Electrochemical and Optical Biosensors for the Detection of Campylobacter and Listeria: An Update Look
Abstract
:1. Introduction
2. Campylobacter spp. and Listeria monocytogenes
3. Detection of Campylobacter spp. and Listeria monocytogenes by Electrochemical Biosensors
3.1. Electrochemical Biosensors
3.2. Electrochemical Detection of Campylobacter spp.
3.3. Detection of Listeria monocytogenes by Electrochemical Biosensors
4. Detection of Campylobacter spp. and Listeria by Optical Biosensors
4.1. Optical Biosensors
4.2. Detection of Campylobacter by Optical Biosensors
4.3. Detection of Listeria monocytogenes by Optical Biosensors
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Law, J.W.-F.; Mutalib, N.-S.A.; Chan, K.-G.; Lee, L.-H. Rapid methods for the detection of foodborne bacterial pathogens: Principles, applications, advantages and limitations. Front. Microbiol. 2015, 770, 1–19. [Google Scholar] [CrossRef]
- Vidic, J.; Vizzini, P.; Manzano, M.; Kavanaugh, D.; Ramarao, N.; Zivkovic, M.; Radonic, V.; Knezevic, N.; Giouroudi, I.; Gadjanski, I. Point-of-Need DNA Testing for Detection of Foodborne Pathogenic Bacteria. Sensors 2019, 19, 1100. [Google Scholar] [CrossRef] [PubMed]
- European Food Safety Authority and European Centre for Disease Prevention and Control (EFSA and ECDC). The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2016. EFSA J. 2017, 15, 5077. [Google Scholar] [CrossRef]
- European Centre for Disease Prevention and Control (ECDC). Point Prevalence Survey of Healthcare-Associated Infections and Antimicrobial Use in European Acute Care Hospitals; Protocol Version 5.3; ECDC: Solna, Sweden, 2016; pp. 1–82. [Google Scholar] [CrossRef]
- Vidic, J.; Manzano, M.; Chang, C.-M.; Jaffrezic-Renault, N. Advanced biosensors for detection of pathogens related to livestock and poultry. Vet. Res. 2017, 48, 11. [Google Scholar] [CrossRef] [PubMed]
- European Union, Regulation (EC) No 178/2002 of the European Parliament and of the Council, Bruxelles: Official Journal of the European Communities. 2002. 2002R0178—EN—25.03.2008—003.001—1. Available online: https://eur-lex.europa.eu/eli/reg/2002/178/oj (accessed on 27 July 2019).
- Lertsethtakarn, P.; Ottemann, K.M.; Hendrixson, D.R. Motility and chemotaxis in Campylobacter and Helicobacter. Annu. Rev. Microbiol. 2011, 65, 389–410. [Google Scholar] [CrossRef] [PubMed]
- Gormley, F.J.; Bailey, R.A.; Watson, K.A.; McAdam, J.; Avendano, S.; Stanley, W.A.; Koerhuis, A.M. Campylobacter colonization and proliferation in the broiler chicken upon natural field challenge is not affected by the bird growth rate or breed. Appl. Environ. Microbiol. 2014, 80, 6733–6738. [Google Scholar] [CrossRef] [PubMed]
- Moore, J.E.; Madden, R.H. Impediometric detection of Campylobacter coli. J. Food Prot. 2002, 65, 1660–1662. [Google Scholar] [CrossRef] [PubMed]
- Falahee, M.B.; Park, S.F.; Adams, M.R. Detection and enumeration of Campylobacter jejuni and Campylobacter coli by indirect impedimetry with an oxygen scavenging system. J. Food Prot. 2003, 66, 1724–1726. [Google Scholar] [CrossRef] [PubMed]
- Line, J.E.; Pearson, K.J. Development of a Selective Broth Medium for the Detection of Injured Campylobacter jejuni by Capacitance Monitoring. J. Food Prot. 2003, 66, 1752–1755. [Google Scholar] [CrossRef]
- Ikeda, N.; Karlyshev, A.V. Putative mechanisms and biological role of coccoid form formation in Campylobacter jejuni. Eur. J. Microbiol. Immunol. 2012, 1, 41–49. [Google Scholar] [CrossRef]
- Habib, I.; Uyttendaele, M.; De Zutter, L. Evaluation of ISO 10272:2006 standard versus alternative enrichment and plating combinations for enumeration and detection of Campylobacter in chicken meat. Food Microbiol. 2011, 28, 1117–1123. [Google Scholar] [CrossRef] [PubMed]
- Jasson, V.; Sampers, I.; Botteldoorn, N.; López-Gálvez, F.; Baert, L.; Denayer, S.; Rajkovic, A.; Habib, I.; De Zutter, L.; Debevere, J.; et al. Characterization of Escherichia coli from raw poultry in Belgium and impact on the detection of Campylobacter jejuni using Bolton broth. Int. J. Food Microbiol. 2009, 135, 248–253. [Google Scholar] [CrossRef] [PubMed]
- Biesta-Peters, E.G.; Jongenburger, I.; de Boer, E.; Jacobs-Reitsma, W.F. Validation by interlaboratory trials of EN ISO 10272—Microbiology of the food chain—Horizontal method for detection and enumeration of Campylobacter spp.—Part 1: Detection method. Int. J. Food Microbiol. 2019, 288, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Wieczorek, K.; Osek, J. Poultry flocks as a source of Campylobacter contamination of broiler carcasses. Pol. J. Vet. Sci. 2015, 18, 101–106. [Google Scholar] [CrossRef] [PubMed]
- Skarp, C.P.A.; Hänninen, M.L.; Rautelin, H.I.K. Campylobacteriosis: The role of poultry meat. Clin. Microbiol. Infect. 2016, 22, 103–109. [Google Scholar] [CrossRef] [PubMed]
- Facciolà, A.; Riso, R.; Avventuroso, E.; Visalli, G.; Delia, S.A.; Laganà, P. Campylobacter: From microbiology to prevention. J. Prev. Med. Hyg. 2017, 58, E79–E92. [Google Scholar] [PubMed]
- Zunabovic, M.; Domig, K.J.; Kneifel, W. Practical relevance of methodologies for detecting and tracing of Listeria monocytogenes in ready-to-eat foods and manufacture environments—A review. LWT Food Sci. Technol. 2011, 44, 351–362. [Google Scholar] [CrossRef]
- Doijad, S.P.; Barbuddhe, S.B.; Garg, S.; Poharkar, K.V.; Kalorey, D.R.; Kurkure, N.V.; Rawool, D.B.; Chakraborty, T. Biofilm-Forming Abilities of Listeria monocytogenes Serotypes Isolated from Different Sources. PLoS ONE 2015, 10, e0137046. [Google Scholar] [CrossRef]
- Wieczorek, K.; Osek, J. Prevalence, genetic diversity and antimicrobial resistance of Listeria monocytogenes isolated from fresh and smoked fish in Poland. Food Microbiol. 2017, 64, 164–171. [Google Scholar] [CrossRef]
- Escolar, C.; Gomez, D.; Del Carmen Rota Garcıa, M.; Conchello, P.; Herrera, A. Antimicrobial resistance profiles of Listeria monocytogenes and Listeria innocua isolated from ready-to-eat products of animal origin in Spain. Foodborne Pathog. Dis. 2017, 14, 357–363. [Google Scholar] [CrossRef]
- Jamali, H.; Chai, L.C.; Thong, K.L. Detection and isolation of Listeria spp. and Listeria monocytogenes in ready-to-eat foods with various selective culture media. Food Control 2013, 32, 19–24. [Google Scholar] [CrossRef]
- Kevenk, T.O.; Gulel, G.T. Prevalence, antimicrobial resistanceand serotype distribution of Listeria monocytogenes isolated from raw milk and dairy products. J. Food Saf. 2016, 36, 11–18. [Google Scholar] [CrossRef]
- Jeyasanta, K.I.; Patterson, J. Prevalence of antibiotic resistant Listeria monocytogenes in sea foods of Tuticorin Coast, Southeastern India. Eur. J. Appl. Sci. 2016, 8, 356–364. [Google Scholar] [CrossRef]
- Dincer, C.; Bruch, R.; Costa-Rama, E.; Fernández-Abedul, M.T.; Merkoçi, A.; Manz, A.; Urban, G.A.; Güder, F. Disposable Sensors in Diagnostics, Food, and Environmental Monitoring. Adv. Mater. 2019, 31, 1806739. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.; Helali, S.; Zhang, A.; Jaffrezic-Renault, N.; Martelet, C.; Minic, J.; Gorojankina, T.; Persuy, M.A.; Pajot-Augy, E.; Salesse, R.; et al. Immobilization of rhodopsin on a self-assembled multilayer and its specific detection by electrochemical impedance spectroscopy. Biosens. Bioelectron. 2006, 21, 1393–1402. [Google Scholar] [CrossRef] [PubMed]
- Maalouf, R.; Fournier-Wirth, C.; Coste, J.; Chebib, H.; Saïkali, Y.; Vittori, O.; Errachid, A.; Cloarec, J.P.; Martelet, C.; Jaffrezic-Renault, N. Label-free detection of bacteria by electrochemical impedance spectroscopy: Comparison to surface plasmon resonance. Anal. Chem. 2007, 79, 4879–4886. [Google Scholar] [CrossRef] [PubMed]
- Miodek, A.; Sauriat-Dorizon, H.; Chevalier, C.; Delmas, B.; Vidic, J.; Korri-Youssoufi, H. Direct electrochemical detection of PB1-F2 protein of influenza A virus in infected cells. Biosens. Bioelectron. 2014, 59, 6–13. [Google Scholar] [CrossRef] [PubMed]
- Geagea, R.; Aubert, P.-H.; Banet, P.; Sanson, N. Signal enhancement of electrochemical biosensors via direct electrochemical oxidation of silver nanoparticle labels coated with zwitterionic polymer. Chem. Commun. 2015, 51, 402–405. [Google Scholar] [CrossRef]
- Vasilescu, A.; Nunes, G.; Hayat, A.; Latif, U.; Marty, J.-L. Electrochemical Affinity Biosensors Based on Disposable Screen-Printed Electrodes for Detection of Food Allergens. Sensors 2016, 16, 1863. [Google Scholar] [CrossRef]
- Vidic, J.; Pla-Roca, M.; Grosclaude, J.; Persuy, M.-A.; Monnerie, R.; Caballero, D.; Errachid, A.; Hou, Y.; Jaffrezic-Renault, N.; Salesse, R. Gold Surface Functionalization and Patterning for Specific Immobilization of Olfactory Receptors Carried by Nanosomes. Anal. Chem. 2007, 79, 3280–3290. [Google Scholar] [CrossRef]
- Ivnitski, D.; Wilkinsa, E.; Tien, H.T.; Ottova, A. Electrochemical biosensor based on supported planar lipid bilayers for fast detection of pathogenic bacteria. Electrochem. Commun. 2000, 2, 457–460. [Google Scholar] [CrossRef]
- Che, Y.; Li, Y.; Slavi, M. Detection of Campylobacter jejuni in poultry samples using an enzyme-linked immunoassay coupled with an enzyme electrode. Biosens. Bioelectron. 2001, 16, 791–797. [Google Scholar] [CrossRef]
- Viswanathan, S.; Rani, C.; Ho, J.A. Electrochemical immunosensor for multiplexed detection of food-borne pathogens using nanocrystal bioconjugates and MWCNT screen-printed electrode. Talanta 2012, 94, 315–319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morant Minana, M.C.; Elizalde, J. Microscale Electrodes integrated on non-conventional substrates for Real Sample. Biosens. Bioelectron. 2015, 70, 491–497. [Google Scholar] [CrossRef] [PubMed]
- Illa, X.; Ordeig, O.; Snakenborg, D.; Romano-Rodríguez, A.; Compton, R.G.; Kutter, J.P. A cyclo olefin polymer microfluidic chip with integrated gold microelectrodes for aqueous and non-aqueous electrochemistry. Lab Chip 2010, 10, 1254–1261. [Google Scholar] [CrossRef] [PubMed]
- Probst, M.; Aeschimann, W.; Chau, T.T.; Langenegger, S.M.; Stocker, A.; Häner, R. Structural insight into DNA-assembled oligochromophores: Crystallographic analysis of pyrene and phenanthrene-modified DNA in complex with BpuJI endonuclease. Nucleic Acids Res. 2016, 44, 7079–7089. [Google Scholar] [CrossRef] [PubMed]
- Kékedy-Nagy, L.; Shipovskov, S.; Ferapontova, E.E. Electrocatalysis of ferricyanide reduction mediated by electron transfer through the DNA duplex: Kinetic analysis by thin layer voltammetry. Electrochim. Acta 2019, 318, 703–710. [Google Scholar] [CrossRef]
- Seliwiorstow, T.; De Zutter, L.; Houf, K.; Botteldoorn, N.; Baré, J.; Van Damme, I. Comparative performance of isolation methods using Preston broth, Bolton broth and their modifications for the detection of Campylobacter spp. from naturally contaminated fresh and frozen raw poultry meat. Int. J. Food Microbiol. 2016, 3, 60–64. [Google Scholar] [CrossRef]
- Huang, J.; Yang, G.; Meng, W.; Wu, L.; Zhu, A.; Jiao, X. An electrochemical impedimetric immunosensor for label-free detection of Campylobacter jejuni in diarrhea patients’ stool based on O-carboxymethylchitosan surface modified Fe3O4 nanoparticles. Biosens. Bioelectron. 2010, 25, 1204–1211. [Google Scholar] [CrossRef]
- Gao, H.W.; Qin, P.; Lin, C.; Shang, Z.-M.; Sun, W. Electrochemical DNA biosensor for the detection of Listeria monocytogenes using toluidine blue as a hybridization indicator. J. Iran. Chem. Soc. 2010, 7, 119–127. [Google Scholar] [CrossRef]
- Sun, W.; Qi, X.; Zhang, Y.; Yang, H.; Gao, H.; Chen, Y.; Sun, Z. Electrochemical DNA biosensor for the detection of Listeria monocytogenes with dendritic nanogold and electrochemical reduced graphene modified carbon ionic liquid electrode. Electrochim. Acta 2012, 85, 145–151. [Google Scholar] [CrossRef]
- Bifulco, L.; Ingianni, A.; Pompei, R. An internalin a probe-based genosensor for Listeria monocytogenes detection and differentiation. Biomed. Res. Int. 2013, 2013, 640163. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.; Zhao, W.; Wen, Z.; Li, X.; Niu, X.; Huang, Y.; Sun, W. Electrochemical DNA Sensor for hly Gene of Listeria monocytogenes by Three-Dimensional Graphene and Gold Nanocomposite Modified Electrode. Int. J. Electrochem. 2017, 12, 4086–4095. [Google Scholar] [CrossRef]
- Kashish, S.D.K.; Mishra, S.K.; Prakash, R.; Dubey, S.K. Label-free impedimetric detection of Listeria monocytogenes based on poly-5-carboxy indole modified ssDNA probe. J. Biotechnol. 2015, 200, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Davis, D.; Guo, X.; Musavi, L.; Lin, C.S.; Chen, S.H.; Wu, V. Gold Nanoparticle-Modified Carbon Electrode Biosensor for the Detection of Listeria monocytogenes. Ind. Biotechnol. 2013, 9, 31–36. [Google Scholar] [CrossRef]
- Manzano, M.; Cecchini, F.; Fontanot, M.; Iacumin, L.; Comi, G.; Melpignano, P. OLED-based DNA biochip for Campylobacter spp. detection in poultry meat samples. Biosens. Bioelectron. 2015, 66, 271–276. [Google Scholar] [CrossRef] [PubMed]
- Shams, S.; Bakhshi, B.; Tohidi, T.; Behmanesh, M.; Behmanesh, M. A sensitive gold-nanorods-based nano-biosensor for specific detection of Campylobacter jejuni and Campylobacter coli. J. Nanobiotechnol. 2019, 17, 43. [Google Scholar] [CrossRef]
- Gnanaprakasa, T.J.; Oyarzabal, O.A.; Olsen, E.V.; Pedrosa, V.A.; Simonian, A.L. Tethered DNA scaffolds on optical sensor platforms for detection of hipO gene from Campylobacter jejuni. Sens. Actuators B 2011, 156, 304–311. [Google Scholar] [CrossRef]
- Wei, D.; Oyarzabal, O.; Huang, T.S.; Balasubramanian, S.; Sista, S.; Simonian, A.L. Development of a surface plasmon resonance biosensor for the identification of Campylobacter jejuni. J. Microbiol. Methods 2007, 69, 78–85. [Google Scholar] [CrossRef] [PubMed]
- Masdor, N.A.; Altintas, Z.; Tothill, I.E. Surface Plasmon Resonance Immunosensor for the Detection of Campylobacter jejuni. Chemosensors 2017, 5, 16. [Google Scholar] [CrossRef]
- Kim, Y.-J.; Kim, H.-S.; Chon, J.-W.; Kim, D.-H.; Ji-Yeon Hyeon, J.-Y.; Seo, K.-H. New colorimetric aptasensor for rapid on-site detection of Campylobacter jejuni and Campylobacter coli in chicken carcass samples. Anal. Chim. Acta 2018, 1029, 78–85. [Google Scholar] [CrossRef] [PubMed]
- Morlay, A.; Roux, A.; Templier, V.; Piat, F.; Roupioz, Y. Label-Free Immuno-Sensors for the Fast Detection of Listeria in Food. Methods Mol. Biol. 2017, 1600, 49–59. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wang, J.; Zhao, C.; Guo, X.; Song, X.; Zhao, W.; Liu, S.; Xu, K.; Li, J. A multi-colorimetric assay for rapid detection of Listeria monocytogenes based on the etching of gold nanorods. Anal. Chim. Acta 2019, 1048, 154–160. [Google Scholar] [CrossRef] [PubMed]
- Ohk, S.H.; Koo, O.K.; Sen, T.; Yamamoto, C.M.; Bhunia, A.K. Antibody-aptamer functionalized fibre-optic biosensor for specific detection of Listeria monocytogenes from food. J. Appl. Microbiol. 2010, 109, 808–817. [Google Scholar] [CrossRef] [PubMed]
- Ohk, S.H.; Bhunia, A.K. Multiplex fiber optic biosensor for detection of Listeria monocytogenes, Escherichia coli O157:H7 and Salmonella enterica from ready-to-eat meat samples. Food Microbiol. 2013, 33, 166–171. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Huang, R.; Liu, W.; Liu, H.; Zhou, X.; Xing, D. Rapid and visual detection of Listeria monocytogenes based on nanoparticle cluster catalyzed signal amplification. Biosens. Bioelectron. 2016, 86, 1–7. [Google Scholar] [CrossRef]
- Manzano, M.; Pipan, C.; Botta, G.; Comi, G. Comparison of three culture media for recovering Campylobacere jejuni and Campylobacter coli from poultry skin, liver and meat. Sci. Aliment. 1995, 15, 615–624. [Google Scholar]
- Medrala, D.; Dabrowski, W.; Czekajlo-Kolodziej, U.; Daczkowska-Kozon, E.; Koronkiewicz, A.; Augustynowiez, E.; Manzano, M. Persistence of Listeria monocytogenes strains isolated from products in a Polish fish-processing plant over a 1-year period. Food Microbiol. 2003, 20, 715–724. [Google Scholar] [CrossRef]
Bioreceptor | Biomarker | Method | LOD | Matrix | References | |
---|---|---|---|---|---|---|
Campylobacter spp. | Antibody | Cell | Amperometry | 1 cell | Bacterial suspension | [33] |
Antibody | Cell | Potentiometry | 2.1 × 104 CFU·mL−1 | poultry washing water | [34] | |
Antibody | Cell | Amperometry | 400 cell·mL−1 | milk sample | [35] | |
DNA probe | Amplicon | Amperometry | 9 × 10−11 mol·L−1 | raw poultry meat | [36] | |
Antibody | Cell | Impedimetry | 103 CFU·mL−1 | stools | [41] | |
Listeria monocytogenes | DNA probe | actA gene | Amperometry | not evaluated | DNA | [42] |
DNA probe | hly gene | Amperometry | 2.9 × 10−13 mol·L−1 | fish | [43] | |
DNA probe | inlA gene | Differential pulse Voltammetry | not evaluated | DNA | [44] | |
DNA probe | hly gene | Differential pulse Voltammetry | 3.3 × 10−15 mol·L−1 | DNA | [45] | |
DNA probe | hlyA gene | Impedimetry | 10−13 mol·L−1 | DNA | [46] | |
Antibody | Cell | Voltammetry | 2 log CFU·mL−1 | blueberry | [47] |
Bioreceptor | Biomarker | Method | LOD | Matrix | References | |
---|---|---|---|---|---|---|
Campylobacter spp. | DNA probe | DNA | OLED | 0.37 ng·µL−1 | poultry meat | [48] |
DNA probe | DNA | SPR | 102 copy·mL−1 | DNA | [49] | |
DNA probe | DNA | SPR | 2.5 × 10−9 mol·L−1 | DNA | [50] | |
Antibody | cells | SPR | 103 CFU·mL−1 | washing water | [51] | |
Antibody | cells | SPR | 4 × 104 CFU·mL−1 | bacterial suspension | [52] | |
Aptamer | cells | Colorimetric aptasensor | 7.2 × 105 CFU·mL−1 (C. jejuni) 5.6 × 105 CFU·mL−1 (C. coli) | chicken carcass | [53] | |
Listeria monocytogenes | Antibody | cells | SPR | not evaluated | spiked lettuce | [54] |
Aptamer | cells | Colorimetric assay | 10 CFU·mL−1 | spiked pork | [55] | |
Antibody | cells | Optical fiber | 103 CFU·mL−1 | chicken and turkey | [56] | |
Aptamer | cells | Optical fiber | 5.4 × 103 CFU·mL−1 | milk | [57] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vizzini, P.; Braidot, M.; Vidic, J.; Manzano, M. Electrochemical and Optical Biosensors for the Detection of Campylobacter and Listeria: An Update Look. Micromachines 2019, 10, 500. https://doi.org/10.3390/mi10080500
Vizzini P, Braidot M, Vidic J, Manzano M. Electrochemical and Optical Biosensors for the Detection of Campylobacter and Listeria: An Update Look. Micromachines. 2019; 10(8):500. https://doi.org/10.3390/mi10080500
Chicago/Turabian StyleVizzini, Priya, Matteo Braidot, Jasmina Vidic, and Marisa Manzano. 2019. "Electrochemical and Optical Biosensors for the Detection of Campylobacter and Listeria: An Update Look" Micromachines 10, no. 8: 500. https://doi.org/10.3390/mi10080500
APA StyleVizzini, P., Braidot, M., Vidic, J., & Manzano, M. (2019). Electrochemical and Optical Biosensors for the Detection of Campylobacter and Listeria: An Update Look. Micromachines, 10(8), 500. https://doi.org/10.3390/mi10080500