Self-Assembled Monolayers: Versatile Uses in Electronic Devices from Gate Dielectrics, Dopants, and Biosensing Linkers
Abstract
:1. Introduction
2. SAMs as Basic Elements of the Device
2.1. SAM Treatment on SiO2 Gate Dielectrics
2.2. SAM Treatment on Al2O3 Gate Dielectrics
2.3. SAM Treatment on HfO2 Gate Dielectrics
2.4. SAM as Gate Dielectrics
2.5. Self-Assembled Monolayer Field Effect Transistor (SAMFET)
3. SAMs as Dopants
3.1. Doping Effects of SAMs in Oxide Semiconductors
3.2. Electrical Doping Effect of SAMs in 2D Materials
4. Biosensor Linkers Based on SAMs
5. Summary
Author Contributions
Funding
Conflicts of Interest
References
- Fox, H.; Zisman, W. The spreading of liquids on low energy surfaces. I. polytetrafluoroethylene. J. Colloid Sci. 1950, 5, 514–531. [Google Scholar] [CrossRef]
- Bain, C.D.; Whitesides, G.M. Modeling organic surfaces with self-assembled monolayers. Angew. Chem. 1989, 101, 522–528. [Google Scholar] [CrossRef]
- Bigelow, W.; Pickett, D.; Zisman, W. Oleophobic monolayers: I. Films adsorbed from solution in non-polar liquids. J. Colloid Sci. 1946, 1, 513–538. [Google Scholar] [CrossRef]
- Klauk, H. Organic thin-film transistors. Chem. Soc. Rev. 2010, 39, 2643–2666. [Google Scholar] [CrossRef] [PubMed]
- Horowitz, G.; Fichou, D.; Peng, X.; Garnier, F. Thin-film transistors based on alpha-conjugated oligomers. Synth. Met. 1991, 41, 1127–1130. [Google Scholar] [CrossRef]
- Haddon, R.; Perel, A.; Morris, R.; Palstra, T.; Hebard, A.; Fleming, R.M. C60 thin film transistors. Appl. Phys. Lett. 1995, 67, 121–123. [Google Scholar] [CrossRef] [Green Version]
- Torsi, L.; Dodabalapur, A.; Katz, H. An analytical model for short-channel organic thin-film transistors. J. Appl. Phys. 1995, 78, 1088–1093. [Google Scholar] [CrossRef]
- Peng, X.; Horowitz, G.; Fichou, D.; Garnier, F. All-organic thin-film transistors made of alpha-sexithienyl semiconducting and various polymeric insulating layers. Appl. Phys. Lett. 1990, 57, 2013–2015. [Google Scholar] [CrossRef]
- Kim, J.H.; Hong, S.H.; Seong, K.D.; Seo, S. Fabrication of Organic Thin-Film Transistors on Three-Dimensional Substrates Using Free-Standing Polymeric Masks Based on Soft Lithography. Adv. Funct. Mater. 2014, 24, 2404–2408. [Google Scholar] [CrossRef]
- Uno, M.; Isahaya, N.; Cha, B.-S.; Omori, M.; Yamamura, A.; Matsui, H.; Kudo, M.; Tanaka, Y.; Kanaoka, Y.; Ito, M.; et al. High-Yield, Highly Uniform Solution-Processed Organic Transistors Integrated into Flexible Organic Circuits. Adv. Electron. Mater. 2017, 3, 1600410. [Google Scholar] [CrossRef]
- Choi, H.H.; Yi, H.T.; Tsurumi, J.; Kim, J.J.; Briseno, A.L.; Watanabe, S.; Takeya, J.; Cho, K.; Podzorov, V. A large anisotropic enhancement of the charge carrier mobility of flexible organic transistors with strain: A Hall effect and Raman study. Adv. Sci. 2020, 7, 1901824. [Google Scholar] [CrossRef] [Green Version]
- Min, H.; Kang, B.; Shin, Y.S.; Kim, B.; Lee, S.W.; Cho, J.H. Transparent and colorless polyimides containing multiple trifluoromethyl groups as gate insulators for flexible organic transistors with superior electrical stability. ACS Appl. Mater. Interfaces 2020, 12, 18739–18747. [Google Scholar] [CrossRef]
- Kim, J.-H.; Liang, Y.; Seo, S. Patchable thin-film strain gauges based on pentacene transistors. Org. Electron. 2015, 26, 355–358. [Google Scholar] [CrossRef]
- Bischak, C.G.; Flagg, L.Q.; Ginger, D.S. Ion Exchange Gels Allow Organic Electrochemical Transistor Operation with Hydrophobic Polymers in Aqueous Solution. Adv. Mater. 2020, 32, 2002610. [Google Scholar] [CrossRef]
- Yoo, H.; Choi, H.H.; Shin, T.J.; Rim, T.; Cho, K.; Jung, S.; Kim, J.J. Self-Assembled, Millimeter-Sized TIPS-Pentacene Spherulites Grown on Partially Crosslinked Polymer Gate Dielectric. Adv. Funct. Mater. 2015, 25, 3658–3665. [Google Scholar] [CrossRef]
- Choi, C.G.; Bae, B.S. Effects of Hydroxyl Groups in Gate Dielectrics on the Hysteresis of Organic Thin Film Transistors. Electrochem. Solid State Lett. 2007, 10. [Google Scholar] [CrossRef] [Green Version]
- Gu, G.; Kane, M.G. Moisture induced electron traps and hysteresis in pentacene-based organic thin-film transistors. Appl. Phys. Lett. 2008, 92. [Google Scholar] [CrossRef]
- Lee, S.; Koo, B.; Shin, J.; Lee, E.; Park, H.; Kim, H. Effects of hydroxyl groups in polymeric dielectrics on organic transistor performance. Appl. Phys. Lett. 2006, 88. [Google Scholar] [CrossRef]
- Zhang, Y.; Ziegler, D.; Salmeron, M. Charge trapping states at the SiO2–oligothiophene monolayer interface in field effect transistors studied by Kelvin probe force microscopy. ACS Nano 2013, 7, 8258–8265. [Google Scholar] [CrossRef]
- Mathijssen, S.G.; Kemerink, M.; Sharma, A.; Cölle, M.; Bobbert, P.A.; Janssen, R.A.; de Leeuw, D.M. Charge Trapping at the Dielectric of Organic Transistors Visualized in Real Time and Space. Adv. Mater. 2008, 20, 975–979. [Google Scholar] [CrossRef]
- Chua, L.-L.; Zaumseil, J.; Chang, J.-F.; Ou, E.C.-W.; Ho, P.K.-H.; Sirringhaus, H.; Friend, R.H. General observation of n-type field-effect behaviour in organic semiconductors. Nature 2005, 434, 194–199. [Google Scholar] [CrossRef] [PubMed]
- McLean, F.B.; Boesch, H.E.; McGarrity, J.M.; Oswald, R.B. Rapid annealing and charge injection in Al2O 3 MIS capacitors. IEEE Trans. Nucl. Sci. 1974, 21, 47–55. [Google Scholar] [CrossRef]
- Zaininger, K.; Waxman, A. Radiation resistance of Al2O 3 MOS devices. IEEE Trans. Electron. Devices 1969, 16, 333–338. [Google Scholar] [CrossRef]
- Kawanago, T.; Ikoma, R.; Oba, T.; Takagi, H. Radical oxidation process for hybrid SAM/HfOx gate dielectrics in MoS2 FETs. In Proceedings of the 2017 47th European Solid-State Device Research Conference (ESSDERC), Leuven, Belgium, 11–14 September 2017; pp. 114–117. [Google Scholar]
- Lill, A.T.; Eftaiha, A.A.F.; Huang, J.; Yang, H.; Seifrid, M.; Wang, M.; Bazan, G.C.; Nguyen, T.Q. High-k fluoropolymer gate dielectric in electrically stable organic field-effect transistors. ACS Appl. Mater. Interfaces 2019, 11, 15821–15828. [Google Scholar] [CrossRef]
- Kwon, J.-H.; Choi, J.-H.; Bae, J.-H. Hysteresis reduction for organic thin film transistors with multiple stacked functional zirconia polymeric films. Crystals 2019, 9, 634. [Google Scholar] [CrossRef]
- Wang, H.; Yang, M.; Tong, Y.; Zhao, X.; Tang, Q.; Liu, Y. Manipulating the hysteresis via dielectric in organic field-effect transistors toward synaptic applications. Org. Electron. 2019, 73, 159–165. [Google Scholar] [CrossRef]
- Padma, N.; Sawant, S.N.; Sen, S. Study on post-deposition annealing influenced contribution of hole and electron trapping to threshold voltage stability in organic field effect transistors. Mater. Sci. Semicond. Process. 2015, 30, 18–24. [Google Scholar]
- Gomes, H.L.; Stallinga, P.; Dinelli, F.; Murgia, M.; Biscarini, F.; De Leeuw, D.M.; Muck, T.; Geurts, J.; Molenkamp, L.; Wagner, V. Bias-induced threshold voltages shifts in thin-film organic transistors. Appl. Phys. Lett. 2004, 84, 3184–3186. [Google Scholar] [CrossRef] [Green Version]
- Hong, S.; Yoo, H. Robust Molybdenum Diselenide Ambipolar Transistors with Fluoropolymer Interfacial Layer and Their Application to Complementary Inverter Circuits. J. Alloys Compd. 2021, 868, 159212. [Google Scholar] [CrossRef]
- Tang, W.; Zhao, J.; Huang, Y.; Ding, L.; Li, Q.; Li, J.; You, P.; Yan, F.; Guo, X. Bias stress stability improvement in solution-processed low-voltage organic field-effect transistors using relaxor ferroelectric polymer gate dielectric. IEEE Electron. Device Lett. 2017, 38, 748–751. [Google Scholar] [CrossRef]
- Park, S.; Kim, S.H.; Choi, H.H.; Kang, B.; Cho, K. Recent Advances in the Bias Stress Stability of Organic Transistors. Adv. Funct. Mater. 2020, 30, 1904590. [Google Scholar] [CrossRef]
- Jeong, J.W.; Hwang, H.S.; Choi, D.; Ma, B.C.; Jung, J.; Chang, M. Hybrid Polymer/Metal Oxide Thin Films for High Performance. Flex. Transistors Micromach. 2020, 11, 264. [Google Scholar] [CrossRef] [Green Version]
- Ulman, A. Self-assembled monolayers of alkyltrichiorosilanes: Building blocks for future organic materials. Adv. Mater. 1990, 2, 573–582. [Google Scholar] [CrossRef]
- Barriga, J.; Coto, B.; Fernandez, B. Molecular dynamics study of optimal packing structure of OTS self-assembled monolayers on SiO2 surfaces. Tribol. Int. 2007, 40, 960–966. [Google Scholar] [CrossRef]
- Tiao, H.-C.; Lee, Y.-J.; Liu, Y.-S.; Lee, S.-H.; Li, C.-H.; Kuo, M.-Y. Effect of hydroxyl density on condensation behaviors of self-assembled monolayers and performance of pentacene-base organic thin-film transistors. Org. Electron. 2012, 13, 1004–1011. [Google Scholar] [CrossRef]
- Ku, G.M.; Lee, E.; Kang, B.; Lee, J.H.; Cho, K.; Lee, W.H. Relationship between the dipole moment of self-assembled monolayers incorporated in graphene transistors and device electrical stabilities. RSC Adv. 2017, 7, 27100–27104. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Hasegawa, T.; Matsumoto, H.; Mori, T.; Michinobu, T. High-Performance n-Channel Organic Transistors Using High-Molecular-Weight Electron-Deficient Copolymers and Amine-Tailed Self-Assembled Monolayers. Adv. Mater. 2018, 30, 1707164. [Google Scholar] [CrossRef]
- Lei, Y.; Wu, B.; Chan, W.-K.E.; Zhu, F.; Ong, B.S. Engineering gate dielectric surface properties for enhanced polymer field-effect transistor performance. J. Mater. Chem. C 2015, 3, 12267–12272. [Google Scholar] [CrossRef]
- Kang, D.-H.; Jeon, M.H.; Jang, S.K.; Choi, W.-Y.; Kim, K.N.; Kim, J.; Lee, S.; Yeom, G.Y.; Park, J.-H. Self-Assembled Layer (SAL)-Based Doping on Black Phosphorus (BP) Transistor and Photodetector. ACS Photonics 2017, 4, 1822–1830. [Google Scholar] [CrossRef]
- Jang, S.; Son, D.; Hwang, S.; Kang, M.; Lee, S.-K.; Jeon, D.-Y.; Bae, S.; Lee, S.H.; Lee, D.S.; Kim, T.-W. Hybrid dielectrics composed of Al2O3 and phosphonic acid self-assembled monolayers for performance improvement in low voltage organic field effect transistors. Nano Converg. 2018, 5, 20. [Google Scholar] [CrossRef] [Green Version]
- Aghamohammadi, M.; Rödel, R.; Zschieschang, U.; Ocal, C.; Boschker, H.; Weitz, R.T.; Barrena, E.; Klauk, H. Threshold-Voltage Shifts in Organic Transistors Due to Self-Assembled Monolayers at the Dielectric: Evidence for Electronic Coupling and Dipolar Effects. ACS Appl. Mater. Interfaces 2015, 7, 22775–22785. [Google Scholar] [CrossRef]
- Cai, W.; Zhang, J.; Wilson, J.; Brownless, J.; Park, S.; Majewski, L.; Song, A. Significant Performance Improvement of Oxide Thin-Film Transistors by a Self-Assembled Monolayer Treatment. Adv. Electron. Mater. 2020, 6. [Google Scholar] [CrossRef] [Green Version]
- Kawanago, T.; Oda, S. Utilizing self-assembled-monolayer-based gate dielectrics to fabricate molybdenum disulfide field-effect transistors. Appl. Phys. Lett. 2016, 108. [Google Scholar] [CrossRef]
- Acton, O.; Ting, G.G.; Shamberger, P.J.; Ohuchi, F.S.; Ma, H.; Jen, A.K. Dielectric surface-controlled low-voltage organic transistors via n-alkyl phosphonic acid self-assembled monolayers on high-k metal oxide. ACS Appl. Mater. Interfaces 2010, 2, 511–520. [Google Scholar] [CrossRef]
- Kim, D.-K.; Lee, M.; Kim, B.; Choi, J.-H. Low-voltage, high-performance polymeric field-effect transistors based on self-assembled monolayer-passivated HfOx dielectrics: Correlation between trap density, carrier mobility, and operation voltage. Org. Electron. 2019, 74, 135–143. [Google Scholar] [CrossRef]
- Ting, G.G.; Acton, O.; Ma, H.; Ka, J.W.; Jen, A.K.-Y. Study on the Formation of Self-Assembled Monolayers on Sol—Gel Processed Hafnium Oxide as Dielectric Layers. Langmuir 2009, 25, 2140–2147. [Google Scholar] [CrossRef]
- Acton, O.; Osaka, I.; Ting, G.; Hutchins, D.; Ma, H.; McCullough, R.D.; Jen, A.K.Y. Phosphonic acid self-assembled monolayer and amorphous hafnium oxide hybrid dielectric for high performance polymer thin film transistors on plastic substrates. Appl. Phys. Lett. 2009, 95, 246. [Google Scholar] [CrossRef]
- Halik, M.; Klauk, H.; Zschieschang, U.; Schmid, G.; Dehm, C.; Schütz, M.; Maisch, S.; Effenberger, F.; Brunnbauer, M.; Stellacci, F. Low-voltage organic transistors with an amorphous molecular gate dielectric. Nature 2004, 431, 963–966. [Google Scholar] [CrossRef]
- Park, Y.D.; Kim, D.H.; Jang, Y.; Hwang, M.; Lim, J.A.; Cho, K. Low-voltage polymer thin-film transistors with a self-assembled monolayer as the gate dielectric. Appl. Phys. Lett. 2005, 87, 243509. [Google Scholar] [CrossRef]
- Kälblein, D.; Weitz, R.T.; Böttcher, H.J.; Ante, F.; Zschieschang, U.; Kern, K.; Klauk, H. Top-gate ZnO nanowire transistors and integrated circuits with ultrathin self-assembled monolayer gate dielectric. Nano Lett. 2011, 11, 5309–5315. [Google Scholar] [CrossRef] [PubMed]
- Cernetic, N.; Weidner, T.; Baio, J.E.; Lu, H.; Ma, H.; Jen, A.K.Y. Enhanced Performance of Self-Assembled Monolayer Field-Effect Transistors with Top-Contact Geometry through Molecular Tailoring, Heated Assembly, and Thermal Annealing. Adv. Funct. Mater. 2015, 25, 5376–5383. [Google Scholar] [CrossRef]
- Zhao, B.; Gothe, B.; Sarcletti, M.; Zhao, Y.; Rejek, T.; Liu, X.; Liu, X.; Park, H.; Strohriegl, P.; Halik, M. Wafer-Scale Organic Complementary Inverters Fabricated with Self-Assembled Monolayer Field-Effect Transistors. Adv. Electron. Mater. 2020, 6, 2000515. [Google Scholar] [CrossRef]
- Gholamrezaie, F.; Mathijssen, S.G.; Smits, E.C.; Geuns, T.C.; van Hal, P.A.; Ponomarenko, S.A.; Flesch, H.G.; Resel, R.; Cantatore, E.; Blom, P.W.; et al. Ordered semiconducting self-assembled monolayers on polymeric surfaces utilized in organic integrated circuits. Nano Lett. 2010, 10, 1998–2002. [Google Scholar] [CrossRef] [Green Version]
- Andringa, A.-M.; Spijkman, M.-J.; Smits, E.C.P.; Mathijssen, S.G.J.; Van Hal, P.A.; Setayesh, S.; Willard, N.P.; Borshchev, O.V.; Ponomarenko, S.A.; Blom, P.W.M.; et al. Gas sensing with self-assembled monolayer field-effect transistors. Org. Electron. 2010, 11, 895–898. [Google Scholar] [CrossRef] [Green Version]
- Hong, S.; Kim, K.L.; Cho, Y.; Cho, H.; Park, J.H.; Park, C.; Im, S. Complementary Type Ferroelectric Memory Transistor Circuits with P-and N-Channel MoTe2. Adv. Electron. Mater. 2020, 6, 2000479. [Google Scholar] [CrossRef]
- Xiang, D.; Liu, T.; Wang, J.; Wang, P.; Wang, L.; Zheng, Y.; Wang, Y.; Gao, J.; Ang, K.W.; Eda, G.; et al. Anomalous broadband spectrum photodetection in 2D rhenium disulfide transistor. Adv. Opt. Mater. 2019, 7, 1901115. [Google Scholar] [CrossRef]
- Shim, J.; Jang, S.W.; Lim, J.-H.; Kim, H.; Kang, D.-H.; Kim, K.-H.; Seo, S.; Heo, K.; Shin, C.; Yu, H.-Y.; et al. Polarity control in a single transition metal dichalcogenide (TMD) transistor for homogeneous complementary logic circuits. Nanoscale 2019, 11, 12871–12877. [Google Scholar] [CrossRef]
- Somvanshi, D.; Ber, E.; Bailey, C.S.; Pop, E.; Yalon, E. Improved Current Density and Contact Resistance in Bilayer MoSe2 Field Effect Transistors by AlO x Capping. ACS Appl. Mater. Interfaces 2020, 12, 36355–36361. [Google Scholar] [CrossRef]
- Oh, G.; Jeon, J.H.; Kim, Y.C.; Ahn, Y.H.; Park, B.H. Gate-tunable photodetector and ambipolar transistor implemented using a graphene/MoSe 2 barristor. NPG Asia Mater. 2021, 13, 1–9. [Google Scholar] [CrossRef]
- Ji, S.; Jang, J.; Hwang, J.C.; Lee, Y.; Lee, J.H.; Park, J.U. Amorphous oxide semiconductor transistors with air dielectrics for transparent and wearable pressure sensor arrays. Adv. Mater. Technol. 2020, 5, 1900928. [Google Scholar] [CrossRef]
- Jeon, S.-P.; Heo, J.S.; Kim, I.; Kim, Y.-H.; Park, S.K. Enhanced Interfacial Integrity of Amorphous Oxide Thin-Film Transistors by Elemental Diffusion of Ternary Oxide Semiconductors. ACS Appl. Mater. Interfaces 2020, 12. [Google Scholar] [CrossRef] [PubMed]
- Ding, S.-J.; Wu, X. Superior atomic layer deposition technology for amorphous oxide semiconductor thin-film transistor memory devices. Chem. Mater. 2020, 32, 1343–1357. [Google Scholar] [CrossRef]
- Navamathavan, R.; Choi, C.K.; Yang, E.-J.; Lim, J.-H.; Hwang, D.-K.; Park, S.-J. Fabrication and characterizations of ZnO thin film transistors prepared by using radio frequency magnetron sputtering. Solid State Electron. 2008, 52, 813–816. [Google Scholar] [CrossRef]
- Lee, H.-J.; Song, J.-H.; Yoon, Y.-S.; Kim, T.-S.; Kim, K.-J.; Choi, W.-K. Enhancement of CO sensitivity of indium oxide-based semiconductor gas sensor through ultra-thin cobalt adsorption. Sens. Actuators B Chem. 2001, 79, 200–205. [Google Scholar] [CrossRef]
- Lei, Y.; Deng, P.; Li, J.; Lin, M.; Zhu, F.; Ng, T.W.; Lee, C.S.; Ong, B.S. Solution-Processed Donor-Acceptor Polymer Nanowire Network Semiconductors For High-Performance Field-Effect Transistors. Sci. Rep. 2016, 6, 24476. [Google Scholar] [CrossRef]
- Takeda, Y.; Sekine, T.; Shiwaku, R.; Murase, T.; Matsui, H.; Kumaki, D.; Tokito, S. Printed Organic Complementary Inverter with Single SAM Process Using a p-type D-A Polymer Semiconductor. Appl. Sci. 2018, 8, 1331. [Google Scholar] [CrossRef] [Green Version]
- Yu, S.H.; Cho, J.; Sim, K.M.; Ha, J.U.; Chung, D.S. Morphology-Driven High-Performance Polymer Transistor-based Ammonia Gas Sensor. ACS Appl. Mater. Interfaces 2016, 8, 6570–6576. [Google Scholar] [CrossRef]
- Xu, M.; Zhang, X.; Qi, W.; Li, S.; Wang, W. High-performance polymer semiconductor-based ferroelectric transistor nonvolatile memory with a self-organized ferroelectric/dielectric gate insulator. Appl. Phys. Lett. 2021, 118. [Google Scholar] [CrossRef]
- Oh, J.Y.; Son, D.; Katsumata, T.; Lee, Y.; Kim, Y.; Lopez, J.; Wu, H.-C.; Kang, J.; Park, J.; Gu, X.; et al. Stretchable self-healable semiconducting polymer film for active-matrix strain-sensing array. Sci. Adv. 2019, 5, eaav3097. [Google Scholar] [CrossRef] [Green Version]
- Singh, A.K.; Chaudhary, V.; Singh, A.K.; Sinha, S. Tuning of electronic properties of chemical vapor deposition grown graphene via self-assembled monolayer doping. Mater. Today Proc. 2020, in press. [Google Scholar] [CrossRef]
- Kang, D.-H.; Kim, M.-S.; Shim, J.; Jeon, J.; Park, H.-Y.; Jung, W.-S.; Yu, H.-Y.; Pang, C.-H.; Lee, S.; Park, J.-H. High-performance transition metal dichalcogenide photodetectors enhanced by self-assembled monolayer doping. Adv. Funct. Mater. 2015, 25, 4219–4227. [Google Scholar] [CrossRef]
- Kang, D.-H.; Shim, J.; Jang, S.K.; Jeon, J.; Jeon, M.H.; Yeom, G.Y.; Jung, W.-S.; Jang, Y.H.; Lee, S.; Park, J.-H. Controllable nondegenerate p-type doping of tungsten diselenide by octadecyltrichlorosilane. ACS Nano 2015, 9, 1099–1107. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.H.; Kang, D.-H.; Park, J.-H. Rhenium diselenide (ReSe2) infrared photodetector enhanced by (3-aminopropyl) trimethoxysilane (APTMS) treatment. Org. Electron. 2018, 53, 14–19. [Google Scholar] [CrossRef]
- Xiao, P.; Lan, L.; Dong, T.; Lin, Z.; Sun, S.; Song, W.; Peng, J. InGaZnO Thin-Film Transistors Modified by Self-Assembled Monolayer With Different Alkyl Chain Length. IEEE Electron. Device Lett. 2015, 36, 687–689. [Google Scholar] [CrossRef]
- Zhong, W.; Li, G.; Lan, L.; Li, B.; Chen, R. InSnZnO Thin-Film Transistors With Vapor- Phase Self-Assembled Monolayer as Passivation Layer. IEEE Electron. Device Lett. 2018, 39, 1680–1683. [Google Scholar] [CrossRef]
- Zhong, W.; Yao, R.; Liu, Y.; Lan, L.; Chen, R. Effect of Self-Assembled Monolayers (SAMs) as Surface Passivation on the Flexible a-InSnZnO Thin-Film Transistors. IEEE Trans. Electron. Devices 2020, 67, 3157–3162. [Google Scholar] [CrossRef]
- Lee, S.-E.; Park, J.; Lee, J.; Lee, E.G.; Im, C.; Na, H.; Cho, N.-K.; Lim, K.-H.; Kim, Y.S. Surface-Functionalized Interfacial Self-Assembled Monolayers as Copper Electrode Diffusion Barriers for Oxide Semiconductor Thin-Film Transistor. ACS Appl. Electron. Mater. 2019, 1, 430–436. [Google Scholar] [CrossRef]
- Cai, W.; Wilson, J.; Zhang, J.; Brownless, J.; Zhang, X.; Majewski, L.A.; Song, A. Significant Performance Enhancement of Very Thin InGaZnO Thin-Film Transistors by a Self-Assembled Monolayer Treatment. ACS Appl. Electron. Mater. 2020, 2, 301–308. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.; Cho, S.Y.; Shin, Y.S.; Seok, Y.C.; Kim, H.W.; Yoon, J.Y.; Choi, R.; Lee, J.H. Improving Electrical Stability of a-InGaZnO Thin-Film Transistors with Thermally Deposited Self-Assembled Monolayers. Electron. Mater. Lett. 2020, 16, 451–456. [Google Scholar] [CrossRef]
- Wan, L.; He, F.; Qin, Y.; Lin, Z.; Su, J.; Chang, J.; Hao, Y. Effects of interfacial passivation on the electrical performance, stability, and contact properties of solution process based ZnO thin film transistors. Materials 2018, 11, 1761. [Google Scholar] [CrossRef] [Green Version]
- Baraket, A.; Lee, M.; Zine, N.; Sigaud, M.; Bausells, J.; Errachid, A. A fully integrated electrochemical biosensor platform fabrication process for cytokines detection. Biosens. Bioelectron. 2017, 93, 170–175. [Google Scholar] [CrossRef]
- Kongsuphol, P.; Ng, H.H.; Pursey, J.P.; Arya, S.K.; Wong, C.C.; Stulz, E.; Park, M.K. EIS-based biosensor for ultra-sensitive detection of TNF-alpha from non-diluted human serum. Biosens. Bioelectron. 2014, 61, 274–279. [Google Scholar] [CrossRef] [PubMed]
- Lien, T.T.N.; Dai Lam, T.; An, V.T.H.; Hoang, T.V.; Quang, D.T.; Khieu, D.Q.; Tsukahara, T.; Lee, Y.H.; Kim, J.S. Multi-wall carbon nanotubes (MWCNTs)-doped polypyrrole DNA biosensor for label-free detection of genetically modified organisms by QCM and EIS. Talanta 2010, 80, 1164–1169. [Google Scholar] [CrossRef] [PubMed]
- Gao, A.; Lu, N.; Wang, Y.; Li, T. Robust ultrasensitive tunneling-FET biosensor for point-of-care diagnostics. Sci. Rep. 2016, 6, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Ahn, J.H.; Choi, S.J.; Han, J.W.; Park, T.J.; Lee, S.Y.; Choi, Y.K. Double-gate nanowire field effect transistor for a biosensor. Nano Lett. 2010, 10, 2934–2938. [Google Scholar] [CrossRef]
- Kim, K.S.; Lee, H.S.; Yang, J.A.; Jo, M.H.; Hahn, S.K. The fabrication, characterization and application of aptamer-functionalized Si-nanowire FET biosensors. Nanotechnology 2009, 20, 235501. [Google Scholar] [CrossRef]
- Liu, X.; Lin, P.; Yan, X.; Kang, Z.; Zhao, Y.; Lei, Y.; Li, C.; Du, H.; Zhang, Y. Enzyme-coated single ZnO nanowire FET biosensor for detection of uric acid. Sens. Actuators B Chem. 2013, 176, 22–27. [Google Scholar] [CrossRef]
- Li, J.; Zhang, Y.; To, S.; You, L.; Sun, Y. Effect of nanowire number, diameter, and doping density on nano-FET biosensor sensitivity. ACS Nano 2011, 5, 6661–6668. [Google Scholar] [CrossRef] [PubMed]
- Povedano, E.; Vargas, E.; Montiel, V.R.-V.; Torrente-Rodríguez, R.M.; Pedrero, M.; Barderas, R.; San Segundo-Acosta, P.; Peláez-García, A.; Mendiola, M.; Hardisson, D.; et al. Electrochemical affinity biosensors for fast detection of gene-specific methylations with no need for bisulfite and amplification treatments. Sci. Rep. 2018, 8, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Samson, R.; Navale, G.R.; Dharne, M.S. Biosensors: Frontiers in rapid detection of COVID-19. 3 Biotech 2020, 10, 1–9. [Google Scholar] [CrossRef]
- Jasim, I.; Shen, Z.; Mlaji, Z.; Yuksek, N.S.; Abdullah, A.; Liu, J.; Dastider, S.G.; El-Dweik, M.; Zhang, S.; Almasri, M. An impedance biosensor for simultaneous detection of low concentration of Salmonella serogroups in poultry and fresh produce samples. Biosens. Bioelectron. 2019, 126, 292–300. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.-S.; Park, J.-E.; Shin, J.-K.; Kim, P.K.; Lim, G.; Shoji, S. An extended gate FET-based biosensor integrated with a Si microfluidic channel for detection of protein complexes. Sens. Actuators B Chem. 2006, 117, 488–494. [Google Scholar] [CrossRef]
- Lee, H.H.; Bae, M.; Jo, S.-H.; Shin, J.-K.; Son, D.H.; Won, C.-H.; Jeong, H.M.; Lee, J.H.; Kang, S.W. AlGaN/GaN high electron mobility transistor-based biosensor for the detection of C-reactive protein. Sensors 2015, 15, 18416–18426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shin, S.R.; Kilic, T.; Zhang, Y.S.; Avci, H.; Hu, N.; Kim, D.; Branco, C.; Aleman, J.; Massa, S.; Silvestri, A.; et al. Label-free and regenerative electrochemical microfluidic biosensors for continual monitoring of cell Secretomes. Adv. Sci. 2017, 4, 1600522. [Google Scholar] [CrossRef] [PubMed]
- Kim, W.; Lee, J.S. Freestanding and Flexible β-MnO2@ Carbon Sheet for Application as a Highly Sensitive Dimethyl Methylphosphonate Sensor. ACS Omega 2021, 6, 4988–4994. [Google Scholar] [CrossRef] [PubMed]
- Tung, T.T.; Chen, S.J.; Fumeaux, C.; Kim, T.Y.; Losic, D. N-doped reduced graphene oxide-PEDOT nanocomposites for implementation of a flexible wideband antenna for wearable wireless communication applications. Nanotechnology 2021, 32, 245711. [Google Scholar] [CrossRef] [PubMed]
- Jee, S.H.; Kim, S.H.; Ko, J.H.; Yoon, Y.S. Study on work function change of ITO modified by using a self-assembled monolayer for organic based devices. J. Korean Phys. Soc. 2006, 49, 2034–2039. [Google Scholar]
- Jee, S.H.; Kim, S.H.; Park, H.; Kim, D.-J.; Yoon, Y.S. Comparison of Surface Modifications by Wet and Dry Methods on Indium Tin Oxide Using Self-Assembled Monolayers. Jpn. J. Appl. Phys. 2010, 49, 025701. [Google Scholar] [CrossRef]
Name | Type | Head Group | End Group | Method | Bottom Layer | Operating Voltage | Ref. |
---|---|---|---|---|---|---|---|
NTMS | Silane | Trimethoxysilane (-Si(OCH3)3) | Amine (-NH2) | Spin-coating | SiO2 (285 nm) | 80 V | [38] |
APTES | Silane | Triethoxysilane (-Si(OC2H5)3) | Amine (-NH2) | Dipping | SiO2 (285 nm) | −40 V | [40] |
OTS | Silane | Trichlorosilane (-SiCl3) | Methyl (-CH3) | Dipping | SiO2 (285 nm) | −40 V | [40] |
PTS | Silane | Trichlorosilane (-SiCl3) | Phenyl (-C6H5) | N/A | SiO2 (N/A) | −60 V | [39] |
MTS | Silane | Trichlorosilane (-SiCl3) | Methyl (-CH3) | N/A | SiO2 (N/A) | −60 V | [39] |
ODTS | Silane | Trichlorosilane (-SiCl3) | Methyl (-CH3) | Dipping | SiO2 (300 nm) | −80 V | [37] |
FDTS | Silane | Triethoxysilane (-Si(OC2H5)3) | Trifluoromethyl (-CF3) | Dipping | SiO2 (300 nm) | −80 V | [37] |
HPA | Phosphonic acid | Phosphonic (-PO(OH)2) | Methyl (-CH3) | Spin-coating | Al2O3 (N/A) | −4 V | [41] |
DDPA | Phosphonic acid | Phosphonic (-PO(OH)2) | Methyl (-CH3) | Spin-coating | Al2O3 (N/A) | −4 V | [41] |
PHDA | Phosphonic acid | Phosphonic (-PO(OH)2) | Carboxyl (-COOH) | Spin-coating | Al2O3 (N/A) | −4 V | [41] |
MDPA | Phosphonic acid | Phosphonic (-PO(OH)2) | Thiol (-SH) | Spin-coating | Al2O3 (N/A) | −4 V | [41] |
PFPA | Phosphonic acid | Phosphonic (-PO(OH)2) | Pentafluorophenoxy | Spin-coating | Al2O3 (N/A) | −4 V | [41] |
HUPA | Phosphonic acid | Phosphonic (-PO(OH)2) | Hydroxyl (-OH) | Spin-coating | Al2O3 (N/A) | −4 V | [41] |
FDPA | Phosphonic acid | Phosphonic (-PO(OH)2) | Trifluoromethyl (-CF3) | Dipping | Al2O3 (5 nm) | −2.5 V | [42] |
ODPA | Phosphonic acid | Phosphonic (-PO(OH)2) | Methyl (-CH3) | Dipping | Al2O3 (5 nm) | −2.5 V | [42] |
ODPA | Phosphonic acid | Phosphonic (-PO(OH)2) | Methyl (-CH3) | Dipping | X | 1.5 V | [51] |
PhO-OTS | Silane | Trichlorosilane (-SiCl3) | Phenyl (-C6H5) | Vapor-phase deposition | X | −2.1 V | [49] |
DCTS | Silane | Trichlorosilane (-SiCl3) | Methyl (-CH3) | Dipping | X | -2 V | [50] |
Name | Type | Head Group | End Group | Method | Bottom Layer | Doping Type | Ref. |
---|---|---|---|---|---|---|---|
ODTS | Silane | Trimethoxysilane (-Si(OCH3)3) | Methyl (-CH3) | Spin-coating | Graphene | P-type | [71] |
ODTS | Silane | Trichlorosilane (-SiCl3) | Methyl (-CH3) | Dipping | WSe2 | P-type | [72,73] |
ODTS | Silane | Trichlorosilane (-SiCl3) | Methyl (-CH3) | Spin-coating | IGZO | N-type | [79] |
OTES | Silane | Triethoxysilane (-Si(OC2H5)3) | Methyl (-CH3) | Vapor-phase deposition | ITZO | N-type | [76,77] |
APTES | Silane | Triethoxysilane (-Si(OC2H5)3) | Amine (-NH2)- | Dipping | MoS2 | N-type | [72] |
APTMS | Silane | Trimethoxysilane (-Si(OCH3)3) | Amine (-NH2)- | Dipping | RSe2 | N-type | [74] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.; Yoo, H. Self-Assembled Monolayers: Versatile Uses in Electronic Devices from Gate Dielectrics, Dopants, and Biosensing Linkers. Micromachines 2021, 12, 565. https://doi.org/10.3390/mi12050565
Kim S, Yoo H. Self-Assembled Monolayers: Versatile Uses in Electronic Devices from Gate Dielectrics, Dopants, and Biosensing Linkers. Micromachines. 2021; 12(5):565. https://doi.org/10.3390/mi12050565
Chicago/Turabian StyleKim, Seongjae, and Hocheon Yoo. 2021. "Self-Assembled Monolayers: Versatile Uses in Electronic Devices from Gate Dielectrics, Dopants, and Biosensing Linkers" Micromachines 12, no. 5: 565. https://doi.org/10.3390/mi12050565
APA StyleKim, S., & Yoo, H. (2021). Self-Assembled Monolayers: Versatile Uses in Electronic Devices from Gate Dielectrics, Dopants, and Biosensing Linkers. Micromachines, 12(5), 565. https://doi.org/10.3390/mi12050565