Mitigation of Patulin in Fresh and Processed Foods and Beverages
Abstract
:1. Introduction
2. Pre-Processing Control of Patulin
2.1. Storage
2.2. Fungicides
2.3. Physical Removal of Fungi and Infected Tissue
3. Effect of Processing Steps on Patulin
3.1. Clarification/Filtration
3.2. Heat Treatment
3.3. Fermentation
4. Patulin Reduction Techniques
4.1. Biological Control Agents
4.2. Chemical Additives
4.3. Physical Treatments
4.3.1. Ultraviolet Radiation
4.3.2. Pulsed Light
4.3.3. High Hydrostatic Pressure
5. Conclusions
- Destroy, inactivate, or otherwise remove the mycotoxins.
- Not leave or create any products that possess toxic/mutagenic/carcinogenic properties.
- Be practical in so far as it is technologically and economically feasible.
- Prevent the re-occurrence of mycotoxins by destroying any fungal spores or mycelium.
Acknowledgments
Conflicts of Interest
References
- Barug, D.; Bhatnagar, D.; Van Egmond, H.P.; van der Kamp, J.W.; Van Osenbruggen, W.A.; Visconti, A. The Mycotoxin Factbook; Wageningen Academic Publishers: Wageningen, The Netherlands, 2006. [Google Scholar]
- Lai, C.; Fuh, Y.; Shih, D. Detection of mycotoxin patulin in apple juice. J. Food Drug Anal. 2000, 2, 85–96. [Google Scholar]
- Drusch, S.; Ragab, W. Mycotoxins in fruits, fruit juices, and dried fruits. J. Food Prot. 2003, 66, 1514–1527. [Google Scholar] [CrossRef] [PubMed]
- Stott, W.; Bullerman, L.B. Patulin: A mycotoxin of potential concern in foods. J. Food Prot. 1975, 38, 695–705. [Google Scholar] [CrossRef]
- Yang, J.; Li, J.; Jiang, Y.; Duan, X.; Qu, H.; Yang, B.; Chen, F.; Sivakumar, D. Natural occurrence, analysis, and prevention of mycotoxins in fruits and their processed products. Crit. Rev. Food Sci. Nutr. 2014, 54, 64–83. [Google Scholar] [CrossRef] [PubMed]
- Paterson, R.R.; Venancio, A.; Lima, N. Solutions to Penicillium taxonomy crucial to mycotoxin research and health. Res. Microbiol. 2004, 155, 507–513. [Google Scholar] [CrossRef] [PubMed]
- Ciegler, A.; Detroy, R.; Lillehoj, E. Patulin, penicillic acid, and other carcinogenic lactones. Microb. Toxins 1971, 6, 409–434. [Google Scholar]
- Puel, O.; Galtier, P.; Oswald, I.P. Biosynthesis and toxicological effects of patulin. Toxins 2010, 2, 613–631. [Google Scholar] [CrossRef] [PubMed]
- Ciegler, A.; Vesonder, R.; Jackson, L. Production and biological activity of patulin and citrinin from Penicillium expansum. Appl. Environ. Microbiol. 1977, 4, 1004–1006. [Google Scholar]
- Dickens, F.; Jones, H. Carcinogenic activity of a series of reactive lactones and related substances. Br. J. Cancer 1961, 15, 85–100. [Google Scholar] [CrossRef] [PubMed]
- Llewellyn, G.C.; McCay, J.A.; Brown, R.D. Immunological evaluation of the mycotoxin patulin in female B6C3F1 mice. Food Chem. Toxicol. 1998, 36, 1107–1115. [Google Scholar] [CrossRef]
- Fliege, R.; Metzler, M. Electrophilic properties of patulin. Adduct structures and reaction pathways with 4-bromothiophenol and other model nucleophiles. Chem. Res. Toxicol. 2000, 13, 363–372. [Google Scholar] [CrossRef] [PubMed]
- Baert, K.; Devlieghere, F.; Flyps, H.; Oosterlinck, M.; Ahmed, M.M.; Rajkovic, A.; Verlinden, B.; Nicolai, B.; Debevere, J.; De Meulenaer, B. Influence of storage conditions of apples on growth and patulin production by Penicillium expansum. Int. J. Food Microbiol. 2007, 119, 170–181. [Google Scholar] [CrossRef] [PubMed]
- Schumacher, D.M.; Müller, C.; Metzler, M.; Lehmann, L. DNA-DNA cross-links contribute to the mutagenic potential of the mycotoxin patulin. Toxicol. Lett. 2006, 166, 268–275. [Google Scholar] [CrossRef] [PubMed]
- Fung, F.; Clark, R.F. Health effects of mycotoxins: A toxicological overview. J. Toxicol. Clin. Toxicol. 2004, 42, 217–234. [Google Scholar] [CrossRef] [PubMed]
- Plunkett, L.; Turnbull, D.; Rodricks, J. Differences between adults and children affecting exposure assessment. In Similarities and Differences between Children and Adults, Implications for Risk Assessment; Guzelian, P., Henry, C., Olin, S., Eds.; ILSI Press: Washington, DC, USA, 1992; pp. 79–94. [Google Scholar]
- CODEX. Maximum Level for Patulin in Apple Juice and Apple Juice Ingredients and Other Beverages; Codex Alimentarius Commission, Ed.; 235; Codex Alimentarius Commission: Rome, Italy, 2003. [Google Scholar]
- Food and Drug Administration (FDA). Compliance policy guidance for fda staff. Sec. 510.150 Apple juice, apple juice concentrates, and apple juice products—Adulteration with patulin. In Compliance Policy Guide; U.S. Food and Drug Administration: Silver Spring, MD, USA, 2004. [Google Scholar]
- Health Canada. Canadian standards for various chemical contaminants in foods. Food and Drug Regulations. Health Canada, Ed.; 2014. Available online: http://www.hc-sc.gc.ca/fn-an/securit/chem-chim/contaminants-guidelines-directives-eng.php (accessed on 20 October 2016).
- World Health Organization. Evaluation of certain food additives and contaminants. Tech. Rep. Ser. 1995, 859, 36–38. [Google Scholar]
- European Commission. Commission regulation (EC) No 1881/2006 of 19 december 2006 setting maximum levels for certain contaminants in foodstuffs. Off. J. Eur. Union 2006, 364, 5–24. [Google Scholar]
- Funes, G.J.; Resnik, S.L. Determination of patulin in solid and semisolid apple and pear products marketed in argentina. Food Control 2009, 20, 277–280. [Google Scholar] [CrossRef]
- Karaca, H.; Nas, S. Aflatoxins, patulin and ergosterol contents of dried figs in turkey. Food Addit. Contam. 2006, 23, 502–508. [Google Scholar] [CrossRef] [PubMed]
- Cunha, S.C.; Faria, M.A.; Pereira, V.L.; Oliveira, T.M.; Lima, A.C.; Pinto, E. Patulin assessment and fungi identification in organic and conventional fruits and derived products. Food Control 2014, 44, 185–190. [Google Scholar] [CrossRef]
- Van de Perre, E.; Jacxsens, L.; Van Der Hauwaert, W.; Haesaert, I.; De Meulenaer, B. Screening for the presence of patulin in molded fresh produce and evaluation of its stability in the production of tomato products. J. Agric. Food Chem. 2014, 62, 304–309. [Google Scholar] [CrossRef] [PubMed]
- Assuncao, R.; Martins, C.; Dupont, D.; Alvito, P. Patulin and ochratoxin a co-occurrence and their bioaccessibility in processed cereal-based foods: A contribution for portuguese children risk assessment. Food Chem. Toxicol. 2016, 96, 205–214. [Google Scholar] [CrossRef] [PubMed]
- Pattono, D.; Grosso, A.; Stocco, P.P.; Pazzi, M.; Zeppa, G. Survey of the presence of patulin and ochratoxin a in traditional semi-hard cheeses. Food Control 2013, 33, 54–57. [Google Scholar] [CrossRef]
- Zouaoui, N.; Sbaii, N.; Bacha, H.; Abid-Essefi, S. Occurrence of patulin in various fruit juice marketed in tunisia. Food Control 2015, 51, 356–360. [Google Scholar] [CrossRef]
- Deshpande, S.S. Handbook of Food Toxicology; Marcel Dekker Inc.: New York, NY, USA, 2002; p. 920. [Google Scholar]
- Marín, S.; Mateo, E.M.; Sanchis, V.; Valle-Algarra, F.M.; Ramos, A.J.; Jiménez, M. Patulin contamination in fruit derivatives, including baby food, from the spanish market. Food Chem. 2011, 124, 563–568. [Google Scholar] [CrossRef]
- Rychlik, M.; Schieberle, P. Model studies on the diffusion behavior of the mycotoxin patulin in apples, tomatoes, and wheat bread. Eur. Food Res. Technol. 2001, 212, 274–278. [Google Scholar] [CrossRef]
- Taniwaki, M.; Hoenderboom, C.; De Almeida Vitali, A.; Firoa, M. Migration of patulin in apples. J. Food Prot. 1992, 55, 902–904. [Google Scholar] [CrossRef]
- Laidou, I.A.; Thanassoulopoulos, C.C.; Liakopoulou-Kyriakides, M. Diffusion of patulin in the flesh of pears inoculated with four post-harvest pathogens. J. Phytopathol. 2001, 149, 457–461. [Google Scholar] [CrossRef]
- Marin, S.; Morales, H.; Hasan, H.A.; Ramos, A.J.; Sanchis, V. Patulin distribution in Fuji and golden apples contaminated with Penicillium expansum. Food Addit. Contam. 2006, 23, 1316–1322. [Google Scholar] [CrossRef] [PubMed]
- Harris, K.; Bobe, G.; Bourquin, L. Patulin surveillance in apple cider and juice marketed in michigan. J. Food Prot. 2009, 72, 1255–1261. [Google Scholar] [CrossRef] [PubMed]
- Ekinci, R.; Otag, M.; Kadakal, C. Patulin & ergosterol: New quality parameters together with aflatoxins in hazelnuts. Food Chem. 2014, 150, 17–21. [Google Scholar] [PubMed]
- Spadaro, D.; Ciavorella, A.; Frati, S.; Garibaldi, A.; Gullino, M.L. Incidence and level of patulin contamination in pure and mixed apple juices marketed in italy. Food Control 2007, 18, 1098–1102. [Google Scholar] [CrossRef]
- Gokmen, V.; Acar, J. Incidence of patulin in apple juice concentrates produced in turkey. J. Chromatogr. A 1998, 815, 99–102. [Google Scholar] [CrossRef]
- Iha, M.H.; Sabino, M. Incidence of patulin in brazilian apple-based drinks. Food Control 2008, 19, 417–422. [Google Scholar] [CrossRef]
- Barreira, M.J.; Alvito, P.C.; Almeida, C.M.M. Occurrence of patulin in apple-based-foods in portugal. Food Chem. 2010, 121, 653–658. [Google Scholar] [CrossRef]
- Tangni, E.K.; Theys, R.; Mignolet, E.; Maudoux, M.; Michelet, J.Y.; Larondelle, Y. Patulin in domestic and imported apple-based drinks in belgium: Occurrence and exposure assessment. Food Addit. Contam. 2003, 20, 482–489. [Google Scholar] [CrossRef] [PubMed]
- Pique, E.; Vargas-Murga, L.; Gomez-Catalan, J.; Lapuente, J.; Llobet, J.M. Occurrence of patulin in organic and conventional apple-based food marketed in catalonia and exposure assessment. Food Chem. Toxicol. 2013, 60, 199–204. [Google Scholar] [CrossRef] [PubMed]
- Cho, M.S.; Kim, K.; Seo, E.; Kassim, N.; Mtenga, A.B.; Shim, W.-B.; Lee, S.-H.; Chung, D.-H. Occurrence of patulin in various fruit juices from South Korea: An exposure assessment. Food Sci. Biotechnol. 2010, 19, 1–5. [Google Scholar] [CrossRef]
- Leggott, N.; Shephard, G. Patulin in south african commercial apple products. Food Control 2001, 12, 73–76. [Google Scholar] [CrossRef]
- Sarubbi, F.; Formisano, G.; Auriemma, G.; Arrichiello, A.; Palomba, R. Patulin in homogenized fruit’s and tomato products. Food Control 2016, 59, 420–423. [Google Scholar] [CrossRef]
- Yuan, Y.; Zhuang, H.; Zhang, T.; Liu, J. Patulin content in apple products marketed in northeast China. Food Control 2010, 21, 1488–1491. [Google Scholar] [CrossRef]
- De Souza Sant’Ana, A.; Rosenthal, A.; de Massaguer, P.R. The fate of patulin in apple juice processing: A review. Food Res. Int. 2008, 41, 441–453. [Google Scholar] [CrossRef]
- Taniwaki, M.; Bleinroth, E.; De Martin, Z. Bolores produtores de patulina em macã e suco industrializado. Colet. Inst. Tecnol. Alimentos 1989, 19, 42–49. [Google Scholar]
- Morales, H.; Marin, S.; Centelles, X.; Ramos, A.J.; Sanchis, V. Cold and ambient deck storage prior to processing as a critical control point for patulin accumulation. Int. J. Food Microbiol. 2007, 116, 260–265. [Google Scholar] [CrossRef] [PubMed]
- Johnsonn, D.; Stow, J.; Dover, C. Prospect for the control of fungal rotting in cox’s orange pippin apples by low oxygen and low ethylene storage. Acta Hortic. 1993, 343, 334–336. [Google Scholar] [CrossRef]
- Paster, N.; Huppert, D.; Barkai-Golan, R. Production of patulin by different strains of Penicillium expansum in pear and apple cultivars stored at different temperatures and modified atmospheres. Food Addit. Contam. 1995, 155, 507–513. [Google Scholar]
- Moodley, R.S.; Govinden, R.; Odhav, B. The effect of modified atmospheres and packaging on patulin production in apples. J. Food Prot. 2002, 65, 867–871. [Google Scholar] [CrossRef] [PubMed]
- Rosenberger, D. Control of Penicillium Expansum During Apple Harvest Storage. In Proceedings of the Patulin Technical Symposium, Kissimmee, FL, USA, 18–19 February 2003. [Google Scholar]
- Morales, H.; Marin, S.; Rovira, A.; Ramos, A.J.; Sanchis, V. Patulin accumulation in apples by Penicillium expansum during postharvest stages. Lett. Appl. Microbiol. 2007, 44, 30–35. [Google Scholar] [CrossRef] [PubMed]
- Errampalli, D. Effect of fludioxonil on germination and growth of Penicillium expansum and decay in apple cvs. Empire and gala. Crop Prot. 2004, 23, 811–817. [Google Scholar] [CrossRef]
- Neri, F.; Mari, M.; Menniti, A.M.; Brigati, S.; Bertolini, P. Control of Penicillium expansum in pears and apples by trans-2-hexenal vapours. Postharvest Biol. Technol. 2006, 41, 101–108. [Google Scholar] [CrossRef]
- Hasan, H.A. Patulin and aflatoxin in brown rot lesion of apple fruits and their regulation. World J. Microbiol. Biotechnol. 2000, 16, 607–612. [Google Scholar] [CrossRef]
- CODEX. Code of Practice for the Prevention and Reduction of Patulin Contamination in Apple Juice and Apple Juice Ingredients in other Beverages; Codex Alimentarius Commission, Ed.; CA/RCP-2003; Food and Agriculture Organization: Rome, Italy, 2003. [Google Scholar]
- Moake, M.M.; Padilla-Zakour, O.I.; Worobo, R.W. Comprehensive review of patulin control methods in foods. Compr. Rev. Food Sci. Food Saf. 2005, 1, 8–21. [Google Scholar] [CrossRef]
- Root, W.H.; Barrett, D.M. Apples and apple processing. In Processing Fruits; Barrett, D.M., Somogyi, L., Ramaswamy, H., Eds.; CRC Press: Danvers, MA, USA, 2005; pp. 455–479. [Google Scholar]
- Acar, J.; Gokmen, V.; Taydas, E.E. The effects of processing technology on the patulin content of juice during commercial apple juice concentrate production. Z. Lebensm. Unters. Forsch. A 1998, 207, 328–331. [Google Scholar] [CrossRef]
- Cole, R.; Jarvis, B.B.; Schweikert, M.A. Handbook of Secondary Fungal Metabolites; Academic Press: San Diego, CA, USA, 2003. [Google Scholar]
- Sydenham, E.; Vismer, H.; Marasas, W.; Brown, N.; Schlechter, M.; van der Westhuizen, L.; Rheeder, J. Reduction of patulin in apple juice samples—Influence of initial processing. Food Control 1995, 6, 195–200. [Google Scholar] [CrossRef]
- Jackson, L.S.; Beacham-Bowden, T.; Keller, S.E.; Adhikari, C.; Taylor, K.T.; Chirtel, S.J.; Merker, R.I. Apple quality, storage, and washing treatments affect patulin levels in apple cider. J. Food Prot. 2003, 66, 618–624. [Google Scholar] [CrossRef] [PubMed]
- Food and Drug Administration (FDA). Guide to Minimize Microbial Food Safety Hazards for Fresh Fruits and Vegetables; Food Safety Initiative Staff, HFS-32, U.S. Food and Drug Administration, Ed.; Center for Food Safety and Applied Nutrition: Washington, DC, USA, 1998.
- Canadian Food Inspection Agency (CFIA). Code of Practice for Minimally Processed Ready-To-Eat Vegetables; Canadian Food Inspection Agency, Ed.; Canadian Food Inspection Agency: Ottawa, ON, Canada, 2009. [Google Scholar]
- Chen, L.; Ingham, H.; Ingham, S.C. Survival of Penicillium expansum and patulin production on stored apples after wash treatments. J. Food Sci. 2004, 69, 669–675. [Google Scholar] [CrossRef]
- Roberts, R.G.; Reymond, S.T. Chlorine dioxide for reduction of postharvest pathogen inoculum during handling of tree fruits. Appl. Environ. Microbiol. 1994, 60, 2864–2868. [Google Scholar] [PubMed]
- Baldry, M. The bactericidal, fungicidal and sporicidal properties of hydrogen peroxide and peracetic acid. J. Appl. Bacteriol. 1983, 54, 417–423. [Google Scholar] [CrossRef] [PubMed]
- Sholberg, P.; Haag, P.; Hocking, R.; Bedford, K. The use of vinegar vapor to reduce postharvest decay of harvested fruit. Hortic. Sci. 2000, 35, 898–903. [Google Scholar]
- Spotts, R.; Cervantes, L. Effect of ozonated water on postharvest pathogens of pear in laboratory and packinghouse tests. Plant Dis. 1992, 76, 256–259. [Google Scholar] [CrossRef]
- Conway, W.; Lanisiewicz, W.; Klein, I.; Sams, C. Strategy for combining heat treatment, calcium infiltration, and biological control to reduce postharvest decay of “gala” apples. Hortic. Sci. 1999, 34, 700–704. [Google Scholar]
- Okull, D.; LaBorde, L. Activity of electrolyzed oxidizing water against Penicillium expansum in suspension and on wounded apples. J. Food Sci. 2004, 69, 23–27. [Google Scholar] [CrossRef]
- Lovett, J.; Thompson, R.; Boutin, B. Patulin production in apples stored in a controlled atmosphere. J. Assoc. Off. Anal. Chem. 1975, 58, 912–914. [Google Scholar] [PubMed]
- Bisseur, J.; Permaul, K.; Odhav, B. Reduction of patulin during apple juice clarification. J. Food Prot. 2001, 64, 1216–1219. [Google Scholar] [CrossRef]
- Fellows, P.J. Food Processing Technol, 3rd ed.; Woodland Publishing: Boca Raton, FL, USA, 2009. [Google Scholar]
- Sands, D.C.; McIntyre, J.L.; Walton, G.S. Use of activated charcoal for the removal of patulin from cider. Appl. Environ. Microbiol. 1976, 32, 388–391. [Google Scholar] [PubMed]
- Gökmen, V.; Artık, N.; Acar, J.; Kahraman, N.; Poyrazoğlu, E. Effects of various clarification treatments on patulin, phenolic compound and organic acid compositions of apple juice. Eur. Food Res. Technol. 2001, 213, 194–199. [Google Scholar] [CrossRef]
- Kadakal, C.; Nas, S. Effect of activated charcoal on patulin, fumaric acid, and some other properties of apple juice. Nahr. Food 2002, 46, 31–33. [Google Scholar] [CrossRef]
- Kadakal, C.; Sebahattin, N.; Poyrazoğlu, E.S. Effect of commercial processing stages of apple juice on patulin, fumaric acid and hydroxymethylfurfural (HMF) levels. J. Food Qual. 2002, 25, 359–368. [Google Scholar] [CrossRef]
- Welke, J.E.; Hoeltz, M.; Dottori, H.A.; Noll, I.B. Effect of processing stages of apple juice concentrate on patulin levels. Food Control 2009, 20, 48–52. [Google Scholar] [CrossRef]
- Fukumoto, L.; Delaquis, P.; Girard, B. Microfiltration and ultrafiltration ceramic membranes for apple juice clarification. J. Food Sci. 1998, 63, 845–866. [Google Scholar] [CrossRef]
- Wiesner, B. Bactericidal effects of Aspergillus clavatus. Nature 1942, 149, 356–357. [Google Scholar] [CrossRef]
- Heatley, N.; Philpot, F. The routine examination for antibiotic produced by moulds. J. Gen. Microbiol. 1947, 1, 232–237. [Google Scholar] [CrossRef] [PubMed]
- Lovett, J.; Peeler, J. Effect of ph on the thermal destruction kinetics of patulin in aqueous solution. J. Food Sci. 1973, 38, 1094–1095. [Google Scholar] [CrossRef]
- Scott, P.; Somers, E. Stability of patulin and penicillic acid in fruit juices and flour. J. Agric. Food Chem. 1968, 16, 483–485. [Google Scholar] [CrossRef]
- Kubacki, S. The analysis and occurrence of patulin in apple juice. In Proceedings of the 6th International IUPAC Symposium on Mycotoxins Phycotoxins, Pretoria, South Africa, 22–25 July 1986; pp. 293–304. [Google Scholar]
- Wheeler, J.L.; Harrison, M.A.; Koehler, P.E. Presence and stability of patulin in pasteurized apple cider. J. Food Sci. 1987, 52, 479–780. [Google Scholar] [CrossRef]
- Kadakal, C.; Nas, S. Effect of heat treatment and evaporation on patulin and some other properties of apple juice. J. Sci. Food Agric. 2003, 83, 987–990. [Google Scholar] [CrossRef]
- Kryger, R.A. Volatility of patulin in apple juice. J. Agric. Food Chem. 2001, 49, 4141–4143. [Google Scholar] [CrossRef] [PubMed]
- Janotová, L.; Čížková, H.; Pivoňka, J.; Voldřich, M. Effect of processing of apple puree on patulin content. Food Control 2011, 22, 977–981. [Google Scholar] [CrossRef]
- Woller, R.; Majerus, P. Patulin in obsterzeugnissen-egenschaften, bildung und vorkommen. Flussiges Obst 1982, 49, 564–570. [Google Scholar]
- Harwig, J.; Chen, Y.; Kennedy, P.; Scott, P. Occurrence of patulin and patulin producing strains of Penicillium expansum in natural rots of apples in canada. J. Can. Inst. Food Sci. Technol. 1973, 6, 22–25. [Google Scholar] [CrossRef]
- Moss, M.O.; Long, M.T. Fate of patulin in the presence of the yeast Saccharomyces cerevisiae. Food Addit. Contam. 2002, 19, 387–399. [Google Scholar] [CrossRef] [PubMed]
- Burroughs, L. Stability of patulin to sulfur dioxide and to yeast fermentation. J. Assoc. Off. Anal. Chem. 1977, 60, 100–103. [Google Scholar] [PubMed]
- Stinson, E.E.; Osman, S.F.; Huhtanen, C.N.; Bills, D.D. Disappearance of patulin during alcoholic fermentation of apple juice. Appl. Environ. Microbiol. 1978, 36, 620–622. [Google Scholar] [PubMed]
- Suzuki, T.; Takeda, M.; Tanabe, H. A new mycotoxin produced by Aspergillus clavatus. Chem. Pharm. Bull. 1971, 19, 1786–1788. [Google Scholar] [CrossRef] [PubMed]
- Ricelli, A.; Baruzzi, F.; Solfrizzo, M.; Morea, M.; Fanizzi, F.P. Biotransformation of patulin by Gluconobacter oxydans. Appl. Environ. Microbiol. 2007, 73, 785–792. [Google Scholar] [CrossRef] [PubMed]
- Coelho, A.; Celli, M.; Sataque Ono, E.; Hoffmann, F.; Pagnocca, F.; Garcia, S.; Sabino, M.; Harada, K.; Wosiacki, G.; Hirooka, E. Patulin biodegradation using Pichia ohmeri and Saccharomyces cerevisiae. World Mycotoxin J. 2008, 1, 325–331. [Google Scholar] [CrossRef]
- Fuchs, S.; Sontag, G.; Stidl, R.; Ehrlich, V.; Kundi, M.; Knasmuller, S. Detoxification of patulin and ochratoxin a, two abundant mycotoxins, by lactic acid bacteria. Food Chem. Toxicol. 2008, 46, 1398–1407. [Google Scholar] [CrossRef] [PubMed]
- Reddy, K.R.; Spadaro, D.; Gullino, M.L.; Garibaldi, A. Potential of two metschnikowia pulcherrima (yeast) strains for in vitro biodegradation of patulin. J. Food Prot. 2011, 74, 154–156. [Google Scholar] [CrossRef] [PubMed]
- Ianiri, G.; Pinedo, C.; Fratianni, A.; Panfili, G.; Castoria, R. Patulin degradation by the biocontrol yeast sporobolomyces sp. Is an inducible process. Toxins 2017, 9, 61. [Google Scholar] [CrossRef] [PubMed]
- Topcu, A.; Bulat, T.; Wishah, R.; Boyaci, I.H. Detoxification of aflatoxin B1 and patulin by enterococcus faecium strains. Int. J. Food Microbiol. 2010, 139, 202–205. [Google Scholar] [CrossRef] [PubMed]
- Yue, T.; Dong, Q.; Guo, C.; Worobo, R.W. Reducing patulin contamination in apple juice by using inactive yeast. J. Food Prot. 2011, 74, 149–153. [Google Scholar] [CrossRef] [PubMed]
- Guo, C.; Yue, T.; Hatab, S.; Yuan, Y. Ability of inactivated yeast powder to adsorb patulin from apple juice. J. Food Prot. 2012, 75, 585–590. [Google Scholar] [CrossRef] [PubMed]
- Hatab, S.; Yue, T.; Mohamad, O. Reduction of patulin in aqueous solution by lactic acid bacteria. J. Food Sci. 2012, 77, M238–M241. [Google Scholar] [CrossRef] [PubMed]
- Hatab, S.; Yue, T.; Mohamad, O. Removal of patulin from apple juice using inactivated lactic acid bacteria. J. Appl. Microbiol. 2012, 112, 892–899. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Yue, T.; Yuan, Y.; Wang, Z.; Ye, M.; Cai, R. A new insight into the adsorption mechanism of patulin by the heat-inactive lactic acid bacteria cells. Food Control 2015, 50, 104–110. [Google Scholar] [CrossRef]
- Knasmüller, S.; Steinkellner, H.; Hirschl, A.M.; Rabot, S.; Nobis, E.C.; Kassie, F. Impact of bacteria in dairy products and of the intestinal microflora on the genotoxic and carcinogenic effects of heterocyclic aromatic amines. Mutat. Res. 2001, 480, 129–138. [Google Scholar] [CrossRef]
- Zhu, R.; Yu, T.; Guo, S.; Hu, H.; Zheng, X.; Karlovsky, P. Effect of the yeast Rhodosporidium paludigenum on postharvest decay and patulin accumulation in apples and pears. J. Food Prot. 2015, 78, 157–163. [Google Scholar] [CrossRef] [PubMed]
- Zhu, R.; Feussner, K.; Wu, T.; Yan, F.; Karlovsky, P.; Zheng, X. Detoxification of mycotoxin patulin by the yeast Rhodosporidium paludigenum. Food Chem. 2015, 179, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Castoria, R.; Mannina, L.; Duran-Patron, R.; Maffei, F.; Sobolev, A.P.; De Felice, D.V.; Pinedo-Rivilla, C.; Ritieni, A.; Ferracane, R.; Wright, S.A. Conversion of the mycotoxin patulin to the less toxic desoxypatulinic acid by the biocontrol yeast Rhodosporidium kratochvilovae strain LS11. J. Agric. Food Chem. 2011, 59, 11571–11578. [Google Scholar] [CrossRef] [PubMed]
- Tannous, J.; Snini, S.P.; El Khoury, R.; Canlet, C.; Pinton, P.; Lippi, Y.; Alassane-Kpembi, I.; Gauthier, T.; El Khoury, A.; Atoui, A.; et al. Patulin transformation products and last intermediates in its biosynthetic pathway, E- and Z-ascladiol, are not toxic to human cells. Arch. Toxicol. 2016. [Google Scholar] [CrossRef] [PubMed]
- Brackett, R.E.; Marth, E.H. Ascorbic acid and ascorbate cause disappearance of patulin from buffer solutions and apple juice. J. Food Prot. 1979, 42, 864–866. [Google Scholar] [CrossRef]
- Fremy, J.M.; Castegnaro, M.J.; Gleizes, E.; De Meo, M.; Laget, M. Procedures for destruction of patulin in laboratory wastes. Food Addit. Contam. 1995, 12, 331–336. [Google Scholar] [CrossRef] [PubMed]
- McKenzie, K.S.; Sarr, A.B.; Mayura, K.; Bailey, R.H.; Miller, D.R.; Rogers, T.D.; Norred, W.P.; Voss, K.A.; Plattner, R.D.; Kubena, L.F.; et al. Oxidative degradation and detoxification of mycotoxins using a novel source of ozone. Food Chem. Toxicol. 1997, 35, 807–820. [Google Scholar] [CrossRef]
- Yazici, S.; Velioglu, Y.S. Effect of thiamine hydrochloride, pyridoxine hydrochloride and calcium-d-pantothenate on the patulin content of apple juice concentrate. Nahrung/Food 2002, 46, 256–257. [Google Scholar] [CrossRef]
- Drusch, S.; Kopka, S.; Kaeding, J. Stability of patulin in a juice-like aqueous model system in the presence of ascorbic acid. Food Chem. 2007, 100, 192–197. [Google Scholar] [CrossRef]
- Pohland, A.; Allen, R. Stability studies with patulin. J. AOAC 1970, 53, 688–691. [Google Scholar]
- Cavallito, C.; Bailey, J. Preliminary note on the inactivation of antibiotics. Science 1944, 100, 390. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.S.; Liao, Y.C.; Yu, F.Y.; Chang, C.H.; Liu, B.H. Mechanism of patulin-induced apoptosis in human leukemia cells (HL-60). Toxicol. Lett. 2008, 183, 105–111. [Google Scholar] [CrossRef] [PubMed]
- Lindroth, S.; von Wright, A. Detoxification of patulin by adduct formation with cysteine. J. Environ. Pathol. Toxicol. Oncol. 1990, 10, 254–259. [Google Scholar] [PubMed]
- Karaca, H.; Sedat Velioglu, Y. Effects of some metals and chelating agents on patulin degradation by ozone. Ozone Sci. Eng. 2009, 31, 224–231. [Google Scholar] [CrossRef]
- Food and Drug Administration (FDA). Irradiation in the Production, Processing and Handling of Food; U.S. Food and Drug Administration, Ed.; Code of Federal Regulations: Washington, DC, USA, 2000; pp. 71056–71058.
- Health Canada. Ultraviolet Light Treatment of Apple Juice/Cider Using the Cidersure 3500. Available online: http://www.hc-sc.gc.ca/fn-an/gmf-agm/appro/dec85_rev_nl3-eng.php (accessed on 7 May 2017).
- Assatarakul, K.; Churey, J.J.; Manns, D.C.; Worobo, R.W. Patulin reduction in apple juice from concentrate by UV radiation and comparison of kinetic degradation models between apple juice and apple cider. J. Food Prot. 2012, 75, 717–724. [Google Scholar] [CrossRef] [PubMed]
- Tikekar, R.V.; Anantheswaran, R.C.; LaBorde, L.F. Patulin degradation in a model apple juice system and in apple juice during ultraviolet processing. J. Food Process. Preserv. 2014, 38, 924–934. [Google Scholar] [CrossRef]
- Dong, Q.; Manns, D.C.; Feng, G.; Yue, T.; Churey, J.J.; Worobo, R.W. Reduction of patulin in apple cider by UV radiation. J. Food Prot. 2010, 1, 69–74. [Google Scholar] [CrossRef]
- Zhu, Y.; Koutchma, T.; Warriner, K.; Shao, S.; Zhou, T. Kinetics of patulin degradation in model solution, apple cider and apple juice by ultraviolet radiation. Food Sci. Technol. Int. 2012, 19, 291–303. [Google Scholar] [CrossRef] [PubMed]
- Sapers, G.M.; Hicks, K.B.; Philips, J.G.; Garzarella, L.; Pondish, D.L.; Matulaitis, R.M.; McCormack, T.J.; Sondey, S.M.; Seib, P.A.; El-Atawy, Y.S. Control of enzymatic browning in apple with ascorbic acid derivatives, polyphenol oxidase inhibitors, and complexing agents. J. Food Sci. 1989, 54, 997–1002. [Google Scholar] [CrossRef]
- Zhu, Y.; Koutchma, T.; Warriner, K.; Zhou, T. Reduction of patulin in apple juice products by UV light of different wavelengths in the UVC range. J. Food Prot. 2014, 77, 963–971. [Google Scholar] [CrossRef] [PubMed]
- Funes, G.J.; Gómez, P.L.; Resnik, S.L.; Alzamora, S.M. Application of pulsed light to patulin reduction in mcilvaine buffer and apple products. Food Control 2013, 30, 405–410. [Google Scholar] [CrossRef]
- Gomez-Lopez, V.; Ragaert, P.; Debevere, J.; Devlieghere, V. Pulsed light for food decontamination: A review. Trends Food Sci. Technol. 2007, 18, 464–473. [Google Scholar] [CrossRef]
- Avsaroglu, M.D.; Bozoglu, F.; Alpas, H.; Largeteau, A.; Demazeau, G. Use of pulsed-high hydrostatic pressure treatment to decrease patulin in apple juice. High Press. Res. 2015, 35, 214–222. [Google Scholar] [CrossRef]
- San Martin, M.F.; Barbosa-Canovas, G.V.; Swanson, B.G. Food processing by high hydrostatic pressure. Crit. Rev. Food Sci. Nutr. 2002, 42, 627–645. [Google Scholar] [CrossRef] [PubMed]
- Rendueles, E.; Omer, M.K.; Alvseike, O.; Alonso-Calleja, C.; Capita, R.; Prieto, M. Microbiological food safety assessment of high hydrostatic pressure processing: A review. LWT Food Sci. Technol. 2011, 44, 1251–1260. [Google Scholar] [CrossRef]
- Hao, H.; Zhou, T.; Koutchma, T.; Wu, F.; Warriner, K. High hydrostatic pressure assisted degradation of patulin in fruit and vegetable juice blends. Food Control 2016, 62, 237–242. [Google Scholar] [CrossRef]
- Patterson, M.F. Microbiology of pressure-treated foods. J. Appl. Microbiol. 2005, 98, 1400–1409. [Google Scholar] [CrossRef] [PubMed]
- Schebb, N.H.; Faber, H.; Maul, R.; Heus, F.; Kool, J.; Irth, H.; Karst, U. Analysis of glutathione adducts of patulin by means of liquid chromatography (HPLC) with biochemical detection (BCD) and electrospray ionization tandem mass spectrometry (ESI-MS/MS). Anal. Bioanal. Chem. 2009, 394, 1361–1373. [Google Scholar] [CrossRef] [PubMed]
- Park, D.L.; Troxell, T.C. U.S. Perspective on mycotoxin regulatory issues. Adv. Exp. Med. Biol. 2002, 504, 277–285. [Google Scholar] [PubMed]
Food Commodity | Location | Range (µg/kg) | Positive (%) | Reference |
---|---|---|---|---|
Apples | Spain | 0 | 0 | [34] |
Apples | Portugal | 1–70.6 | ND | [24] |
Apples | United States of America | 8.8–417.6 | 40.8 | [35] |
Figs | Turkey | 39.3–151.6 | ND | [23] |
Tomatoes | Portugal | 21.29 | ND | [24] |
Tomatoes | Belgium | ND | 10.8 | [25] |
Bell Peppers | Belgium | ND | 11.4 | [25] |
Hazelnuts | Turkey | 16.6–92.4 | ND | [36] |
Cereal Based Foods | Portugal | 0–4.5 | 75 | [26] |
Apple Juice | Italy | 1.6–55.4 | 47 | [37] |
Apple Juice | Turkey | 7–376 | 100 | [38] |
Apple Juice | Brazil | 3–7 | 3 | [39] |
Apple Juice | Tunisia | 2–889 | 64 | [28] |
Apple Juice | Portugal | 1.2–42 | 41 | [40] |
Apple Juice | Belgium | 2.5–39 | 81 | [41] |
Apple Juice | Spain | 0–36.5 | 45 | [42] |
Apple Juice | South Korea | 9.9–30.9 | 12.5 | [43] |
Apple Juice | Spain | 2.5–6 | 7.1 | [30] |
Apple Juice | South Africa | 5–45 | 24 | [44] |
Apple Juice | United States of America | 8.8–2700.4 | 22.7 | [35] |
Apple Puree | Argentina | 22–221 | 50 | [22] |
Apple Puree | Portugal | 1.2–5.7 | 7 | [40] |
Apple Puree | Spain | 0–50.3 | 13 | [42] |
Apple Puree | Italy | 1.92 | - | [45] |
Apple Puree | South Africa | 5–20 | 35 | [44] |
Apple Products | Argentina | 17–39 | 16 | [22] |
Apple Products | China | 1.2–94.7 | 12.6 | [46] |
Pear Products | Argentina | 25 | 17 | [22] |
Pear Products | Italy | 0.79 | ND | [45] |
Tomato Products | Italy | 7.15 | ND | [45] |
Fruit Jam | Tunisia | 2–554 | 20 | [28] |
Pear Juice | Tunisia | 5–231 | 47.6 | [28] |
Orange Juice | South Korea | 9.9–30.9 | 8 | [43] |
Grape Juice | South Korea | 5.2–14.5 | 17 | [43] |
Semi-hard cheese | Italy | 15–460 | 28 | [27] |
Processing Temperature (°C) | Processing Time (min) | Initial PAT (µg/kg) | PAT Reduction (%) | Reference |
---|---|---|---|---|
80 | 20 | 4 | 55 | [86] |
80 | 30 | ND | NS | [87] |
90 | 0.17 | 96.5 | 13.4 | [80] |
90 | 0.17 | 20 | 19 | [88] |
90 | 0.5 | 433 | 39.6 | [81] |
90 | 7 | 1500 | 60 | [32] |
90 | 10 | 140 | 12.1 | [91] |
90 | 20 | 220 | 18.8 | [89] |
90 | 20 | 1000 | NS | [92] |
100 | 20 | 220 | 26 | [89] |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ioi, J.D.; Zhou, T.; Tsao, R.; F. Marcone, M. Mitigation of Patulin in Fresh and Processed Foods and Beverages. Toxins 2017, 9, 157. https://doi.org/10.3390/toxins9050157
Ioi JD, Zhou T, Tsao R, F. Marcone M. Mitigation of Patulin in Fresh and Processed Foods and Beverages. Toxins. 2017; 9(5):157. https://doi.org/10.3390/toxins9050157
Chicago/Turabian StyleIoi, J. David, Ting Zhou, Rong Tsao, and Massimo F. Marcone. 2017. "Mitigation of Patulin in Fresh and Processed Foods and Beverages" Toxins 9, no. 5: 157. https://doi.org/10.3390/toxins9050157
APA StyleIoi, J. D., Zhou, T., Tsao, R., & F. Marcone, M. (2017). Mitigation of Patulin in Fresh and Processed Foods and Beverages. Toxins, 9(5), 157. https://doi.org/10.3390/toxins9050157