielonka, Ł.; Obremski, K.; Gajęcki, M. The effect of experimental, long-term exposure to low-dose zearalenone mycotoxicosis on the histological condition of ovaries in sexually immature gilts. Theriogenology 2011, 75, 1085–1094. [Google Scholar] [CrossRef] [PubMed]
- Taylor, S.E.; Martin-Hirsch, P.L.; Martin, F.L. Oestrogen receptor splice variants in the pathogenesis of disease. Cancer Lett. 2010, 288, 133–148. [Google Scholar] [CrossRef] [PubMed]
- López-Calderero, I.; Carnero, A.; Astudillo, A.; Palacios, J.; Chaves, M.; Benavent, M.; Limón, M.L.; Garcia-Carbonero, R. Prognostic relevance of estrogen receptor-α Ser167 phosphorylation in stage II-III colon cancer patients. Hum. Pathol. 2014, 45, 2437–2446. [Google Scholar] [CrossRef] [PubMed]
- Thomas, C.; Gustafsson, J.Å. The different roles of ER subtypes in cancer biology and therapy. Nat. Rev. Cancer 2011, 11, 597–608. [Google Scholar] [CrossRef] [PubMed]
- Oduwole, O.O.; Isomaa, V.V.; Nokelainen, P.A.; Stenback, F.; Vihko, P.T. Down regulation of estrogen-metabolizing 17 beta-hydroxysteroid dehydrogenase type 2 expression correlates inversely with Ki67 proliferation marker in colon-cancer development. Int. J. Cancer 2002, 97, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Warner, M.; Gustafsson, J.-A. DHEA—A precursor of ERβ ligands. J. Steroid Biochem. Mol. Biol. 2015, 145, 245–247. [Google Scholar] [CrossRef] [PubMed]
- Juengel, J.L.; Heath, D.A.; Quirke, L.D.; McNatty, K.P. Oestrogen receptor α and β, androgen receptor and progesterone receptor mRNA and protein localization within the developing ovary and in small growing follicles of sheep. Reproduction 2006, 131, 81–92. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zielonka, Ł.; Waśkiewicz, A.; Beszterda, M.; Kostecki, M.; Dąbrowski, M.; Obremski, K.; Goliński, P.; Gajęcki, M. Zearalenone in the Intestinal Tissues of Immature Gilts Exposed per os to Mycotoxins. Toxins 2015, 7, 3210-3223. https://doi.org/10.3390/toxins7083210
Zielonka Ł, Waśkiewicz A, Beszterda M, Kostecki M, Dąbrowski M, Obremski K, Goliński P, Gajęcki M. Zearalenone in the Intestinal Tissues of Immature Gilts Exposed per os to Mycotoxins. Toxins. 2015; 7(8):3210-3223. https://doi.org/10.3390/toxins7083210
Chicago/Turabian StyleZielonka, Łukasz, Agnieszka Waśkiewicz, Monika Beszterda, Marian Kostecki, Michał Dąbrowski, Kazimierz Obremski, Piotr Goliński, and Maciej Gajęcki. 2015. "Zearalenone in the Intestinal Tissues of Immature Gilts Exposed per os to Mycotoxins" Toxins 7, no. 8: 3210-3223. https://doi.org/10.3390/toxins7083210
APA StyleZielonka, Ł., Waśkiewicz, A., Beszterda, M., Kostecki, M., Dąbrowski, M., Obremski, K., Goliński, P., & Gajęcki, M. (2015). Zearalenone in the Intestinal Tissues of Immature Gilts Exposed per os to Mycotoxins. Toxins, 7(8), 3210-3223. https://doi.org/10.3390/toxins7083210