Guided Healing of Damaged Microelectrodes via Electrokinetic Assembly of Conductive Carbon Nanotube Bridges
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fabrication of Carbon Electrodes
2.2. Preparation of Carbon Nanotube Suspension
2.3. Experimental Setup and Deposition of Carbon Nanotube Suspension
2.4. Preperation of Pyrrole Solution
2.5. Polypyrrole Deposition
2.6. Stress-Testing of Carbon Nanotube (CNT) Bridges
2.7. Finite Element Analysis of Electric Field Magnitude
3. Results and Discussion
3.1. CNT Bridges across 20, 30 and 40 μm Electrode Gaps
3.1.1. Assembly of CNT Bridges
3.1.2. Resistance of CNT Bridges
3.2. Electric Field Strength Simulation
3.3. CNT Bridge across the Fractured Electrode
3.4. Deposition of Polypyrrole
3.5. Results of the Stress Testing of the Formed CNT Bridges
3.5.1. Thermal Cycling
3.5.2. Placing the Healed Microelectrodes under Running Water
3.5.3. Exposure of the Healed Microelectrodes to Blasts of Compressed Nitrogen Gas
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hu, J.; Wang, Y.; Li, D.; Cheng, Y.-T. Effects of Adhesion and Cohesion on the Electrochemical Performance and Durability of Silicon Composite Electrodes. J. Power Sources 2018, 397, 223–230. [Google Scholar] [CrossRef]
- Xu, W.; Huang, L.-B.; Hao, J. Fully Self-Healing and Shape-Tailorable Triboelectric Nanogenerators Based on Healable Polymer and Magnetic-Assisted Electrode. Nano Energy 2017, 40, 399–407. [Google Scholar] [CrossRef]
- Chen, J.; Yang, J.; Guo, H.; Li, Z.; Zheng, L.; Su, Y.; Wen, Z.; Fan, X.; Wang, Z.L. Automatic Mode Transition Enabled Robust Triboelectric Nanogenerators. ACS Nano 2015, 9, 12334–12343. [Google Scholar] [CrossRef] [PubMed]
- Tahir, M.; He, L.; Yang, W.; Hong, X.; Haider, W.A.; Tang, H.; Zhu, Z.; Owusu, K.A.; Mai, L. Boosting the Electrochemical Performance and Reliability of Conducting Polymer Microelectrode via Intermediate Graphene for On-Chip Asymmetric Micro-Supercapacitor. J. Energy Chem. 2020, 49, 224–232. [Google Scholar] [CrossRef]
- Zhu, X.; Xie, Y.; Chen, H.; Luan, W. Numerical Analysis of the Cyclic Mechanical Damage of Li-Ion Battery Electrode and Experimental Validation. Int. J. Fatigue 2021, 142, 105915. [Google Scholar] [CrossRef]
- Yang, S.; Feng, X.; Ivanovici, S.; Müllen, K. Fabrication of Graphene-Encapsulated Oxide Nanoparticles: Towards High-Performance Anode Materials for Lithium Storage. Angew. Chem. Int. Ed. 2010, 49, 8408–8411. [Google Scholar] [CrossRef] [PubMed]
- Usui, H.; Wasada, K.; Shimizu, M.; Sakaguchi, H. TiO2/Si Composites Synthesized by Sol–Gel Method and Their Improved Electrode Performance as Li-Ion Battery Anodes. Electrochim. Acta 2013, 111, 575–580. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Wu, H.; Chen, Z.; McDowell, M.T.; Cui, Y.; Bao, Z. Self-Healing Chemistry Enables the Stable Operation of Silicon Microparticle Anodes for High-Energy Lithium-Ion Batteries. Nat. Chem. 2013, 5, 1042–1048. [Google Scholar] [CrossRef] [PubMed]
- Sim, H.J.; Kim, H.; Jang, Y.; Spinks, G.M.; Gambhir, S.; Officer, D.L.; Wallace, G.G.; Kim, S.J. Self-Healing Electrode with High Electrical Conductivity and Mechanical Strength for Artificial Electronic Skin. ACS Appl. Mater. Interfaces 2019, 11, 46026–46033. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Su, Y.; Wang, Z.; Zhang, Z.; Han, X.; Dong, M.; Cui, L.; Chen, M. Reversible Conductivity Recovery of Highly Sensitive Flexible Devices by Water Vapor. NPJ Flexible Electron. 2018, 2, 31. [Google Scholar] [CrossRef]
- Liu, Y.; Gao, M.; Mei, S.; Han, Y.; Liu, J. Ultra-Compliant Liquid Metal Electrodes with in-Plane Self-Healing Capability for Dielectric Elastomer Actuators. Appl. Phys. Lett. 2013, 103, 064101. [Google Scholar] [CrossRef]
- Wu, C.; Tang, X.; Gan, L.; Li, W.; Zhang, J.; Wang, H.; Qin, Z.; Zhang, T.; Zhou, T.; Huang, J.; et al. High-Adhesion Stretchable Electrode via Cross-Linking Intensified Electroless Deposition on a Biomimetic Elastomeric Micropore Film. ACS Appl. Mater. Interfaces 2019, 11, 20535–20544. [Google Scholar] [CrossRef] [PubMed]
- Iijima, S. Helical Microtubules of Graphitic Carbon. Nature 1991, 354, 56–58. [Google Scholar] [CrossRef]
- Haddon, R.C. Carbon Nanotubes. Acc. Chem. Res. 2002, 35, 997. [Google Scholar] [CrossRef]
- De Volder, M.F.L.; Tawfick, S.H.; Baughman, R.H.; Hart, A.J. Carbon Nanotubes: Present and Future Commercial Applications. Science 2013, 339, 535–539. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.Q.; Saito, T.; Yamada, H.; Matsushige, K. Aligning single-wall carbon nanotubes with an alternating-current electric field. Appl. Phys. Lett. 2001, 78, 3714–3716. [Google Scholar] [CrossRef] [Green Version]
- Perez-Gonzalez, V.H.; Ho, V.; Vazquez-Pinon, M.; Martinez-Chapa, S.O.; Kulinsky, L. A novel micro/nano fabrication process based on the combined use of dielectrophoresis, electroosmotic flow, and electrodeposition for surface patterning. J. Micromech. Microeng. 2015, 25, 113007. [Google Scholar] [CrossRef]
- Zhou, T.; Kropp, E.; Chen, J.; Kulinsky, L. Step-Wise Deposition Process for Dielectrophoretic Formation of Conductive 50-Micron-Long Carbon Nanotube Bridges. Micromachines 2020, 11, 371. [Google Scholar] [CrossRef] [Green Version]
- Madou, M.J. Manufacturing Techniques for Microfabrication and Nanotechnology; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar]
- Ramos, A.; Morgan, H.; Green, N.G.; Castellanos, A. AC electrokinetics: A review of forces in microelectrode structures. J. Phys. D Appl. Phys. 1998, 31, 2338. [Google Scholar] [CrossRef] [Green Version]
- Seo, H.-W.; Han, C.-S.; Choi, D.-G.; Kim, K.-S.; Lee, Y.-H. Controlled assembly of single SWNTs bundle using dielectrophoresis. Microelectron. Eng. 2005, 81, 83–89. [Google Scholar] [CrossRef]
- Kendall, K. Electromechanics of particles. Powder Technol. 1996, 89, 177–178. [Google Scholar]
- Dimaki, M.; Bøggild, P. Dielectrophoresis of carbon nanotubes using microelectrodes: A numerical study. Nanotechnology 2004, 15, 1095. [Google Scholar] [CrossRef]
- Katz, D.; Lopez, D.; Kornblit, A.; Grebel, H. Carbon nanotubes bridges spanning across metal electrode tips. J. Nanosci. Nanotechnol. 2008, 8, 4382–4386. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Ye, Q.; Cassell, A.; Ng, H.T.; Stevens, R.; Han, J.; Meyyappan, M. Bottom-up approach for carbon nanotube interconnects. Appl. Phys. Lett. 2003, 82, 2491–2493. [Google Scholar] [CrossRef] [Green Version]
- Todri-Sanial, A.; Dijon, J.; Maffucci, A. Carbon Nanotubes for Interconnects; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Hällström, W.; Prinz, C.N.; Suyatin, D.; Samuelson, L.; Montelius, L.; Kanje, M. Rectifying and Sorting of Regenerating Axons by Free-Standing Nanowire Patterns: A Highway for Nerve Fibers. Langmuir 2009, 25, 4343–4346. [Google Scholar] [CrossRef]
- You, R.; Zhang, Q.; Li, X.; Yan, S.; Luo, Z.; Qu, J.; Li, M. Multichannel Bioactive Silk Nanofiber Conduits Direct and Enhance Axonal Regeneration after Spinal Cord Injury. ACS Biomater. Sci. Eng. 2020, 6, 4677–4686. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhang, C.; Haggerty, A.E.; Yan, J.; Lan, M.; Seu, M.; Yang, M.; Marlow, M.M.; Maldonado-Lasunción, I.; Cho, B.; et al. The Effect of a Nanofiber-Hydrogel Composite on Neural Tissue Repair and Regeneration in the Contused Spinal Cord. Biomaterials 2020, 245, 119978. [Google Scholar] [CrossRef] [PubMed]
- Schönenberger, C.; Bachtold, A.; Strunk, C.; Salvetat, J.-P.; Forró, L. Interference and Interaction in Multi-Wall Carbon Nanotubes. Appl. Phys. A Mater. Sci. Process. 1999, 69, 283–295. [Google Scholar] [CrossRef] [Green Version]
- Seiphoori, A.; Ma, X.-G.; Arratia, P.E.; Jerolmack, D.J. Formation of stable aggregates by fluid-assembled solid bridges. Proc. Nat. Acad. Sci. USA 2020, 117, 3375–3381. [Google Scholar] [CrossRef] [Green Version]
- Schmitt, R. Fundamentals of Electric Fields. In Electromagnetics Explained; Elsevier: Amsterdam, The Netherlands, 2002; pp. 25–49. ISBN 9780750674034. [Google Scholar]
- Huang, Y.; Huang, Y.; Zhu, M.; Meng, W.; Pei, Z.; Liu, C.; Hu, H.; Zhi, C. Magnetic-Assisted, Self-Healable, Yarn-Based Supercapacitor. ACS Nano 2015, 9, 6242–6251. [Google Scholar] [CrossRef] [PubMed]
- Huynh, T.-P.; Sonar, P.; Haick, H. Advanced Materials for Use in Soft Self-Healing Devices. Adv. Mater. 2017, 29, 1604973. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Michel, S.; Chu, B.T.T.; Grimm, S.; Nüesch, F.A.; Borgschulte, A.; Opris, D.M. Self-Healing Electrodes for Dielectric Elastomer Actuators. J. Mater. Chem. 2012, 22, 20736–20741. [Google Scholar] [CrossRef]
- Lee, J.-O.; Park, C.; Kim, J.-J.; Kim, J.; Park, J.W.; Yoo, K.-H. Formation of Low-Resistance Ohmic Contacts between Carbon Nanotube and Metal Electrodes by a Rapid Thermal Annealing Method. J. Phys. D Appl. Phys. 2000, 33, 1953–1956. [Google Scholar] [CrossRef]
- Tan, Y.J.; Wu, J.; Li, H.; Tee, B.C.K. Self-Healing Electronic Materials for a Smart and Sustainable Future. ACS Appl. Mater. Interfaces 2018, 10, 15331–15345. [Google Scholar] [CrossRef] [PubMed]
Total Amount of CNT Suspension (μL) | Resistance (kΩ) | Total Amount of CNT Suspension (μL) | Resistance (kΩ) |
---|---|---|---|
1 | open circuit | 6 | open circuit |
2 | open circuit | 7 | open circuit |
3 | open circuit | 8 | 360 |
4 | open circuit | 9 | 147 |
5 | open circuit | 10 | 28.7 |
Electrode Gap Length (μm) | Avg. Resistance Measurement (Std. Dev.) (kΩ) |
---|---|
Microelectrode prior to fracture | 5.80 (±0.61) |
Microelectrode after fracture (>170 μm gap) | Open circuit |
20 | 15.61 (±1.85) |
30 | 19.11 (±1.88) |
40 | 31.88 (±6.98) |
Sample | Resistance before Thermal Cycling (kΩ) | Resistance after Thermal Cycling (kΩ) |
---|---|---|
Without PPy Coating | 28.7 | 23.2 |
With PPy Coating | 0.93 | 1.09 |
Sample | Resistance before Running DI Water over Healed Electrodes (kΩ) | Resistance after Running DI Water over Healed Electrodes (kΩ) |
---|---|---|
Without PPy Coating | 23.0 | 24.8 |
With PPy Coating | 1.41 | 1.50 |
Sample | Resistance before Blowing Nitrogen over Healed Electrodes (kΩ) | Resistance after Blowing Nitrogen over Healed Electrodes (kΩ) |
---|---|---|
Without PPy Coating | 23.4 | 23.0 |
With PPy Coating | 1.26 | 1.24 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, T.; Michaels, M.; Kulinsky, L. Guided Healing of Damaged Microelectrodes via Electrokinetic Assembly of Conductive Carbon Nanotube Bridges. Micromachines 2021, 12, 405. https://doi.org/10.3390/mi12040405
Zhou T, Michaels M, Kulinsky L. Guided Healing of Damaged Microelectrodes via Electrokinetic Assembly of Conductive Carbon Nanotube Bridges. Micromachines. 2021; 12(4):405. https://doi.org/10.3390/mi12040405
Chicago/Turabian StyleZhou, Tuo, Matthew Michaels, and Lawrence Kulinsky. 2021. "Guided Healing of Damaged Microelectrodes via Electrokinetic Assembly of Conductive Carbon Nanotube Bridges" Micromachines 12, no. 4: 405. https://doi.org/10.3390/mi12040405
APA StyleZhou, T., Michaels, M., & Kulinsky, L. (2021). Guided Healing of Damaged Microelectrodes via Electrokinetic Assembly of Conductive Carbon Nanotube Bridges. Micromachines, 12(4), 405. https://doi.org/10.3390/mi12040405