Au Nanospirals Transferred onto PDMS Film Exhibiting Circular Dichroism at Visible Wavelengths
Abstract
:1. Introduction
2. Fabrication
2.1. Fabrication of Nanodot Templates Using Block Copolymers
2.2. Cryogenic Glancing Angle Deposition
2.3. Transfer of Au Nanospiral Structures onto Polydimethylsiloxane (PDMS) Thin Films
3. Evaluation of Circular Dichroism
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hentschel, M.; Schäferling, M.; Duan, X.; Giessen, H.; Liu, N. Chiral plasmonics. Sci. Adv. 2017, 3, e1602735. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woźniak, P.; De Leon, I.; Höflich, K.; Haverkamp, C.; Christiansen, S.; Leuchs, G.; Banzer, P. Chiroptical response of a single plasmonic nanohelix. Opt. Express 2018, 26, 19275. [Google Scholar] [CrossRef] [PubMed]
- Yoo, S.J.; Park, Q.H. Metamaterials and chiral sensing: A review of fundamentals and applications. Nanophotonics 2019, 8, 249–261. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Du, H.; Li, J.; Lu, L.; Li, Z.Y.; Fang, N.X. Nano-kirigami with giant optical chirality. Sci. Adv. 2018, 4, eaat4436. [Google Scholar] [CrossRef] [Green Version]
- He, Y.; Larsen, G.K.; Ingram, W.; Zhao, Y. Tunable three-dimensional helically stacked plasmonic layers on nanosphere monolayers. Nano Lett. 2014, 14, 1976–1981. [Google Scholar] [CrossRef] [PubMed]
- Xie, S.; Yang, J.; Xiao, X.; Hou, Y.; Du, J.; Pang, L.; Li, X.; Gao, F. Scalable Fabrication of Quasi-Three-Dimensional Chiral Plasmonic Oligomers Based on Stepwise Colloid Sphere Lithography Technology. Nanoscale Res. Lett. 2015, 10, 393. [Google Scholar] [CrossRef] [Green Version]
- Rajaei, M.; Zeng, J.; Albooyeh, M.; Kamandi, M.; Hanifeh, M.; Capolino, F.; Wickramasinghe, H.K. Giant Circular Dichroism at Visible Frequencies Enabled by Plasmonic Ramp-Shaped Nanostructures. ACS Photonics 2019, 6, 924–931. [Google Scholar] [CrossRef]
- Shen, X.; Song, C.; Wang, J.; Shi, D.; Wang, Z.; Liu, N.; Ding, B. Rolling up gold nanoparticle-dressed dna origami into three-dimensional plasmonic chiral nanostructures. J. Am. Chem. Soc. 2012, 134, 146–149. [Google Scholar] [CrossRef]
- Lan, X.; Chen, Z.; Dai, G.; Lu, X.; Ni, W.; Wang, Q. Bifacial DNA origami-directed discrete, three-dimensional, anisotropic plasmonic nanoarchitectures with tailored optical chirality. J. Am. Chem. Soc. 2013, 135, 11441–11444. [Google Scholar] [CrossRef]
- Asadchy, V.S.; Díaz-Rubio, A.; Tretyakov, S.A. Bianisotropic metasurfaces: Physics and applications. Nanophotonics 2018, 7, 1069–1094. [Google Scholar] [CrossRef]
- Collins, J.T.; Kuppe, C.; Hooper, D.C.; Sibilia, C.; Centini, M.; Valev, V.K. Chirality and Chiroptical Effects in Metal Nanostructures: Fundamentals and Current Trends. Adv. Opt. Mater. 2017, 5, 1700182. [Google Scholar] [CrossRef] [Green Version]
- Ma, X.; Pu, M.; Li, X.; Guo, Y.; Gao, P.; Luo, X. Meta-Chirality: Fundamentals, Construction and Applications. Nanomaterials 2017, 7, 116. [Google Scholar] [CrossRef] [Green Version]
- Nair, G.; Singh, H.J.; Paria, D.; Venkatapathi, M.; Ghosh, A. Plasmonic interactions at close proximity in chiral geometries: Route toward broadband chiroptical response and giant enantiomeric sensitivity. J. Phys. Chem. C 2014, 118, 4991–4997. [Google Scholar] [CrossRef]
- Gibbs, J.G.; Mark, A.G.; Eslami, S.; Fischer, P. Plasmonic nanohelix metamaterials with tailorable giant circular dichroism. Appl. Phys. Lett. 2013, 103, 213101. [Google Scholar] [CrossRef]
- Lee, H.E.; Ahn, H.Y.; Mun, J.; Lee, Y.Y.; Kim, M.; Cho, N.H.; Chang, K.; Kim, W.S.; Rho, J.; Nam, K.T. Amino-acid- A nd peptide-directed synthesis of chiral plasmonic gold nanoparticles. Nature 2018, 556, 360–364. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Guo, L.; Dong, J.; Yang, H. An ultra-thin chiral metamaterial absorber with high selectivity for LCP and RCP waves. J. Phys. D. Appl. Phys. 2014, 47, 185102. [Google Scholar] [CrossRef]
- Eslami, S.; Gibbs, J.G.; Rechkemmer, Y.; van Slageren, J.; Alarcón-Correa, M.; Lee, T.C.; Mark, A.G.; Rikken, G.L.; Fischer, P. Chiral Nanomagnets. ACS Photonics 2014, 1, 1231–1236. [Google Scholar] [CrossRef]
- Mark, A.G.; Gibbs, J.G.; Lee, T.C.; Fischer, P. Hybrid nanocolloids with programmed three-dimensional shape and material composition. Nat. Mater. 2013, 12, 802–807. [Google Scholar] [CrossRef]
- Cheng, J.; Le Saux, G.; Gao, J.; Buffeteau, T.; Battie, Y.; Barois, P.; Ponsinet, V.; Delville, M.H.; Ersen, O.; Pouget, E.; et al. GoldHelix: Gold Nanoparticles Forming 3D Helical Superstructures with Controlled Morphology and Strong Chiroptical Property. ACS Nano 2017, 11, 3806–3818. [Google Scholar] [CrossRef]
- Esposito, M.; Tasco, V.; Cuscuna, M.; Todisco, F.; Benedetti, A.; Tarantini, I.; Giorgi, M.D.; Sanvitto, D.; Passaseo, A. Nanoscale 3D chiral plasmonic helices with circular dichroism at visible frequencies. ACS Photonics 2015, 2, 105–114. [Google Scholar] [CrossRef]
- Frank, B.; Yin, X.; Schaferling, M.; Zhao, J.; Hein, S.M.; Braun, P.V.; Giessen, H. Large-area 3D chiral plasmonic structures. ACS Nano 2013, 7, 6321–6329. [Google Scholar] [CrossRef] [PubMed]
- Klös, G.; Miola, M.; Sutherland, D.S. Increased Refractive Index Sensitivity by Circular Dichroism Sensing through Reduced Substrate Effect. J. Phys. Chem. C 2019, 123, 7347–7355. [Google Scholar] [CrossRef]
- Fang, Y.; Verre, R.; Shao, L.; Nordlander, P.; Käll, M. Hot Electron Generation and Cathodoluminescence Nanoscopy of Chiral Split Ring Resonators. Nano Lett. 2016, 16, 5183–5190. [Google Scholar] [CrossRef] [PubMed]
- Klös, G.; Andersen, A.; Miola, M.; Birkedal, H.; Sutherland, D.S. Oxidation controlled lift-off of 3D chiral plasmonic Au nano-hooks. Nano Res. 2019, 12, 1635–1642. [Google Scholar] [CrossRef]
- Hawkeye, M.M.; Brett, M.J. Glancing angle deposition: Fabrication, properties, and applications of micro- and nanostructured thin films. J. Vac. Sci. Technol. A Vacuum Surfaces Film. 2007, 25, 1317. [Google Scholar] [CrossRef]
- Liedtke, S.; Grüner, C.; Lotnyk, A.; Rauschenbach, B. Glancing angle deposition of sculptured thin metal films at room temperature. Nanotechnology 2017, 28, 385604. [Google Scholar] [CrossRef] [Green Version]
- van Popta, A.C.; Sit, J.C.; Brett, M.J. Optical properties of porous helical thin films. Appl. Opt. 2004, 43, 3632–3639. [Google Scholar] [CrossRef]
- Kaschke, J.; Wegener, M. Optical and Infrared Helical Metamaterials. Nanophotonics 2016, 5, 454–467. [Google Scholar] [CrossRef]
- Garnier, J.; Arias-Zapata, J.; Marconot, O.; Arnaud, S.; Böhme, S.; Girardot, C.; Buttard, D.; Zelsmann, M. Sub-10 nm Silicon Nanopillar Fabrication Using Fast and Brushless Thermal Assembly of PS-b-PDMS Diblock Copolymer. ACS Appl. Mater. Interfaces 2016, 8, 9954–9960. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, R.; Kang, H.; Detcheverry, F.A.; Dobisz, E.; Kercher, D.S.; Albrecht, T.R.; de Pablo, J.J.; Nealey, P.F. Density multiplication and improved lithography by directed block copolymer assembly. Science 2008, 321, 936–939. [Google Scholar] [CrossRef]
- Huda, M.; Akahane, T.; Tamura, T.; Yin, Y.; Hosaka, S. Fabrication of 10-nm-Order Block Copolymer Self-Assembled Nanodots for High-Density Magnetic Recording. Jpn. J. Appl. Phys. 2011, 50, 06GG06. [Google Scholar] [CrossRef]
- Gu, X.; Gunkelk, I.; Russell, T.P. Pattern transfer using block copolymers. In Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences; The Royal Society Publishing: London, UK, 2013; Volume 371, p. 20120306. [Google Scholar] [CrossRef]
- Byun, I.; Coleman, A.W.; Kim, B. Transfer of thin Au films to polydimethylsiloxane (PDMS) with reliable bonding using (3-mercaptopropyl)trimethoxysilane (MPTMS) as a molecular adhesive. J. Micromech. Microeng. 2013, 23, 085016. [Google Scholar] [CrossRef]
- Carlson, A.; Bowen, A.M.; Huang, Y.; Nuzzo, R.G.; Rogers, J.A. Transfer printing techniques for materials assembly and micro/nanodevice fabrication. In Advanced Materials; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2012; Volume 24, pp. 5284–5318. [Google Scholar] [CrossRef]
- Baca, A.J.; Ahn, J.H.; Sun, Y.; Meitl, M.A.; Menard, E.; Kim, H.S.; Choi, W.M.; Kim, D.H.; Huang, Y.; Rogers, J.A. Semiconductor wires and ribbons for high-performance flexible electronics. In Angewandte Chemie—International Edition; Wiley-VCH Verlag: Weinheim, Germany, 2008; Volume 47, pp. 5524–5542. [Google Scholar] [CrossRef]
- Kuwata-Gonokami, M.; Saito, N.; Ino, Y.; Kauranen, M.; Jefimovs, K.; Vallius, T.; Turunen, J.; Svirko, Y. Giant optical activity in quasi-two-dimensional planar nanostructures. Phys. Rev. Lett. 2005, 95, 227401. [Google Scholar] [CrossRef] [PubMed]
- Harada, T.; Kuroda, R.; Moriyama, H. Solid-state circularly polarized luminescence measurements: Theoretical analysis. Chem. Phys. Lett. 2012, 530, 126–131. [Google Scholar] [CrossRef]
- Rakić, A.D.; Djurišić, A.B.; Elazar, J.M.; Majewski, M.L. Optical properties of metallic films for vertical-cavity optoelectronic devices. Appl. Opt. 1998, 37, 5271. [Google Scholar] [CrossRef] [PubMed]
- Kan, T.; Isozaki, A.; Kanda, N.; Nemoto, N.; Konishi, K.; Takahashi, H.; Kuwata-Gonokami, M.; Matsumoto, K.; Shimoyama, I. Enantiomeric switching of chiral metamaterial for terahertz polarization modulation employing vertically deformable MEMS spirals. Nat. Commun. 2015, 6, 1–7. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Furusawa, G.; Kan, T. Au Nanospirals Transferred onto PDMS Film Exhibiting Circular Dichroism at Visible Wavelengths. Micromachines 2020, 11, 641. https://doi.org/10.3390/mi11070641
Furusawa G, Kan T. Au Nanospirals Transferred onto PDMS Film Exhibiting Circular Dichroism at Visible Wavelengths. Micromachines. 2020; 11(7):641. https://doi.org/10.3390/mi11070641
Chicago/Turabian StyleFurusawa, Gaku, and Tetsuo Kan. 2020. "Au Nanospirals Transferred onto PDMS Film Exhibiting Circular Dichroism at Visible Wavelengths" Micromachines 11, no. 7: 641. https://doi.org/10.3390/mi11070641
APA StyleFurusawa, G., & Kan, T. (2020). Au Nanospirals Transferred onto PDMS Film Exhibiting Circular Dichroism at Visible Wavelengths. Micromachines, 11(7), 641. https://doi.org/10.3390/mi11070641