High-Fidelity Harmonic Generation in Optical Micro-Resonators Using BFGS Algorithm
Abstract
:1. Introduction
2. Nonlinear Wave Interaction in Optical Micro-Resonators
3. Non-Linear Programming for Efficient Harmonic Generation
3.1. BFGS Algorithm-Based Optimization
3.2. Determining the Penalty Weights
4. Numerical Simulations
4.1. Simulation1: Intense Harmonic Generation in the Ultraviolet (UV) Frequency Range
- Resonance probabilities:
- x: Space coordinate, t: Time, k: Iteration,
- , ,
4.2. Simulation 2: Intense Quasi-Monochromatic Yellow-Light Generation Around 515THz
- Resonance probabilities: ,
- ,
- , , , ,
- BFGS recursion:
5. Testing the Model Accuracy via Comparison with Experimental Results
Example 5.1: Second Harmonic Generation by Nonlinear Wave Mixing
- Spatial range and duration of the computation:
- d = Nonlinearity coefficient, = Medium impedance, n = Index of refraction
- = Input wave amplitude, L = Length of the medium
- L = Length of the interaction medium = 3.33 (ranging from x = 3.33 to 6.66 )
- n
- = Input wave amplitude (Varied from , in increment of )
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Chung, I.; Song, J.H.; Jang, J.I.; Freeman, A.J.; Kanatzidis, M.G. Na2Ge2Se5: A highly nonlinear optical material. J. Solid State Chem. 2012, 195, 161–165. [Google Scholar] [CrossRef]
- Almeida, G.F.; Santos, S.N.; Siqueira, J.P.; Dipold, J.; Voss, T.; Mendonça, C.R. Third-Order Nonlinear Spectrum of GaN under Femtosecond-Pulse Excitation from the Visible to the Near Infrared. Photonics J. 2019, 6, 69. [Google Scholar] [CrossRef] [Green Version]
- Rout, A.; Boltaev, G.S.; Ganeev, R.A.; Fu, Y.; Maurya, S.K.; Kim, V.V.; Rao, K.S.; Guo, C. Nonlinear Optical Studies of Gold Nanoparticle Films. Nanomaterials 2019, 9, 291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, R.; Collins, J.; Canham, L.T.; Kaplan, A. The Influence of Quantum Confinement on Third-Order Nonlinearities in Porous Silicon Thin Films. Appl. Sci. 2018, 8, 1810. [Google Scholar] [CrossRef] [Green Version]
- Sakhno, O.; Yezhov, P.; Hryn, V.; Rudenko, V.; Smirnova, T. Optical and Nonlinear Properties of Photonic Polymer Nanocomposites and Holographic Gratings Modified with Noble Metal Nanoparticles. Polymers 2020, 12, 480. [Google Scholar] [CrossRef] [Green Version]
- Reinke, C.M.; Jafarpour, A.; Momeni, B.; Soltani, M.; Khorasani, S.; Adibi, A.; Xu, Y.; Lee, R.K. Nonlinear finite-difference time-domain method for the simulation of anisotropic, /spl chi//sup (2)/, and /spl chi//sup (3)/ optical effects. J. Lightwave Technol. 2006, 24, 624–634. [Google Scholar] [CrossRef]
- Varin, C.; Emms, R.; Bart, G.; Fennel, T.; Brabec, T. Explicit formulation of second and third order optical nonlinearity in the FDTD framework. Comput. Phys. Commun. 2018, 222, 70–83. [Google Scholar] [CrossRef] [Green Version]
- Zygiridis, T.T.; Kantartzis, N.V. Finite-Difference Modeling of Nonlinear Phenomena in Time-Domain Electromagnetics: A Review. In Applications of Nonlinear Analysis. Springer Optimization and Its Applications; Rassias, T., Ed.; Springer: Cham, The Netherland, 2018; Volume 134. [Google Scholar]
- Sahakyan, A.T.; Starodub, A.N. A simplified formula for calculation of second-harmonic generation efficiency for type I synchronism. In Journal of Physics: Conference Series; IOP Science: Bristol, UK, 2019. [Google Scholar]
- Xu, L.; Rahmani, M.; Smirnova, D.; Zangeneh Kamali, K.; Zhang, G.; Neshev, D.; Miroshnichenko, A.E. Highly-Efficient Longitudinal Second-Harmonic Generation from Doubly-Resonant AlGaAs Nanoantennas. Photonics 2018, 5, 29. [Google Scholar] [CrossRef] [Green Version]
- De Ceglia, D.; Carletti, L.; Vincenti, M.A.; De Angelis, C.; Scalora, M. Second-Harmonic Generation in Mie-Resonant GaAs Nanowires. Appl. Sci. 2019, 9, 3381. [Google Scholar] [CrossRef] [Green Version]
- Rocco, D.; Vincenti, M.A.; De Angelis, C. Boosting Second Harmonic Radiation from AlGaAs Nanoantennas with Epsilon-Near-Zero Materials. Appl. Sci. 2018, 8, 2212. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, D.T.T.; Lai, N.D. Deterministic Insertion of KTP Nanoparticles into Polymeric Structures for Efficient Second-Harmonic Generation. Crystals 2019, 9, 365. [Google Scholar] [CrossRef] [Green Version]
- Huang, Z.; Lu, H.; Xiong, H.; Li, Y.; Chen, H.; Qiu, W.; Guan, H.; Dong, J.; Zhu, W.; Yu, J.; et al. Fano Resonance on Nanostructured Lithium Niobate for Highly Efficient and Tunable Second Harmonic Generation. Nanomaterials 2019, 9, 69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, T.; Xiao, Y.; Li, S.; Yan, X.; Zhang, X.; Suzuki, T.; Ohishi, Y. Highly efficient second-harmonic generation in a tellurite optical fiber. Opt. Lett. 2019, 44, 4686–4689. [Google Scholar] [CrossRef] [PubMed]
- Alsunaidi, M.A.; Al-Hajiri, F.S. Efficient NL-FDTD Solution Schemes for the Phase-Sensitive Second Harmonic Generation Problem. J. Lightwave Technol. 2009, 27, 4964–4969. [Google Scholar] [CrossRef]
- Reed, M.K.; Steiner-Shepard, M.K.; Armas, M.S.; Negus, D.K. Microjoule-energy ultrafast optical parametric amplifiers. J. Opt. Soc. Am. B 1995, 12, 2229–2236. [Google Scholar] [CrossRef]
- Ciriolo, A.G.; Negro, M.; Devetta, M.; Cinquanta, E.; Faccialà, D.; Pusala, A.; De Silvestri, S.; Stagira, S.; Vozzi, C. Optical Parametric Amplification Techniques for the Generation of High-Energy Few-Optical-Cycles IR Pulses for Strong Field Applications. Appl. Sci. 2017, 7, 265. [Google Scholar] [CrossRef] [Green Version]
- Migal, E.A.; Potemkin, F.V.; Gordienko, V.M. Highly efficient optical parametric amplifier tunable from near-to mid-IR for driving extreme nonlinear optics in solids. Opt. Lett. 2017, 42, 5218–5221. [Google Scholar] [CrossRef]
- Wu, C.; Fan, J.; Chen, G.; Jia, S. Symmetry-breaking-induced dynamics in a nonlinear microresonator. Opt. Express 2019, 27, 28133–28142. [Google Scholar] [CrossRef]
- Aşırım, Ö.E.; Kuzuoğlu, M. Numerical Study of Resonant Optical Parametric Amplification via Gain Factor Optimization in Dispersive Micro-resonators. Photonics 2020, 7, 5. [Google Scholar] [CrossRef] [Green Version]
- Aşırım, Ö.E.; Kuzuoglu, M. Enhancement of Optical Parametric Amplification in Micro-resonators via Gain Medium Parameter Selection and Mean Cavity Wall Reflectivity Adjustment. J. Phys. B At. Mol. Opt. Phys. 2020, 53, 7–12. [Google Scholar]
- Aşırım, Ö.E.; Kuzuoğlu, M. Super-Gain Optical Parametric Amplification in Dielectric Micro-Resonators via BFGS Algorithm-Based Non-Linear Programming. Appl. Sci. 2020, 10, 1770. [Google Scholar] [CrossRef] [Green Version]
- Hasan, M.H.; Alsaleem, F.; Ramini, A. Voltage and deflection amplification via double resonance excitation in a cantilever microstructure. Sensors 2019, 19, 380. [Google Scholar] [CrossRef] [Green Version]
- Ramini, A.; Ibrahim, A.I.; Younis, M.I. Mixed frequency excitation of an electrostatically actuated resonator. Microsyst. Technol. 2016, 22, 1967–1974. [Google Scholar] [CrossRef]
- Jaber, N.; Ramini, A.; Younis, M.I. Multifrequency excitation of a clamped–clamped microbeam: Analytical and experimental investigation. Microsyst. Nanoeng. 2016, 2, 16002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, Y.; Shin, W.; Fan, S. Multi-frequency finite-difference frequencydomain algorithm for active nanophotonic device simulations. Optica 2016, 3, 1256–1259. [Google Scholar] [CrossRef]
- Ji, H.; Zhang, B.; Wang, G.; Wang, W.; Shen, J. Photo-excited multifrequency terahertz switch based on a composite metamaterial structure. Opt. Commun. 2018, 412, 37–40. [Google Scholar] [CrossRef]
- Asfaw, A.T.; Sigillito, A.J.; Tyryshkin, A.M.; Schenkel, T.; Lyon, S.A. Multifrequency spin manipulation using rapidly tunable superconducting coplanar waveguide microresonators. Appl. Phys. Lett. 2017, 111, 032601. [Google Scholar] [CrossRef] [Green Version]
- Ogata, Y.; Vorobyev, A.; Guo, C. Optical Third Harmonic Generation Using Nickel Nanostructure-Covered Microcube Structures. Materials 2018, 11, 501. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Li, K.F.; Li, G.; Cheah, K.W.; Zhang, S. Gigantic electric-field-induced second harmonic generation from an organic conjugated polymer enhanced by a band-edge effect. Light Sci. Appl. 2019, 8, 17. [Google Scholar] [CrossRef]
- Luo, R.; Jiang, H.; Rogers, S.; Liang, H.; He, Y.; Lin, Q. On-chip second-harmonic generation and broadband parametric down-conversion in a lithium niobate microresonator. Opt. Express 2017, 25, 24531–24539. [Google Scholar] [CrossRef]
- Roland, I.; Gromovyi, M.; Zeng, Y.; El Kurdi, M.; Sauvage, S.; Brimont, C.; Guillet, T.; Gayral, B.; Semond, F.; Duboz, J.Y.; et al. Phase-matched second harmonic generation with on-chip GaN-on-Si microdisks. Sci. Rep. 2016, 6, 34191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, J.; Yao, N.; Hao, Z.; Zhang, J.; Mao, W.; Wang, M.; Chu, W.; Wu, R.; Fang, Z.; Qiao, L.; et al. Broadband Quasi-Phase-Matched Harmonic Generation in an On-Chip Monocrystalline Lithium Niobate Microdisk Resonator. Phys. Rev. Lett. 2019, 122, 173903. [Google Scholar] [CrossRef] [PubMed]
- Ciriolo, A.G.; Vázquez, R.M.; Tosa, V.; Frezzotti, A.; Crippa, G.; Devetta, M.; Faccialá, D.; Frassetto, F.; Poletto, L.; Pusala, A.; et al. High-order harmonic generation in a microfluidic glass device. J. Phys. Photonics 2020, 2, 024005. [Google Scholar] [CrossRef]
- Lin, J.; Xu, Y.; Fang, Z.; Wang, M.; Fang, W.; Cheng, Y. Efficient second harmonic generation in an on-chip high-Q crystalline microresonator fabricated by femtosecond laser. In Proceedings of the SPIE, Laser Resonators, Microresonators, and Beam Control XVIII, San Francisco, CA, USA, 22 April 2016; Volume 9727, p. 972710. [Google Scholar] [CrossRef]
- Soavi, G.; Wang, G.; Rostami, H.; Purdie, D.G.; De Fazio, D.; Ma, T.; Luo, B.; Wang, J.; Ott, A.K.; Yoon, D.; et al. Broadband, electrically tunable third-harmonic generation in graphene. Nat. Nanotechnol. 2018, 13, 583–588. Available online: www.nature.com/articles/s41565-018-0145-8 (accessed on 22 April 2020). [CrossRef] [PubMed] [Green Version]
- Yoshikawa, N.; Tamaya, T.; Tanaka, K. High-harmonic generation in graphene enhanced by elliptically polarized light excitation. Science 2017, 365, 736–738. Available online: science.sciencemag.org/content/356/6339/736 (accessed on 22 April 2020). [CrossRef]
- Mateen, F.; Boales, J.; Erramilli, S.; Mohanty, P. Micromechanical resonator with dielectric nonlinearity. Microsyst. Nanoeng. Nat. 2018, 4, 14. Available online: www.nature.com/articles/s41378-018-0013-6 (accessed on 22 April 2020). [CrossRef]
- Boyd, R.W. Nonlinear Optics; Academic Press: New York, NY, USA, 2008; pp. 105–107. [Google Scholar]
- Mark, F. Optical Properties of Solids; Oxford University Press: New York, NY, USA, 2002; pp. 237–239. [Google Scholar]
- Bahaa, E.A. Saleh, Malvin Carl Teich, Fundamentals of Photonics; Wiley-Interscience: New York, NY, USA, 2007; pp. 885–917. [Google Scholar]
- Silfvast, W.T. Laser Fundamentals; Cambridge University Press: New York, NY, USA, 2004; pp. 24–35. [Google Scholar]
- Satsuma, J.; Yajima, N. Initial Value Problems of One-Dimensional Self-Modulation of Nonlinear Waves in Dispersive Media. Prog. Theor. Phys. Suppl. 1974, 55, 284–306. [Google Scholar] [CrossRef]
- Taflove, A.; Hagness, S.C. Computational Electrodynamics: The Finite-Difference Time-Domain Method; Artech House: Boston, MA, USA, 2005; pp. 353–361. [Google Scholar]
k (Iteration #) | |||||
---|---|---|---|---|---|
5.8 | 250 THz | 225 THz | 2.9 | 0.09 | 1 |
2.9 | 245 THz | 220 THz | 1 | 0.05 | 2 |
2.7 | 249.4 THz | 226.1 THz | 8.66 | 0.14 | 3 |
2.0 | 257.2 THz | 231.3 THz | 5.49 | 0.13 | 4 |
1.3 | 264.9 THz | 226.6 THz | 1.31 | 0.06 | 5 |
7.6 | 276.0 THz | 222.2 THz | 1.76 | 0.07 | 6 |
1.4 | 286.7 THz | 231.8 THz | 1.73 | 0.07 | 7 |
1.1 | 279.7 THz | 218.0 THz | 3.06 | 0.10 | 8 |
9.8 | 272.1 THz | 236.9 THz | 2.49 | 0.10 | 9 |
5.1 | 263.5 THz | 285.1 THz | 3.30 | 0.10 | 10 |
1.2 | 273.4 THz | 310.7 THz | 8.21 | 0.16 | 11 |
3.2 | 275.1 THz | 288.8 THz | 3.48 | 0.12 | 12 |
7.6 | 273.2 THz | 284.7 THz | 5.75 | 0.17 | 13 |
k (iteration #) | |||||
---|---|---|---|---|---|
1.9 | 250 THz | 225 THz | 2.4 | 0.20 | 1 |
2.6 | 245 THz | 220 THz | 0.18 | 2 | |
248.6 THz | 226.1 THz | 2.2 | 0.19 | 4 | |
243.8 THz | 258.5 THz | 2.7 | 0.18 | 6 | |
234.3 THz | 288.7 THz | 2.3 | 0.18 | 9 | |
1.3 | 249.8 THz | 341.4 THz | 3.5 | 0.18 | 12 |
3.4 | 259.9 THz | 331.9 THz | 5.2 | 0.21 | 15 |
2.2 | 272.8 THz | 363.6 THz | 4.6 | 0.21 | 18 |
9.4 | 277.7 THz | 411.1 THz | 3.9 | 0.18 | 21 |
4.3 | 270.4 THz | 448.2 THz | 6.5 | 0.18 | 24 |
1.1 | 261.5 THz | 475.3 THz | 8.8 | 0.20 | 27 |
2.7 | 265.3 THz | 475.8 THz | 7.1 | 0.22 | 30 |
9.1 | 266.2 THz | 476.5 THz | 0.22 | 33 |
Excitation Wave Amplitude (V/m) | Theoretical Efficiency | Numerical Efficiency | Error Percentage |
---|---|---|---|
0.5 | |||
0.4 | |||
1.2 | |||
1.55 | |||
1.38 | |||
1.04 | |||
0.83 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aşırım, Ö.E.; Yolalmaz, A.; Kuzuoğlu, M. High-Fidelity Harmonic Generation in Optical Micro-Resonators Using BFGS Algorithm. Micromachines 2020, 11, 686. https://doi.org/10.3390/mi11070686
Aşırım ÖE, Yolalmaz A, Kuzuoğlu M. High-Fidelity Harmonic Generation in Optical Micro-Resonators Using BFGS Algorithm. Micromachines. 2020; 11(7):686. https://doi.org/10.3390/mi11070686
Chicago/Turabian StyleAşırım, Özüm Emre, Alim Yolalmaz, and Mustafa Kuzuoğlu. 2020. "High-Fidelity Harmonic Generation in Optical Micro-Resonators Using BFGS Algorithm" Micromachines 11, no. 7: 686. https://doi.org/10.3390/mi11070686
APA StyleAşırım, Ö. E., Yolalmaz, A., & Kuzuoğlu, M. (2020). High-Fidelity Harmonic Generation in Optical Micro-Resonators Using BFGS Algorithm. Micromachines, 11(7), 686. https://doi.org/10.3390/mi11070686