Remote Doping Effects of Indium–Gallium–Zinc Oxide Thin-Film Transistors by Silane-Based Self-Assembled Monolayers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Device Fabrication
2.2. SAM Treatments
2.3. Annealing Process and Characterization
3. Results and Discussion
3.1. Electrical Properties of IGZO-Based TFTs by SAM Doping Effects
3.2. Contact Resistance Analysis
3.3. Contact Angle and Surface Energy Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Nomura, K.; Takagi, A.; Kamiya, T.; Ohta, H.; Hirano, M.; Hosono, H. Amorphous oxide semiconductors for high-performance flexible thin-film transistors. Jpn. J. Appl. Phys. 2006, 45, 4303. [Google Scholar] [CrossRef]
- Nomura, K.; Ohta, H.; Takagi, A.; Kamiya, T.; Hirano, M.; Hosono, H. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature 2004, 432, 488–492. [Google Scholar] [CrossRef] [PubMed]
- Han, G.; Cao, S.; Yang, Q.; Yang, W.; Guo, T.; Chen, H. High-performance all-solution-processed flexible photodetector arrays based on ultrashort channel amorphous oxide semiconductor transistors. ACS Appl. Mater. Interf. 2018, 10, 40631–40640. [Google Scholar] [CrossRef] [PubMed]
- Pei, Z.; Lai, H.C.; Wang, J.Y.; Chiang, W.H.; Chen, C.H. High-responsivity and high-sensitivity graphene dots/a-IGZO thin-film phototransistor. IEEE Electron. Device Lett. 2014, 36, 44–46. [Google Scholar] [CrossRef]
- Yamazoe, N.; Sakai, G.; Shimanoe, K. Oxide semiconductor gas sensors. Catal. Surv. Asia 2003, 7, 63–75. [Google Scholar] [CrossRef]
- Neppolian, B.; Wang, Q.; Yamashita, H.; Choi, H. Synthesis and characterization of ZrO2–TiO2 binary oxide semiconductor nanoparticles: Application and interparticle electron transfer process. Appl. Catal. A General 2007, 333, 264–271. [Google Scholar] [CrossRef]
- Shin, S.W.; Lee, K.H.; Park, J.S.; Kang, S.J. Highly transparent, visible-light photodetector based on oxide semiconductors and quantum dots. ACS Appl. Mater. Interf. 2015, 7, 19666–19671. [Google Scholar] [CrossRef] [PubMed]
- Fonoberov, V.A.; Balandin, A.A. ZnO quantum dots: Physical properties and optoelectronic applications. J. Nanoelectron. Optoelectron. 2006, 1, 19–38. [Google Scholar] [CrossRef] [Green Version]
- Fan, H.J.; Werner, P.; Zacharias, M. Semiconductor nanowires: From self-organization to patterned growth. Small 2006, 2, 700–717. [Google Scholar] [CrossRef]
- Clavijo, W.P.; Atkinson, G.M.; Castano, C.E.; Pestov, D. Novel low-temperature fabrication process for integrated high-aspect ratio zinc oxide nanowire sensors. J. Vac. Sci. Technol. B Nanotechnol. Microelectron. Mater. Process. Meas. Phenom. 2016, 34, 022203. [Google Scholar] [CrossRef]
- Lee, J.H.; Kim, D.H.; Yang, D.J.; Hong, S.Y.; Yoon, K.S.; Hong, P.S.; Jeong, C.O.; Park, H.S.; Kim, S.Y.; Lim, S.K. 42.2: World’s largest (15-inch) XGA AMLCD panel using IGZO oxide TFT. SID Symp. Dig. Tech. Pap. 2008, 39, 625–628. [Google Scholar] [CrossRef]
- Chuang, C.S.; Fung, T.C.; Mullins, B.G.; Nomura, K.; Kamiya, T.; Shieh, H.P.D.; Hosono, H.; Kanicki, J. P-13: Photosensitivity of amorphous IGZO TFTs for active-matrix flat-panel Displays. SID Symp. Dig. Tech. Pap. 2008, 39, 1215–1218. [Google Scholar] [CrossRef] [Green Version]
- Hsieh, H.H.; Lu, H.H.; Ting, H.C.; Chuang, C.S.; Chen, C.Y.; Lin, Y. Development of IGZO TFTs and their applications to next-generation flat-panel displays. J. Inf. Disp. 2010, 11, 160–164. [Google Scholar] [CrossRef] [Green Version]
- Zou, X.; Fang, G.; Wan, J.; Liu, N.; Long, H.; Wang, H.; Zhao, X. Enhanced performance of a-IGZO thin-film transistors by forming AZO/IGZO heterojunction source/drain contacts. Semicond. Sci. Technol. 2011, 26, 055003. [Google Scholar] [CrossRef]
- He, Y.; Nie, S.; Liu, R.; Jiang, S.; Shi, Y.; Wan, Q. Dual-functional long-term plasticity emulated in IGZO-based photoelectric neuromorphic transistors. IEEE Electron. Device Lett. 2019, 40, 818–821. [Google Scholar] [CrossRef]
- Yang, Y.; He, Y.; Nie, S.; Shi, Y.; Wan, Q. Light stimulated IGZO-based electric-double-layer transistors for photoelectric neuromorphic devices. IEEE Electron. Device Lett. 2018, 39, 897–900. [Google Scholar] [CrossRef]
- Yabuta, H.; Sano, M.; Abe, K.; Aiba, T.; Den, T.; Kumomi, H.; Nomura, K.; Kamiya, T.; Hosono, H. High-mobility thin-film transistor with amorphous In Ga Zn O 4 channel fabricated by room temperature rf-magnetron sputtering. Appl. Phys. Lett. 2006, 89, 112123. [Google Scholar] [CrossRef]
- Li, Y.; Pei, Y.; Hu, R.; Chen, Z.; Zhao, Y.; Shen, Z.; Fan, B.; Liang, J.; Wang, G. Effect of channel thickness on electrical performance of amorphous IGZO thin-film transistor with atomic layer deposited alumina oxide dielectric. Curr. Appl. Phys. 2014, 14, 941–945. [Google Scholar] [CrossRef]
- Takenaka, K.; Endo, M.; Uchida, G.; Ebe, A.; Setsuhara, Y. Influence of deposition condition on electrical properties of a-IGZO films deposited by plasma-enhanced reactive sputtering. J. Alloys Compd. 2019, 772, 642–649. [Google Scholar] [CrossRef]
- Song, J.H.; Oh, N.; Du Anh, B.; Kim, H.D.; Jeong, J.K. Dynamics of threshold voltage instability in IGZO TFTs: Impact of high pressurized oxygen treatment on the activation energy barrier. IEEE Trans. Electron. Devices 2016, 63, 1054–1058. [Google Scholar] [CrossRef]
- Park, J.-S.; Jeong, J.K.; Mo, Y.-G.; Kim, H.D.; Kim, S.-I. Improvements in the device characteristics of amorphous indium gallium zinc oxide thin-film transistors by Ar plasma treatment. Appl. Phys. Lett. 2007, 90, 262106. [Google Scholar] [CrossRef]
- Chong, E.G.; Chun, Y.S.; Kim, S.H.; Lee, S.Y. Effect of oxygen on the threshold voltage of a-IGZO TFT. J. Electr. Eng. Technol. 2011, 6, 539–542. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Bang, S.; Lee, S.; Shin, S.; Park, J.; Seo, H.; Jeon, H. A study on H2 plasma treatment effect on a-IGZO thin film transistor. J. Mater. Res. 2012, 27, 2318. [Google Scholar] [CrossRef] [Green Version]
- Lee, D.H.; Park, S.M.; Kim, D.K.; Lim, Y.S.; Yi, M. Effects of Ga composition ratio and annealing temperature on the electrical characteristics of solution-processed IGZO thin-film transistors. JSTS J. Semicond. Technol. Sci. 2014, 14, 163–168. [Google Scholar] [CrossRef] [Green Version]
- Cai, W.; Wilson, J.; Zhang, J.; Brownless, J.; Zhang, X.; Majewski, L.A.; Song, A. Significant performance enhancement of very thin InGaZnO thin-film transistors by a self-assembled monolayer treatment. ACS Appl. Electr. Mater. 2020, 2, 301–308. [Google Scholar] [CrossRef] [Green Version]
- Devynck, M.; Tardy, P.; Wantz, G.; Nicolas, Y.; Hirsch, L. Organic field-effect transistor with octadecyltrichlorosilane (OTS) self-assembled monolayers on gate oxide: Effect of OTS quality. Eur. Phys. J. Appl. Phys. 2011, 56, 34106. [Google Scholar] [CrossRef] [Green Version]
- Manifar, T.; Rezaee, A.; Sheikhzadeh, M.; Mittler, S. Formation of uniform self-assembly monolayers by choosing the right solvent: OTS on silicon wafer, a case study. Appl. Surf. Sci. 2008, 254, 4611–4619. [Google Scholar] [CrossRef]
- Kim, C.J.; Park, J.; Kim, S.; Song, I.; Kim, S.; Park, Y.; Lee, E.; Anass, B.; Park, J.S. Characteristics and cleaning of dry-etching-damaged layer of amorphous oxide thin-film transistor. Electrochem. Solid State Lett. 2009, 12, H95. [Google Scholar] [CrossRef]
- Kang, D.H.; Shim, J.; Jang, S.K.; Jeon, J.; Jeon, M.H.; Yeom, G.Y.; Jung, W.S.; Jang, Y.H.; Lee, S.; Park, J.H. Controllable nondegenerate p-type doping of tungsten diselenide by octadecyltrichlorosilane. ACS Nano 2015, 9, 1099–1107. [Google Scholar] [CrossRef] [PubMed]
- Kang, D.H.; Kim, M.S.; Shim, J.; Jeon, J.; Park, H.Y.; Jung, W.S.; Yu, H.Y.; Pang, C.H.; Lee, S.; Park, J.H. High-performance transition metal dichalcogenide photodetectors enhanced by self-assembled monolayer doping. Adv. Funct. Mater. 2015, 25, 4219–4227. [Google Scholar] [CrossRef]
- Du, X.; Flynn, B.T.; Motley, J.R.; Stickle, W.F.; Bluhm, H.; Herman, G.S. Role of self-assembled monolayers on improved electrical stability of amorphous In-Ga-Zn-O thin-film transistors. ECS J. Solid State Sci. Technol. 2014, 3, Q3045. [Google Scholar] [CrossRef] [Green Version]
- Good, R.J. A thermodynamic derivation of Wenzel’s modification of Young’s equation for contact angles; together with a theory of Hysteresis1. J. Am. Chem. Soc. 1952, 74, 5041–5042. [Google Scholar] [CrossRef]
- Kwok, D.Y.; Neumann, A.W. Contact angle measurement and contact angle interpretation. Adv. Colloid Interf. Sci. 1999, 81, 167–249. [Google Scholar] [CrossRef]
- Janssen, D.; De Palma, R.; Verlaak, S.; Heremans, P.; Dehaen, W. Static solvent contact angle measurements, surface free energy and wettability determination of various self-assembled monolayers on silicon dioxide. Thin Solid Films 2006, 515, 1433–1438. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seo, J.; Yoo, H. Remote Doping Effects of Indium–Gallium–Zinc Oxide Thin-Film Transistors by Silane-Based Self-Assembled Monolayers. Micromachines 2021, 12, 481. https://doi.org/10.3390/mi12050481
Seo J, Yoo H. Remote Doping Effects of Indium–Gallium–Zinc Oxide Thin-Film Transistors by Silane-Based Self-Assembled Monolayers. Micromachines. 2021; 12(5):481. https://doi.org/10.3390/mi12050481
Chicago/Turabian StyleSeo, Juhyung, and Hocheon Yoo. 2021. "Remote Doping Effects of Indium–Gallium–Zinc Oxide Thin-Film Transistors by Silane-Based Self-Assembled Monolayers" Micromachines 12, no. 5: 481. https://doi.org/10.3390/mi12050481
APA StyleSeo, J., & Yoo, H. (2021). Remote Doping Effects of Indium–Gallium–Zinc Oxide Thin-Film Transistors by Silane-Based Self-Assembled Monolayers. Micromachines, 12(5), 481. https://doi.org/10.3390/mi12050481