Recent Advances in Single Crystal Diamond Device Fabrication for Photonics, Sensing and Nanomechanics
Abstract
:1. Introduction
Why Nano-Structuring of Diamond
2. Photonic Components
2.1. Basics of Photonic Components
2.2. Fabrication of Thin SCD Membranes for Photonic Structures
- The lift-off method (illustrated schematically in Figure 1A) where SCD is implanted with ions to create a sacrificial layer below the SCD surface. The layer is graphitized in an annealing process (ii) and removed via electrochemical etching (iii). The thin, peeled-off SCD membrane is transferred to another substrate (iv) and pristine quality SCD is overgrown while the original, ion-damaged SCD membrane is etched away [27].
- The thin down technique in which commercially available, high-purity SCD (≈50 µm thick) is etched down to required thickness of few hundreds of nanometers via dry etching methods [28]. An example is illustrated in Figure 1B, thin SCD (≈30 µm) is transferred to SiO2/Si substrates for easy handling (i) and dry etched (ii) to obtain thin SCD membranes (≈200 nm). For nano-structuring, the diamond/SiO2/Si samples are spin coated (iii) and patterned via EBL (iv). The resist pattern is transferred into SCD using anisotropic dry etching processes (v), followed by resist mask removal.
- Angle etching method which transfers a pattern defined using EBL into SCD using two dry etching steps as shown in Figure 1C [31,32,33]. The lithographically defined resist pattern (i,ii) is first transferred into SCD via anisotropic etching (ICP-RIE), etching few hundreds of nanometers of SCD (iii). This is followed by dry etching at an oblique angle using ion beam etching (IBE) or by using a Faraday cage inside the RIE chamber to undercut the structures (iv). Finally, the resist mask is removed (v).
- The isotropic under-etching method in which a combination of anisotropic and isotropic oxygen etching (at elevated temperature) creates free standing nano-structures [34,35,36]. A hard mask pattern (SiN) is transferred into SCD (i). A conformal coating with Al2O3 is carried out using atomic layer deposition (ii). Subsequently, the top surface of Al2O3 is dry etched (iii) to keep only the sides of structure covered. A quasi-isotropic oxygen etching at 200° C is carried out to undercut the structure (iv). Finally, the mask is removed (v).
- Si membrane hard mask transfer method where re-usable Si membranes are used as hard masks, which are patterned using mature silicon microfabrication techniques. These membranes are transferred onto diamond substrates for creating free-standing membranes via dry etching methods [37].
2.3. High Q-Photonic Resonators in SCD
2.3.1. Photonic Crystal Resonator
2.3.2. Other Resonators
2.4. Waveguides for Collection Enhancement
2.4.1. Metalens
2.4.2. Solid Immersion Lenses (SIL)
2.4.3. Parabolic Reflector
2.4.4. Single Crystal Diamond Nanopillars/Nanowires
2.4.5. Diamond Inverted Nano-Cone (DINC)
2.5. Scanning Probes Based on Color Centers in Diamond Nano-Structures
2.6. General Aspects of Color Center Creation, Surface Termination and Tuning
3. Nanomechanical Components
3.1. Nanocantilevers
3.2. Nanowires
4. Optical and Mechanical Hybrid Systems
5. Other Diamond Nano-Structures
5.1. Diamond Mirrors
5.2. Diamond Nanogratings
6. Conclusions and Outlook
Author Contributions
Funding
Conflicts of Interest
References
- Castelletto, S.; Rosa, L.; Blackledge, J.; Al Abri, M.Z.; Boretti, A. Advances in diamond nanofabrication for ultrasensitive devices. Microsyst. Nanoeng. 2017, 3, 17061. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Radtke, M.; Bernardi, E.; Slablab, A.; Nelz, R.; Neu, E. Nanoscale sensing based on nitrogen vacancy centers in single crystal diamond and nanodiamonds: Achievements and challenges. Nano Futur. 2019, 3, 042004. [Google Scholar] [CrossRef]
- Nelz, R.; Görlitz, J.; Herrmann, D.; Slablab, A.; Challier, M.; Radtke, M.; Fischer, M.; Gsell, S.; Schreck, M.; Becher, C.; et al. Toward wafer-scale diamond nano- and quantum technologies. APL Mater. 2019, 7, 011108. [Google Scholar] [CrossRef] [Green Version]
- Radtke, M.; Render, L.; Nelz, R.; Neu, E. Plasma treatments and photonic nanostructures for shallow nitrogen vacancy centers in diamond. Opt. Mater. Express 2019, 9, 4716–4733. [Google Scholar] [CrossRef] [Green Version]
- Norman, V.A.; Majety, S.; Wang, Z.; Casey, W.H.; Curro, N.; Radulaski, M. Novel color center platforms enabling fundamental scientific discovery. InfoMat 2020, 1–24. [Google Scholar] [CrossRef]
- Bradac, C.; Gao, W.; Forneris, J.; Trusheim, M.E.; Aharonovich, I. Quantum nanophotonics with group IV defects in diamond. Nat. Commun. 2019, 10, 5625. [Google Scholar] [CrossRef]
- Bray, K.; Regan, B.; Trycz, A.; Previdi, R.; Seniutinas, G.; Ganesan, K.; Kianinia, M.; Kim, S.; Aharonovich, I. Single Crystal Diamond Membranes and Photonic Resonators Containing Germanium Vacancy Color Centers. ACS Photonics 2018, 5, 4817–4822. [Google Scholar] [CrossRef] [Green Version]
- Shang, N.; Papakonstantinou, P.; Wang, P.; Zakharov, A.; Palnitkar, U.; Lin, I.N.; Chu, M.; Stamboulis, A. Self-assembled growth, microstructure, and field-emission high-performance of ultrathin diamond nanorods. ACS Nano 2009, 3, 1032–1038. [Google Scholar] [CrossRef]
- Hsu, C.H.; Cloutier, S.G.; Palefsky, S.; Xu, J. Synthesis of diamond nanowires using atmospheric-pressure chemical vapor deposition. Nano Lett. 2010, 10, 3272–3276. [Google Scholar] [CrossRef]
- Malykhin, S.A.; Ismagilov, R.R.; Tuyakova, F.T.; Obraztsova, E.A.; Fedotov, P.V.; Ermakova, A.; Siyushev, P.; Katamadz, K.G.; Jelezko, F.; Rakovich, Y.P.; et al. Photoluminescent properties of single crystal diamond microneedles. Opt. Mater. 2018, 75, 49–55. [Google Scholar] [CrossRef]
- Sotoma, S.; Terada, D.; Segawa, T.F.; Igarashi, R.; Harada, Y.; Shirakawa, M. Enrichment of ODMR-active nitrogen-vacancy centres in five-nanometre-sized detonation-synthesized nanodiamonds: Nanoprobes for temperature, angle and position. Sci. Rep. 2018, 8, 5463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Héritier, M.; Eichler, A.; Pan, Y.; Grob, U.; Shorubalko, I.; Krass, M.D.; Tao, Y.; Degen, C.L. Nanoladder Cantilevers Made from Diamond and Silicon. Nano Lett. 2018, 18, 1814–1818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schröder, T.; Mouradian, S.L.; Zheng, J.; Trusheim, M.E.; Walsh, M.; Chen, E.H.; Li, L.; Bayn, I.; Englund, D. Quantum nanophotonics in diamond [Invited]. J. Opt. Soc. Am. B 2016, 33, B65–B83. [Google Scholar] [CrossRef]
- Aharonovich, I.; Prawer, S. Fabrication strategies for diamond based ultra bright single photon sources. Diam. Relat. Mater. 2010, 19, 729–733. [Google Scholar] [CrossRef]
- Element 6. Available online: https://www.e6.com/ (accessed on 6 December 2020).
- Applied Diamond Inc. Available online: http://usapplieddiamond.com/ (accessed on 6 December 2020).
- AuDiaTec. Available online: https://www.audiatec.de/en/ (accessed on 6 December 2020).
- Pelliccione, M.; Jenkins, A.; Ovartchaiyapong, P.; Reetz, C.; Emmanouilidou, E.; Ni, N.; Jayich, A.C.B. Scanned probe imaging of nanoscale magnetism at cryogenic temperatures with a single-spin quantum sensor. Nat. Nanotechnol. 2016, 11, 700–705. [Google Scholar] [CrossRef] [PubMed]
- Zhou, T.X.; Stöhr, R.J.; Yacoby, A. Scanning diamond NV center probes compatible with conventional AFM technology. Appl. Phys. Lett. 2017, 111, 163106. [Google Scholar] [CrossRef]
- Hedrich, N.; Rohner, D.; Batzer, M.; Maletinsky, P.; Shields, B.J. Parabolic diamond scanning probes for single spin magnetic field imaging. Phys. Rev. Appl. 2020, 14, 064007. [Google Scholar] [CrossRef]
- Bharadwaj, V.; Jedrkiewicz, O.; Hadden, J.P.; Sotillo, B.; Vázquez, M.R.; Dentella, P.; Fernandez, T.T.; Chiappini, A.; Giakoumaki, A.N.; Le Phu, T.; et al. Femtosecond laser written photonic and microfluidic circuits in diamond. J. Phys. Photonics 2019, 1, 22001. [Google Scholar] [CrossRef]
- Eaton, S.M.; Hadden, J.P.; Bharadwaj, V.; Forneris, J.; Picollo, F.; Bosia, F.; Sotillo, B.; Giakoumaki, A.N.; Jedrkiewicz, O.; Chiappini, A.; et al. Quantum Micro–Nano Devices Fabricated in Diamond by Femtosecond Laser and Ion Irradiation. Adv. Quantum Technol. 2019, 2, 1900006. [Google Scholar] [CrossRef] [Green Version]
- Ruf, M.; Ijspeert, M.; Van Dam, S.; De Jong, N.; Van Den Berg, H.; Evers, G.; Hanson, R. Optically Coherent Nitrogen-Vacancy Centers in Micrometer-Thin Etched Diamond Membranes. Nano Lett. 2019, 19, 3987–3992. [Google Scholar] [CrossRef] [Green Version]
- Hensen, B.; Kalb, N.; Blok, M.S.; Dréau, A.E.; Reiserer, A.; Vermeulen, R.F.L.; Schouten, R.N.; Markham, M.; Twitchen, D.J.; Goodenough, K.; et al. Loophole-free Bell test using electron spins in diamond: Second experiment and additional analysis. Sci. Rep. 2016, 6, 30289. [Google Scholar] [CrossRef] [PubMed]
- Choy, J.T.; Hausmann, B.J.M.; Burek, M.J.; Babinec, T.M.; Loncar, M. Nanofabrication of photonic devices from single- crystal diamond for quantum information processing (QIP). In Book Quantum Information Processing with Diamond: Principles and Applications; Prawer, S., Aharonovich, I., Eds.; Elsevier: Amsterdam, The Netherlands, 2014; pp. 98–123. [Google Scholar] [CrossRef]
- Xu, L.; Yuan, H.; Zhang, N.; Zhang, J.; Bian, G.; Fan, P.; Li, M.; Zhang, C.; Zhai, Y.; Fang, J. High-efficiency fluorescence collection for NV-center ensembles in diamond. Opt. Express 2019, 27, 10787–10797. [Google Scholar] [CrossRef] [PubMed]
- Piracha, A.H.; Ganesan, K.; Lau, D.W.M.; Stacey, A.; McGuinness, L.P.; Tomljenovic-Hanic, S.; Prawer, S. Scalable fabrication of high-quality, ultra-thin single crystal diamond membrane windows. Nanoscale 2016, 8, 6860–6865. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cady, J.V.; Michel, O.; Lee, K.W.; Patel, R.N.; Sarabalis, C.J.; Safavi-Naeni, A.H.; Bleszynski Jayich, A.C. Diamond optomechanical crystals with embedded nitrogen-vacancy centers. Quant. Sci. Tech. 2019, 4, 024009. [Google Scholar] [CrossRef] [Green Version]
- Becker, J.N.; Pingault, B.; Groß, D.; Gündoǧan, M.; Kukharchyk, N.; Markham, M.; Edmonds, A.; Atatüre, M.; Bushev, P.; Becher, C. All-Optical Control of the Silicon-Vacancy Spin in Diamond at Millikelvin Temperatures. Phys. Rev. Lett. 2018, 120, 053603. [Google Scholar] [CrossRef] [Green Version]
- Siyushev, P.; Metsch, M.H.; Ijaz, A.; Binder, J.M.; Bhaskar, M.K.; Sukachev, D.D.; Sipahigil, A.; Evans, R.E.; Nguyen, C.T.; Lukin, M.D.; et al. Optical and microwave control of germanium-vacancy center spins in diamond. Phys. Rev. B 2017, 8, 081201. [Google Scholar] [CrossRef] [Green Version]
- Burek, M.J.; Meuwly, C.; Evans, R.E.; Bhaskar, M.K.; Sipahigil, A.; Meesala, S.; MacHielse, B.; Sukachev, D.D.; Nguyen, C.T.; Pacheco, J.L.; et al. Fiber-Coupled Diamond Quantum Nanophotonic Interface. Phys. Rev. Appl. 2017, 8, 0240260. [Google Scholar] [CrossRef]
- Zhang, J.L.; Sun, S.; Burek, M.J.; Dory, C.; Tzeng, Y.K.; Fischer, K.A.; Kelaita, Y.; Lagoudakis, K.G.; Radulaski, M.; Shen, Z.-X.; et al. Strongly Cavity-Enhanced Spontaneous Emission from Silicon- Vacancy Centers in Diamond. Nano Lett. 2018, 18, 1360–1365. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, C.T.; Sukachev, D.D.; Bhaskar, M.K.; MacHielse, B.; Levonian, D.S.; Knall, E.N.; Stroganov, P.; Chia, C.; Burek, M.J.; Riedinger, R.; et al. An integrated nanophotonic quantum register based on silicon-vacancy spins in diamond. Phys. Revi. B 2019, 100, 165428. [Google Scholar] [CrossRef] [Green Version]
- Mouradian, S.; Wan, N.H.; Schroeder, T.; Englund, D. Rectangular photonic crystal nanobeam cavities in bulk diamond. Appl. Phys. Lett. 2017, 111, 021103. [Google Scholar] [CrossRef]
- Wan, N.H.; Mouradian, S.; Englund, D. Two-dimensional photonic crystal slab nanocavities on bulk single-crystal diamond. Appl. Phys. Lett. 2018, 112, 141102. [Google Scholar] [CrossRef] [Green Version]
- Zheng, J.; Lienhard, B.; Doerk, G.; Cotlet, M.; Bersin, E.; Kim, H.S.; Byun, Y.C.; Nam, C.Y.; Kim, J.; Black, C.T.; et al. Top-down fabrication of high- uniformity nanodiamonds by self-assembled block copolymer masks. Sci. Rep. 2019, 9, 6914. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, L.; Bayn, I.; Lu, M.; Nam, C.-Y.; Schröder, T.; Stein, A.; Harris, N.C.; Englund, D. Nanofabrication on unconventional substrates using transferred hard masks. Sci. Rep. 2015, 5, 7802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schreck, M.; Gsell, S.; Brescia, R.; Fischer, M. Ion bombardment induced buried lateral growth: The key mechanism for the synthesis of single crystal diamond wafers. Sci. Rep. 2017, 7, 44462. [Google Scholar] [CrossRef]
- Machielse, B.; Bogdanovic, S.; Meesala, S.; Gauthier, S.; Burek, M.J.; Joe, G.; Chalupnik, M.; Sohn, Y.I.; Holzgrafe, J.; Evans, R.E.; et al. Quantum Interference of Electromechanically Stabilized Emitters in Nanophotonic Devices. Phys. Rev. X 2019, 9, 031022. [Google Scholar] [CrossRef] [Green Version]
- Atikian, H.A.; Latawiec, P.; Burek, M.J.; Sohn, Y.I.; Meesala, S.; Gravel, N.; Kouki, A.B.; Lončar, M. Freestanding nanostructures via reactive ion beam angled etching. APL Photonics 2017, 2, 051301. [Google Scholar] [CrossRef]
- Huang, T.; Grote, R.R.; Mann, S.A.; Hopper, D.A.; Exarhos, A.L.; Lopez, G.G.; Kaighn, G.R.; Garnett, E.C.; Bassett, L.C. A monolithic immersion metalens for imaging solid-state quantum emitters. Nat. Commun. 2019, 10, 2392. [Google Scholar] [CrossRef] [Green Version]
- Wan, N.H.; Shields, B.J.; Kim, D.; Lienhard, B.; Walsh, M.; Bakhru, H.; Schroeder, T.; Englund, D. Efficient Extraction of Light from a Nitrogen-Vacancy Center in a Diamond Parabolic Reflector. Nano Lett. 2018, 18, 2787–2793. [Google Scholar] [CrossRef]
- Häußler, S.; Benedikter, J.; Bray, K.; Regan, B.; Dietrich, A.; Twamley, J.; Aharonovich, I.; Hunger, D.; Kubanek, A. Diamond photonics platform based on silicon vacancy centers in a single-crystal diamond membrane and a fiber cavity. Phys. Rev. B 2019, 99, 165310. [Google Scholar] [CrossRef]
- Trycz, A.; Regan, B.; Kianinia, M.; Bray, K.; Toth, M.; Aharonovich, I. Bottom up engineering of single crystal diamond membranes with germanium vacancy color centers. Opti. Mat. Express 2019, 9, 4708–4715. [Google Scholar] [CrossRef]
- Khanaliloo, B.; Mitchell, M.; Hryciw, A.C.; Barclay, P.E. High-Q/V Monolithic Diamond Microdisks Fabricated with Quasi-isotropic Etching. Nano. Lett. 2015, 15, 5131–5136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Atikian, H.; Latawiec, P.; Xiong, X.; Meesala, S.; Gauthier, S.; Wintz, D.; Randi, J.; Bernot, D.; DeFrances, S.; Thomas, J.; et al. Diamond Mirror for High Power Lasers. arXiv 2020, arXiv:1909.06458v1. [Google Scholar]
- Hopper, D.A.; Shulevitz, H.J.; Bassett, L.C. Spin Readout Techniques of the Nitrogen-Vacancy Center in Diamond. Micromachines 2018, 9, 437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Babinec, T.M.; Hausmann, B.J.M.; Khan, M.; Zhang, Y.; Maze, J.R.; Hemmer, P.R.; Lončar, M. A diamond nanowire single-photon source. Nat. Nanotech. 2010, 5, 195–199. [Google Scholar] [CrossRef] [Green Version]
- Neu, E.; Appel, P.; Ganzhorn, M.; Miguel-Sánchez, J.; Lesik, M.; Mille, V.; Jacques, V.; Tallaire, A.; Achard, J.; Maletinsky, P. Photonic nano-structures on (111)-oriented diamond. Appl. Phys. Lett. 2016, 104, 153108. [Google Scholar] [CrossRef] [Green Version]
- Osterkamp, C.; Mango, M.; Lang, J.; Balasubramanian, P.; Teraji, T.; Naydenov, B.; Jelezko, F. Engineering preferentially-aligned nitrogen-vacancy centre ensembles in CVD grown diamond. Sci. Rep. 2019, 9, 5786. [Google Scholar] [CrossRef]
- Regan, B.; Aghajamali, A.; Froech, J.; Tran, T.T.; Scott, J.; Bishop, J.; Suarez-Martinez, I.; Liu, Y.; Cairney, J.M.; Marks, N.A.; et al. Plastic Deformation of Single-Crystal Diamond Nanopillars. Adv. Mat. 2020, 32, 1906458. [Google Scholar] [CrossRef]
- Xie, L.; Zhou, T.X.; Stöhr, R.J.; Yacoby, A. Crystallographic Orientation Dependent Reactive Ion Etching in Single Crystal Diamond. Adv. Mater. 2018, 30, 1705501. [Google Scholar] [CrossRef] [Green Version]
- Batzer, M.; Shields, B.; Neu, E.; Widmann, C.; Giese, C.; Nebel, C.; Maletinsky, P. Single crystal diamond pyramids for applications in nanoscale quantum sensing. Opt. Mater. Express 2020, 10, 492–500. [Google Scholar] [CrossRef] [Green Version]
- Marseglia, L.; Aha, K.S.; Joy, A.A.; Schröder, T.; Englund, D.; Jelezko, F.; Walsworth, R.; Pacheco, J.L.; Perry, D.L.; Bielejec, E.S.; et al. Bright nanowire single photon source based on SiV centers in diamond. Opt. Express 2018, 26, 80–89. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.L.; Lagoudakis, K.G.; Tzeng, Y.K.; Dory, C.; Radulaski, M.; Kelaita, Y.; Fischer, K.A.; Sun, S.; Shen, Z.X.; Melosh, N.A.; et al. Complete coherent control of silicon vacancies in diamond nanopillars containing single defect centers. Optica 2017, 4, 1317–1321. [Google Scholar] [CrossRef] [Green Version]
- Felgen, N.; Naydenov, B.; Jelezko, F.; Reithmaier, J.P.; Popov, C. Homoepitaxial Diamond Structures with Incorporated SiV Centers. Phys. Stat. Soli. A 2018, 215, 1800371. [Google Scholar] [CrossRef]
- Rugar, A.E.; Dory, C.; Sun, S.; Vučković, J. Characterization of optical and spin properties of single tin-vacancy centers in diamond nanopillars. Phys. Rev. B 2019, 99, 205417. [Google Scholar] [CrossRef] [Green Version]
- Jeon, S.W.; Lee, J.; Jung, H.; Han, S.W.; Cho, Y.W.; Kim, Y.S.; Lim, H.T.; Kim, Y.; Niethammer, M.; Lim, W.C.; et al. Bright Nitrogen-Vacancy Centers in Diamond Inverted Nanocones. ACS Photonics 2020, 7, 2739–2747. [Google Scholar] [CrossRef]
- Radtke, M.; Nelz, R.; Slablab, A.; Neu, E. Reliable nanofabrication of single-crystal diamond photonic nanostructures for nanoscale sensing. Micromachines 2019, 10, 718. [Google Scholar] [CrossRef] [Green Version]
- Maletinsky, P.; Hong, S.; Grinolds, M.S.; Hausmann, B.; Lukin, M.D.; Walsworth, R.L.; Loncar, M.; Yacoby, A. A robust scanning diamond sensor for nanoscale imaging with single nitrogen-vacancy centres. Nat. Nanotech. 2012, 7, 320–324. [Google Scholar] [CrossRef]
- Häberle, T.; Schmid-Lorch, D.; Reinhard, F.; Wrachtrup, J. Nanoscale nuclear magnetic imaging with chemical contrast. Nat. Nanotech. 2015, 10, 125–128. [Google Scholar] [CrossRef] [Green Version]
- Van Der Sar, T.; Casola, F.; Walsworth, R.; Yacoby, A. Nanometre-scale probing of spin waves using single electron spins. Nat. Commun. 2015, 6, 7886. [Google Scholar] [CrossRef]
- Ernst, S.; Irber, D.M.; Waeber, A.M.; Braunbeck, G.; Reinhard, F. A Planar Scanning Probe Microscope. ACS Photonics 2019, 6, 327–331. [Google Scholar] [CrossRef] [Green Version]
- Giese, C.; Quellmalz, P.; Knittel, P. Development of All-Diamond Scanning Probes Based on Faraday Cage Angled Etching Techniques. MRS Adv. 2020, 5, 1899–1907. [Google Scholar] [CrossRef]
- Appel, P.; Neu, E.; Ganzhorn, M.; Barfuss, A.; Batzer, M.; Gratz, M.; Tschöpe, A.; Maletinsky, P. Fabrication of all diamond scanning probes for nanoscale magnetometry. Rev. Sci. Instr. 2017, 87, 063703. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rohner, D.; Happacher, J.; Reiser, P.; Tschudin, M.A.; Tallaire, A.; Achard, J.; Shields, B.J.; Maletinsky, P. (111)-oriented, single crystal diamond tips for nanoscale scanning probe imaging of out-of-plane magnetic fields. Appl. Phys. Lett. 2019, 115, 192401. [Google Scholar] [CrossRef]
- Steinert, S.; Dolde, F.; Neumann, P.; Aird, A.; Naydenov, B.; Balasubramanian, G.; Jelezko, F.; Wrachtrup, J. High sensitivity magnetic imaging using an array of spins in diamond. Rev. Sci. Instr. 2016, 81, 043705. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Momenzadeh, S.A.; Stöhr, R.J.; de Oliveira, F.F.; Brunner, A.; Denisenko, A.; Yang, S.; Reinhard, F.; Wrachtrup, J. Nanoengineered Diamond Waveguide as a Robust Bright Platform for Nanomagnetometry Using Shallow Nitrogen Vacancy Centers. Nano Lett. 2015, 15, 165–169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mclellan, C.A.; Myers, B.A.; Kraemer, S.; Ohno, K.; Awschalom, D.D.; Bleszynski Jayich, A.C. Patterned Formation of Highly Coherent Nitrogen-Vacancy Centers Using a Focused Electron Irradiation Technique. Nano Lett. 2016, 16, 2450–2454. [Google Scholar] [CrossRef] [Green Version]
- De Oliveira, F.F.; Antonov, D.; Wang, Y.; Neumann, P.; Momenzadeh, S.A.; Häußermann, T.; Pasquarelli, A.; Denisenko, A.; Wrachtrup, J. Tailoring spin defects in diamond by lattice charging. Nat. Commun. 2017, 8, 15409. [Google Scholar] [CrossRef] [Green Version]
- Lühmann, T.; John, R.; Wunderlich, R.; Meijer, J.; Pezzagna, S. Coulomb-driven single defect engineering for scalable qubits and spin sensors in diamond. Nat. Commun. 2019, 10, 4956. [Google Scholar] [CrossRef] [Green Version]
- Sangtawesin, S.; Dwyer, B.L.; Srinivasan, S.; Allred, J.J.; Rodgers, L.V.H.; De Greve, K.; Stacey, A.; Dontschuk, N.; O’Donnell, K.M.; Hu, D.; et al. Origins of Diamond Surface Noise Probed by Correlating Single-Spin Measurements with Surface Spectroscopy. Phys. Rev. X 2019, 9, 031052. [Google Scholar] [CrossRef] [Green Version]
- Kawai, S.; Yamano, H.; Sonoda, T.; Kato, K.; Buendia, J.J.; Kageura, T.; Fukuda, R.; Okada, T.; Tanii, T.; Higuchi, T.; et al. Nitrogen-Terminated Diamond Surface for Nanoscale NMR by Shallow Nitrogen-Vacancy Centers. J. Phys. Chem. C 2019, 123, 3594–3604. [Google Scholar] [CrossRef]
- Herbschleb, E.D.; Kato, H.; Maruyama, Y.; Danjo, T.; Makino, T.; Yamasaki, S.; Ohki, I.; Hayashi, K.; Morishita, H.; Fujiwara, M.; et al. Ultra-long coherence times amongst room-temperature solid-state spins. Nat. Commun. 2019, 10, 3766. [Google Scholar] [CrossRef]
- Kleinlein, J.; Borzenko, T.; Münzhuber, F.; Brehm, J.; Kiessling, T.; Molenkamp, L.W. NV-center diamond cantilevers: Extending the range of available fabrication methods. Microelect. Eng. 2016, 159, 70–74. [Google Scholar] [CrossRef]
- Rondin, L.; Tetienne, J.P.; Spinicelli, P.; Dal Savio, C.; Karrai, K.; Dantelle, G.; Thiaville, A.; Rohart, S.; Roch, J.F.; Jacques, V. Nanoscale magnetic field mapping with a single spin scanning probe magnetometer. Appl. Phys. Lett. 2012, 15, 153118. [Google Scholar] [CrossRef] [Green Version]
- Tao, Y.; Boss, J.M.; Moores, B.A.; Degen, C.L. Single-crystal diamond nanomechanical resonators with quality factors exceeding one million. Nat. Commun. 2014, 5, 3638. [Google Scholar] [CrossRef] [PubMed]
- Tao, Y.; Navaretti, P.; Hauert, R.; Grob, U.; Poggio, M.; Degen, C.L. Permanent reduction of dissipation in nanomechanical Si resonators by chemical surface protection. Nanotechnology 2015, 26, 465501. [Google Scholar] [CrossRef] [Green Version]
- Maity, S.; Shao, L.; Sohn, Y.I.; Meesala, S.; Machielse, B.; Bielejec, E.; Markham, M.; Lončar, M. Spectral alignment of single-photon emitters in diamond using strain gradient. Phys. Rev. Appl. 2018, 10, 024050. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, M.; Lake, D.P.; Barclay, P.E. Optomechanically amplified wavelength conversion in diamond microcavities. Optica 2019, 6, 832–838. [Google Scholar] [CrossRef]
- Kehayias, P.; Jarmola, A.; Mosavian, N.; Fescenko, I.; Benito, F.M.; Laraoui, A.; Smits, J.; Bougas, L.; Budker, D.; Neumann, A.; et al. Solution nuclear magnetic resonance spectroscopy on a nanostructured diamond chip. Nat. Commun. 2017, 8, 188. [Google Scholar] [CrossRef] [Green Version]
Methods Used | Fabrication Method | Properties/Comments | References |
---|---|---|---|
Type/Dimensions | |||
SCD nanopillars with single tin vacancy center: 200 nm diameter; 500 nm height |
|
| [57] |
SCD nanopillar: Tapered with tip & conical base diameter of 15 nm & 200 nm |
|
| [51] |
SCD Nanowires with single SiV− center: 350 nm top diameter, 650 nm bottom diameter & height of 1.2 μm |
|
| [54] |
Overgrown SCD pillars with SiV ensembles: Tapered with diameter varying from 200–1000 nm & height of 1 µm |
|
| [56] |
SCD nanopillars with single SiV centers: 135–170 nm in diameter, 200 nm in height |
|
| [55] |
Properties | Shape & Dimensions of Scanning Probe | Fabrication Method | Comments | References |
---|---|---|---|---|
Type of Scanning Probe | ||||
All diamond scanning probe (100)-oriented diamond. NV orientation and magnetic field sensing is along an axis tilted by 54.7° from nanopillar direction. | Nanopillar: diameter = 350 nm; L= 3.5 µm Cantilever probes: L= 125 µm, W = H = 50 µm | EBL & ICP-RIE for nanopillar structuring with 10 nm Ti as adhesion layer on diamond; UVL for cantilever probe definition; deep etch with 400 nm Ti as an etch mask. NV depth defined using ion implantation. |
| [19] |
Triangular shaped beam: L = 30 µm, W = 450 nm | EBL for patterning with Ni as protective mask for structuring diamond; Faraday cage used for ICP-RIE to obtain high aspect-ratio triangular shaped beam. |
| [64] | |
Pillar with parabolic curvature: 200 nm flat-end facet, long tapering waveguide section | Cantilever & pillar definition using EBL followed by ICP-RIE etching. A deep etch is carried out for releasing the diamond in the end. |
| [20] | |
Diamond bonded on oxidized Si. Pillar: 200 nm diameter, 1 µm length; cantilever: 150 × 20 × 3 μm; Array of pillars (1 µm pitch) on each cantilever | Pillar structuring using NIL with Ti hard mask and O2 etching. The cantilevers released using deep RIE through Si substrate. Single NV per pillar at 15–20 nm depth. |
| [18] | |
Nanopillar: 200 nm diameter | 5 µm thick diamond membrane creation using shadow mask & RIE; EBL & RIE for definition of nanopillar & cantilever with 5 nm Ti as adhesion layer used for HSQ on diamond; and pre-patterned alignment marks using EBL |
| [75] | |
Bulk diamond with NV centre for imaging sample scanned on top | Single NV centers embedded 5 nm below type IIa diamond membrane of 30 µm thickness | Shallow implantation of single NV centers at 2.5 keV using 15N+ ions |
| [61] |
Diamond nanocrystals with single NV center attached to conventional AFM tips | Nanodiamonds (20 nm) with single NV grafted on AFM tips | Diamond nanocrystals synthesized by milling of type 1b HPHT diamond crystals with high N2 content. |
| [76] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rani, D.; Opaluch, O.R.; Neu, E. Recent Advances in Single Crystal Diamond Device Fabrication for Photonics, Sensing and Nanomechanics. Micromachines 2021, 12, 36. https://doi.org/10.3390/mi12010036
Rani D, Opaluch OR, Neu E. Recent Advances in Single Crystal Diamond Device Fabrication for Photonics, Sensing and Nanomechanics. Micromachines. 2021; 12(1):36. https://doi.org/10.3390/mi12010036
Chicago/Turabian StyleRani, Dipti, Oliver Roman Opaluch, and Elke Neu. 2021. "Recent Advances in Single Crystal Diamond Device Fabrication for Photonics, Sensing and Nanomechanics" Micromachines 12, no. 1: 36. https://doi.org/10.3390/mi12010036
APA StyleRani, D., Opaluch, O. R., & Neu, E. (2021). Recent Advances in Single Crystal Diamond Device Fabrication for Photonics, Sensing and Nanomechanics. Micromachines, 12(1), 36. https://doi.org/10.3390/mi12010036