Simulation Study of 4H-SiC Trench Insulated Gate Bipolar Transistor with Low Turn-Off Loss
Abstract
:1. Introduction
2. Fabrication Procedure and Parameters
2.1. Device Structure
2.2. Proposed Fabrication Procedure
3. Simulation Results and Discussion
3.1. Forward Characteristics
3.2. Breakdown Characteristics
3.3. Turn-Off Characteristics
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Soto, C.; García-Rosales, C.; Echeberria, J.; Platacis, E.; Shisko, A.; Muktepavela, F.; Hernández, T.; Huertac, MM. Development, Characterization, and Testing of a SiC-Based Material for Flow Channel Inserts in High-Temperature DCLL Blankets. IEEE Trans. Plasma Sci. 2018, 46, 1561–1569. [Google Scholar] [CrossRef]
- Chowdhury, S.; Chow, T.P. Performance tradeoffs for ultra-high voltage (15 kV to 25 kV) 4H-SiC n-channel and p-channel IGBTs. In Proceedings of the International Symposium on Power Semiconductor Devices and ICs (ISPSD), Prague, Czech Republic, 12–16 June 2016; pp. 75–78. [Google Scholar]
- Terashima, T. Superior performance of SiC power devices and its limitation by self-heating. In Proceedings of the 2016 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 3–7 December 2016; pp. 10–15. [Google Scholar]
- Regoutz, A.; Pobegen, G.; Aichinger, T. Interface chemistry and electrical characteristics of 4H-SiC/SiO2 after nitridation in varying atmospheres. J. Mater. Chem. C 2018, 6, 12079–12085. [Google Scholar] [CrossRef]
- Kunshan, Y.U.; Lijun, X.; Rui, J. Recent Development and Application Prospects of IGBT in Flexible HVDC Power System. Autom. Electr. Power Syst. 2016, 40, 139–143. [Google Scholar]
- Deng, G.Q.; Luo, X.R.; Zhou, K.; He, Q.Y.; Ruan, X.L.; Liu, Q.; Sun, T.; Zhang, Bo. A snapback-free RC-IGBT with Alternating N/P buffers. In Proceedings of the 29th International Symposium on Power Semiconductor Devices and ICs (ISPSD), Sapporo, Japan, 28 May–1 June 2017; pp. 127–130. [Google Scholar]
- Usman, M.; Nawaz, M. Device design assessment of 4H–SiC n-IGBT–A simulation study. Solid-State Electron. 2014, 92, 5–11. [Google Scholar] [CrossRef]
- Das, A.; Islam, M.N.; Haq, M.M.; Khan, M.Z.R. Minority carrier lifetime profile into switching analysis of IGBT through parabolic approximation. In Proceedings of the 5th International Conference on Informatics, Electronics and Vision (ICIEV), Dhaka, Bangladesh, 13–14 May 2016; pp. 235–240. [Google Scholar]
- Zhang, Q.C.; Das, M.; Sumakeris, J. 12-kV p-channel IGBTs with low on-resistance in 4H-SiC. IEEE Electron Device Lett. 2008, 29, 1027–1029. [Google Scholar] [CrossRef]
- Deguchi, T.; Mizushima, T.; Fujisawa, H.; Takenaka, K.; Yonezawa, Y.; Fukuda, K.; Okumura, H.; Arai, M.; Tanaka, A.; Ogata, S.; et al. Static and dynamic performance evaluation of > 13 kV SiC p-channel IGBTs at high temperatures. In Proceedings of the IEEE 26th International Symposium on Power Semiconductor Devices & ICs (ISPSD), Waikoloa, HI, USA, 15–19 June 2014; pp. 261–264. [Google Scholar]
- Chen, J.; Meng, H.; Jiang, F.X.C.; Lin, X.L. A snapback-free shorted-anode insulated gate bipolar transistor with an N-path structure. Superlattices Microstruct. 2015, 78, 201–209. [Google Scholar] [CrossRef]
- Chen, X.; Cheng, J.; Teng, G.; Guo, H. Novel trench gate field stop IGBT with trench shorted anode. J. Semicond. 2016, 37, 054008. [Google Scholar] [CrossRef]
- Shen, Z.; Zhang, F.; Tian, L.; Yan, G.; Wen, Z.; Zhao, W.; Wang, L.; Liu, X.; Sun, G.; Zeng, Y. Optimized P-emitter doping for switching-off loss of superjunction 4H-SiC IGBTs. In Proceedings of the 13th China International Forum on Solid State Lighting: International Forum on Wide Bandgap Semiconductors China (SSLChina: IFWS), Beijing, China, 15–17 November 2016; pp. 1–5. [Google Scholar]
- Jiang, M.; Yin, X.; Shuai, Z.; Wang, J.; Shen, Z.J. An Insulated-Gate Bipolar Transistor With a Collector Trench Electron Extraction Channel. IEEE Electron Device Lett. 2015, 36, 935–937. [Google Scholar] [CrossRef]
- Sung, W.; Wang, J.; Huang, A.Q.; Baliga, B.J. Design and investigation of frequency capability of 15kV 4H-SiC IGBT. In Proceedings of the 21st International Symposium on Power Semiconductor Devices & ICs, Barcelona, Spain, 14–18 June 2009; pp. 271–274. [Google Scholar]
- Vechalapu, K.; Negi, A.; Bhattacharya, S. Comparative performance evaluation of series connected 15 kV SiC IGBT devices and 15 kV SiC MOSFET devices for MV power conversion systems. In Proceedings of the 2016 IEEE Energy Conversion Congress and Exposition (ECCE), Milwaukee, WI, USA, 18–22 September 2016; pp. 1–8. [Google Scholar]
- Zhang, Q.; Wang, J.; Jonas, C.; Callanan, R.; Sumakeris, J.J.; Ryu, S.H.; Das, M.; Agarwal, A.; Palmour, J.; Huang, A.Q. Design and Characterization of High-Voltage 4H-SiC p-IGBTs. IEEE Trans. Electron Device. 2008, 55, 1912–1919. [Google Scholar] [CrossRef]
- Ryu, S.H.; Capell, C.; Cheng, L.; Jonas, C.; Gupta, A.; Donofrio, M.; Clayton, J.; O’Loughlin, M.; Burk, A.; Grider, D.; et al. High performance, ultra high voltage 4H-SiC IGBTs. In Proceedings of the 2012 IEEE Energy Conversion Congress and Exposition (ECCE), Raleigh, NC, USA, 15–20 September 2012; pp. 3603–3608. [Google Scholar]
- La Via, F.; Galvagno, G.; Foti, G.; Mauceri, M.; Leone, S.; Pistone, G.; Abbondanza, G.; Veneroni, A.; Masi, M.; Valente, GL.; et al. 4H-SiC Epitaxial Growth with Chlorine Addition. Chem. Vap. Depos. 2006, 12, 509–515. [Google Scholar] [CrossRef]
- Kim, H.; Lee, H.; Kim, YS.; Lee, S.; Kang, H.; Heo, J.; Kim, H.J. On-axis Si-face 4H-SiC Epitaxial Growth with Enhanced Polytype Stability by Controlling Micro-steps during H2 Etching Process. CrystEngComm 2017, 19, 2359–2366. [Google Scholar] [CrossRef]
- Luna, L.E.; Tadjer, M.J.; Anderson, T.J.; Imhoff, E.A.; Hobart, K.D.; Kub, F.J. Deep reactive ion etching of 4H-SiC via cyclic SF6/O2 segments. J. Micromech. Microeng. 2017, 27, 095004. [Google Scholar] [CrossRef]
- Hirai, H.; Kita, K. Difference of near-interface strain in SiO2 between thermal oxides grown on 4H-SiC by dry-O2 oxidation and H2O oxidation characterized by infrared spectroscopy. Appl. Phys. Lett. 2017, 110, 956. [Google Scholar] [CrossRef]
- Pastuović, Ž.; Siegele, R.; Capan, I.; Brodar, T.; Sato, S.I.; Ohshima, T. Deep level defects in 4H-SiC introduced by ion implantation: the role of single ion regime. J. Phys. Condens. Matter 2017, 29, 475701. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y. Study on mechanism and key techniques of ion implantation surface modification method for ultra-precision machining. Ph.D. Thesis, The University of Queensland, Brisbane, Australia, 2015. [Google Scholar]
- Hatakeyama, T.; Suzuki, T.; Ichinoseki, K.; Matsuhata, H.; Fukuda, K.; Shinohe, T.; Arai, K. Impact of Oxidation Conditions and Surface Defects on the Reliability of Large-Area Gate Oxide on the C-Face of 4H-SiC. Mater. Sci. Forum 2010, 645–648, 799–804. [Google Scholar] [CrossRef]
- Cabello, M.; Soler, V.; Montserrat, J.; Rebollo, J.; Rafí, J.M.; Godignon, P. Impact of boron diffusion on oxynitrided gate oxides in 4H-SiC metal-oxide-semiconductor field-effect transistors. Appl. Phys. Lett. 2017, 111, 321–337. [Google Scholar] [CrossRef]
- Zhong, S.; Liao, N.; Luo, C.; Que, L.; Kou, L.; Wu, M. Effects of Gate Dielectric Process on Inter-layer Dielectric of Polysilicon of Charged-coupled Devices. Semicond. Optoelectron. 2017, 38, 345–348. [Google Scholar]
- Lizotte, S.C. Process for filling deep trenches with polysilicon and oxide. U.S. Patent 6229194B1, 8 May 2001. [Google Scholar]
- Kawada, Y. Method for Manufacturing Silicon Carbide Semiconductor Device. U.S. Patent 7510977B2, 31 March 2009. [Google Scholar]
- Karner, H.W.; Kernstock, C.; Stanojević, Z.; Baumgartner, O.; Schanovsky, F.; Karner, M.; Helms, D.; Eilers, R.; Metzdorf, M. TCAD-based characterization of logic cells: Power, performance, area, and variability. In Proceedings of the 2017 International Symposium on VLSI Technology, Systems and Application (VLSI-TSA), Hsinchu, Taiwan, 24–27 April 2017; pp. 1–2. [Google Scholar]
- Silvaco, I. ATLAS User’s Manual: Device Simulation Software; Silvaco Int.: Santa Clara, CA, USA, 2018. [Google Scholar]
Parameter | C-IGBT | H-IGBT |
---|---|---|
Gate oxide wall thickness | 0.05 μm | 0.05 μm |
Gate oxide bottom thickness | 0.1 μm | 0.1 μm |
Half-cell width | 2.1 μm | 2.1 μm |
N- drift thickness | 160 μm | 160 μm |
P+ source doping | 5 × 1019 cm−3 | 5 × 1019 cm−3 |
N+ source doping | 2 × 1019 cm−3 | 2 × 1019 cm−3 |
p-body doping | 4 × 1017 cm−3 | 4 × 1017 cm−3 |
CSL doping | 1 × 1015 cm−3 | 1 × 1015 cm−3 |
N- drift doping | 4.5 × 1014 cm−3 | 4.5 × 1014 cm−3 |
N buffer doping | 1 × 1017 cm−3 | 1 × 1017 cm−3 |
P+ collector doping | 1 × 1019 cm−3 | 1 × 1019 cm−3 |
p-SiC doping | — | 1 × 1019 cm−3 |
p polysilicon doping P+ source region width N+ source region width p-SiC width p polysilicon width | — 1 μm 0.45 μm — — | 1 × 1017 cm−3 1 μm 0.45 μm 1.1 μm 1.1 μm |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mao, H.-k.; Wang, Y.; Wu, X.; Su, F.-w. Simulation Study of 4H-SiC Trench Insulated Gate Bipolar Transistor with Low Turn-Off Loss. Micromachines 2019, 10, 815. https://doi.org/10.3390/mi10120815
Mao H-k, Wang Y, Wu X, Su F-w. Simulation Study of 4H-SiC Trench Insulated Gate Bipolar Transistor with Low Turn-Off Loss. Micromachines. 2019; 10(12):815. https://doi.org/10.3390/mi10120815
Chicago/Turabian StyleMao, Hong-kai, Ying Wang, Xue Wu, and Fang-wen Su. 2019. "Simulation Study of 4H-SiC Trench Insulated Gate Bipolar Transistor with Low Turn-Off Loss" Micromachines 10, no. 12: 815. https://doi.org/10.3390/mi10120815
APA StyleMao, H. -k., Wang, Y., Wu, X., & Su, F. -w. (2019). Simulation Study of 4H-SiC Trench Insulated Gate Bipolar Transistor with Low Turn-Off Loss. Micromachines, 10(12), 815. https://doi.org/10.3390/mi10120815