A Novel GaN Metal-Insulator-Semiconductor High Electron Mobility Transistor Featuring Vertical Gate Structure
Abstract
:1. Introduction
2. The Proposed Device and Physical Principle
3. Fabrication Work and Parameter Calibration for TCAD simulation
4. Results and Discussions
5. Conclusion
Author Contributions
Funding
Conflicts of Interest
References
- Fukushima, H.; Usami, S.; Ogura, M.; Ando, Y.; Tanaka, A.; Deki, M.; Kushimoto, M.; Nitta, S.; Honda, Y.; Amano, H. Vertical GaN pn diode with deeply etched mesa and capability of avalanche breakdown. Appl. Phys. Express 2019, 12. [Google Scholar] [CrossRef]
- Ando, Y.; Kaneki, S.; Hashizume, T. Improved operation stability of Al2O3/AlGaN/GaN MOS high-electron-mobility transistors grown on GaN substrates. Appl. Phys. Express 2019, 12, 024002. [Google Scholar] [CrossRef]
- Huang, H.; Liang, Y.C.; Samudra, G.S.; Chang, T.F.; Huang, C.F. Effects of gate field plates on the surface state related current collapse in AlGaN/GaN HEMTs. IEEE Trans. Power Electron. 2013, 29, 2164–2173. [Google Scholar] [CrossRef]
- Chen, K.J.; Häberlen, O.; Lidow, A.; lin Tsai, C.; Ueda, T.; Uemoto, Y.; Wu, Y. GaN-on-Si power technology: Devices and applications. IEEE Trans. Electron Devices 2017, 64, 779–795. [Google Scholar] [CrossRef]
- Huang, H.; Sun, Z.; Cao, Y.; Li, F.; Zhang, F.; Wen, Z.; Zhang, Z.; Liang, Y.C.; Hu, L. Investigation of surface traps-induced current collapse phenomenon in AlGaN/GaN high electron mobility transistors with schottky gate structures. J. Phys. D Appl. Phys. 2018, 51, 345102. [Google Scholar] [CrossRef]
- Wei, J.; Lei, J.; Tang, X.; Li, B.; Liu, S.; Chen, K.J. Channel-to-channel coupling in normally-off GaN double-channel MOS-HEMT. IEEE Electron Device Lett. 2017, 39, 59–62. [Google Scholar] [CrossRef]
- Rossetto, I.; Meneghini, M.; De Santi, C.; Pandey, S.; Gajda, M.; Hurkx, G.M.; Croon, J.; Šonský, J.; Meneghesso, G. 2DEG retraction and potential distribution of GaN–on–Si HEMTs investigated through a floating gate terminal. IEEE Trans. Electron Devices 2018, 65, 1303–1307. [Google Scholar] [CrossRef]
- Wang, H.; Wei, J.; Xie, R.; Liu, C.; Tang, G.; Chen, K.J. Maximizing the performance of 650-V p-GaN gate HEMTs: Dynamic RON characterization and circuit design considerations. IEEE Trans. Power Electron. 2016, 32, 5539–5549. [Google Scholar] [CrossRef]
- Sun, R.; Liang, Y.C.; Yeo, Y.C.; Zhao, C. Au-Free AlGaN/GaN MIS-HEMTs With Embedded Current Sensing Structure for Power Switching Applications. IEEE Trans. Electron Devices 2017, 64, 3515–3518. [Google Scholar] [CrossRef]
- Shen, F.; Hao, R.; Song, L.; Chen, F.; Yu, G.; Zhang, X.; Fan, Y.; Lin, F.; Cai, Y.; Zhang, B. Enhancement mode AlGaN/GaN HEMTs by fluorine ion thermal diffusion with high V th stability. Appl. Phys. Express 2019, 12, 066501. [Google Scholar] [CrossRef]
- Wu, T.L.; Marcon, D.; You, S.; Posthuma, N.; Bakeroot, B.; Stoffels, S.; Van Hove, M.; Groeseneken, G.; Decoutere, S. Forward bias gate breakdown mechanism in enhancement-mode p-GaN gate AlGaN/GaN high-electron mobility transistors. IEEE Electron Device Lett. 2015, 36, 1001–1003. [Google Scholar] [CrossRef]
- Wang, H.; Wang, J.; Li, M.; Cao, Q.; Yu, M.; He, Y.; Wu, W. 823-mA/mm Drain Current Density and 945-MW/cm 2 Baliga’s Figure-of-Merit Enhancement-Mode GaN MISFETs With a Novel PEALD-AlN/LPCVD-Si 3 N 4 Dual-Gate Dielectric. IEEE Electron Device Lett. 2018, 39, 1888–1891. [Google Scholar] [CrossRef]
- Wang, Y.H.; Liang, Y.C.; Samudra, G.S.; Huang, H.; Huang, B.J.; Huang, S.H.; Chang, T.F.; Huang, C.F.; Kuo, W.H.; Lo, G.Q. 6.5 V high threshold voltage AlGaN/GaN power metal-insulator-semiconductor high electron mobility transistor using multilayer fluorinated gate stack. IEEE Electron Device Lett. 2015, 36, 381–383. [Google Scholar] [CrossRef]
- Huang, H.; Liang, Y.C. Formation of combined partially recessed and multiple fluorinated-dielectric layers gate structures for high threshold voltage GaN-based HEMT power devices. Solid-State Electron. 2015, 114, 148–154. [Google Scholar] [CrossRef]
- Huang, X.; Liu, Z.; Lee, F.C.; Li, Q. Characterization and enhancement of high-voltage cascode GaN devices. IEEE Trans. Electron Devices. 2014, 62, 270–277. [Google Scholar] [CrossRef]
- Ren, J.; Tang, C.W.; Feng, H.; Jiang, H.; Yang, W.; Zhou, X.; Lau, K.M.; Sin, J.K. A Novel 700 V Monolithically Integrated Si-GaN Cascoded Field Effect Transistor. IEEE Electron Device Lett. 2018, 39, 394–396. [Google Scholar] [CrossRef]
- Oka, T.; Nozawa, T. AlGaN/GaN recessed MIS-gate HFET with high-threshold-voltage normally-off operation for power electronics applications. IEEE Electron Device Lett. 2008, 29, 668–670. [Google Scholar] [CrossRef]
- Li, X.; Hove, M.V.; Zhao, M.; Geens, K.; Lempinen, V.P.; Sormunen, J.; Groeseneken, G.; Decoutere, S. 200 V Enhancement-Mode p-GaN HEMTs Fabricated on 200 mm GaN-on-SOI with Trench Isolation for Monolithic Integration. IEEE Electron Device Lett. 2017, 38, 918–921. [Google Scholar] [CrossRef]
- Ma, J.; Matioli, E. High performance tri-gate GaN power MOSHEMTs on silicon substrate. IEEE Electron Device Lett. 2017, 38, 367–370. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Sun, M.; Piedra, D.; Hu, J.; Liu, Z.; Lin, Y.; Gao, X.; Shepard, K.; Palacios, T. 1200 V GaN vertical fin power field-effect transistors. In Proceedings of the 2017 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2–6 December 2017; pp. 9.2.1–9.2.4. [Google Scholar]
- Nishimura, T.; Kasai, T.; Mishima, T.; Kuriyama, K.; Nakamura, T. Reduction in contact resistance and structural evaluation of Al/Ti electrodes on Si-implanted GaN. NUCL INSTRUM METHODS PHYS RES B 2019, 450, 244–247. [Google Scholar] [CrossRef]
- Arora, N.D.; Hauser, J.R.; Roulston, D.J. Electron and hole mobilities in silicon as a function of concentration and temperature. IEEE Trans. Electron Devices 1982, 29, 292–295. [Google Scholar] [CrossRef]
- Barnes, J.J.; Lomax, R.J.; Haddad, G.I. Finite-element simulation of GaAs MESFET’s with lateral doping profiles and submicron gates. IEEE Trans. Electron Devices 1976, 23, 1042–1048. [Google Scholar] [CrossRef]
- Lombardi, C.; Manzini, S.; Saporito, A.; Vanzi, M. A physically based mobility model for numerical simulation of nonplanar devices. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 1988, 7, 1164–1171. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, M.; Joglekar, S.J.; Fujishima, T.; Palacios, T. Threshold voltage control by gate oxide thickness in fluorinated GaN metal-oxide-semiconductor high-electron-mobility transistors. Appl. Phys. Lett. 2013, 103, 033524. [Google Scholar] [CrossRef]
- Hua, M.; Zhang, Z.; Wei, J.; Lei, J.; Tang, G.; Fu, K.; Cai, Y.; Zhang, B.; Chen, K.J. Integration of LPCVD-SiN x gate dielectric with recessed-gate E-mode GaN MIS-FETs: Toward high performance, high stability and long TDDB lifetime. In Proceedings of the 2016 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 3–7 December 2016; pp. 10.4.1–10.4.4. [Google Scholar]
- Yang, C.; Luo, X.; Zhang, A.; Deng, S.; Ouyang, D.; Peng, F.; Wei, J.; Zhang, B.; Li, Z. AlGaN/GaN MIS-HEMT with AlN interface protection layer and trench termination structure. IEEE Trans. Electron Devices 2018, 65, 5203–5207. [Google Scholar] [CrossRef]
- Hao, R.; Li, W.; Fu, K.; Yu, G.; Song, L.; Yuan, J.; Li, J.; Deng, X.; Zhang, X.; Zhou, Q.; et al. Breakdown enhancement and current collapse suppression by high-resistivity GaN cap layer in normally-off AlGaN/GaN HEMTs. IEEE Electron Device Lett. 2017, 38, 1567–1570. [Google Scholar] [CrossRef]
- Hu, Q.; Li, S.; Li, T.; Wang, X.; Li, X.; Wu, Y. Channel Engineering of Normally-OFF AlGaN/GaN MOS-HEMTs by Atomic Layer Etching and High-k Dielectric. IEEE Electron Device Lett. 2018, 39, 1377–1380. [Google Scholar] [CrossRef]
- Huang, H.; Liang, Y.C.; Samudra, G.S.; Ngo, C.L. Au-free normally-off AlGaN/GaN-on-Si MIS-HEMTs using combined partially recessed and fluorinated trap-charge gate structures. IEEE Electron Device Lett. 2014, 35, 569–571. [Google Scholar] [CrossRef]
- Lin, S.; Wang, M.; Sang, F.; Tao, M.; Wen, C.P.; Xie, B.; Yu, M.; Wang, J.; Hao, Y.; Wu, W.; et al. A GaN HEMT structure allowing self-terminated, plasma-free etching for high-uniformity, high-mobility enhancement-mode devices. IEEE Electron Device Lett. 2016, 37, 377–380. [Google Scholar] [CrossRef]
- Zhang, Z.; Fu, K.; Deng, X.; Zhang, X.; Fan, Y.; Sun, S.; Song, L.; Xing, Z.; Huang, W.; Yu, G.; et al. Normally Off AlGaN/GaN MIS-high-electron mobility transistors fabricated by using low pressure chemical vapor deposition Si 3 N 4 gate dielectric and standard fluorine ion implantation. IEEE Electron Device Lett. 2015, 36, 1128–1131. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, W.; Fu, K.; Yu, G.; Zhang, X.; Zhao, Y.; Sun, S.; Song, L.; Deng, X.; Xing, Z.; et al. AlGaN/GaN MIS-HEMTs of Very-Low V Hysteresis and Current Collapse With In-Situ Pre-Deposition Plasma Nitridation and LPCVD-Si3N4 Gate Insulator. IEEE Electron Device Lett. 2016, 38, 236–239. [Google Scholar] [CrossRef]
- Xu, Z.; Wang, J.; Liu, J.; Jin, C.; Cai, Y.; Yang, Z.; Wang, M.; Yu, M.; Xie, B.; Wu, W.; et al. Demonstration of normally-off recess-gated AlGaN/GaN MOSFET using GaN cap layer as recess mask. IEEE Electron Device Lett. 2014, 35, 1197–1199. [Google Scholar]
- Sze, S.M.; Ng, K.K. Physics of semiconductor devices, 3rd ed.; John wiley & sons: Hoboken, NJ, USA, 2006; pp. 225–316. [Google Scholar]
- Rodriguez, N.; Roldan, J.B.; Gamiz, F. An electron mobility model for ultra-thin gate-oxide MOSFETs including the contribution of remote scattering mechanisms. Semicond. Sci. Technol. 2007, 22, 348. [Google Scholar] [CrossRef]
- Du, J.; Yan, H.; Yin, C.; Feng, Z.; Dun, S.; Yu, Q. Simulation and characterization of millimeter-wave InAlN/GaN high electron mobility transistors using Lombardi mobility model. J. Appl. Phys. 2014, 115, 164510. [Google Scholar] [CrossRef]
Physical Parameters | Values |
---|---|
Electron effective mass in GaN | 0.22·me |
Electron affinity | 3.4 eV |
Relative dielectric constant in GaN | 9.7 |
Background electron concentration in i-GaN layer | 5.0 × 1015 cm−3 |
Electron mobility in 2DEG channel | 1500 cm2/(V·s) |
2DEG sheet density | 8.0 × 1012 cm−2 |
Electron saturation velocity in GaN | 1.8 × 107 cm/s |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Z.; Huang, H.; Sun, N.; Tao, P.; Zhao, C.; Liang, Y.C. A Novel GaN Metal-Insulator-Semiconductor High Electron Mobility Transistor Featuring Vertical Gate Structure. Micromachines 2019, 10, 848. https://doi.org/10.3390/mi10120848
Sun Z, Huang H, Sun N, Tao P, Zhao C, Liang YC. A Novel GaN Metal-Insulator-Semiconductor High Electron Mobility Transistor Featuring Vertical Gate Structure. Micromachines. 2019; 10(12):848. https://doi.org/10.3390/mi10120848
Chicago/Turabian StyleSun, Zhonghao, Huolin Huang, Nan Sun, Pengcheng Tao, Cezhou Zhao, and Yung C. Liang. 2019. "A Novel GaN Metal-Insulator-Semiconductor High Electron Mobility Transistor Featuring Vertical Gate Structure" Micromachines 10, no. 12: 848. https://doi.org/10.3390/mi10120848
APA StyleSun, Z., Huang, H., Sun, N., Tao, P., Zhao, C., & Liang, Y. C. (2019). A Novel GaN Metal-Insulator-Semiconductor High Electron Mobility Transistor Featuring Vertical Gate Structure. Micromachines, 10(12), 848. https://doi.org/10.3390/mi10120848