Gate-Stack Engineering to Improve the Performance of 28 nm Low-Power High-K/Metal-Gate Device
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Koyama, M.; Satake, H.; Koike, M.; Ino, T.; Suzuki, M.; Iijima, R.; Kamimuta, Y.; Takashima, A.; Hongo, C.; Nishiyama, A. Degradation mechanism of HfSiON gate insulator and effect of nitrogen composition on the statistical distribution of the breakdown. In Proceedings of the International Electron Devices Meeting (IEEE) 2003, Washington, DC, USA, 8–10 December 2003. [Google Scholar]
- Koyama, M.; Kaneko, A.; Ino, T.; Koike, M.; Kamata, Y.; Iijima, R.; Kamimuta, Y.; Takashima, A.; Suzuki, M.; Hongo, C.; et al. Effects of nitrogen in HfSiON gate dielectric on the electrical and thermal characteristics. In Proceedings of the International Electron Devices Meeting (IEEE) 2002, San Francisco, CA, USA, 8–11 December 2002; pp. 849–852. [Google Scholar]
- Sayan, S.; Nguyen, N.V.; Ehrstein, J.; Chambers, J.J.; Visokay, M.R.; Quevedo-Lopez, M.A.; Colombo, L.; Yoder, D.; Levin, I.; Fischer, D.A.; et al. Effect of nitrogen on band alignment in HfSiON gate dielectrics. Appl. Phys. Lett. 2005, 87, 212905. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.M.; Wu, X.M.; Yu, T. Improvement of thermal stability and electrical performance in HfSiO gate dielectrics by nitrogen incorporation. Phys. E Low Dimens. Syst. Nanostruct. 2011, 44, 361–366. [Google Scholar] [CrossRef]
- Sato, M.; Aoyama, T.; Sekine, K.; Yamaguchi, T.; Hirano, I.; Eguchi, K.; Tsunashima, Y. Effects of nitrogen concentration and post-treatment on reliability of HfSiON gate dielectrics in inversion states. Jpn. J. Appl. Phys. 2006, 45, 2949. [Google Scholar] [CrossRef] [Green Version]
- Naito, T.; Tamura, C.; Inumiya, S.; Hasunuma, R.; Yamabe, K. Homogeneity improvements in the dielectric characteristics of HfSiON films by nitridation. Jpn. J. Appl. Phys. 2007, 46, 3197. [Google Scholar] [CrossRef]
- Garros, X.; Casse, M.; Reimbold, G.; Martin, F.; Leroux, C.; Fanton, A.; Renault, O.; Cosnier, V.; Boulanger, F. Guidelines to improve mobility performances and BTI reliability of advanced High-K/Metal gate stacks. In Proceedings of the 2008 Symposium on VLSI Technology (IEEE), Honolulu, HI, USA, 17–19 June 2008; pp. 68–69. [Google Scholar]
- Kim, H.; Lee, H.-B.-R.; Maeng, W.-J. Applications of atomic layer deposition to nanofabrication and emerging nanodevices. Thin Solid Film 2009, 517, 2563–2580. [Google Scholar] [CrossRef]
- Morita, Y.; Hirano, A.; Migita, S.; Ota, H.; Nabatame, T.; Toriumi, A. Impact of surface hydrophilicization prior to atomic layer deposition for HfO2/Si direct-contact gate stacks. Appl. Phys. Express 2008, 2, 011201. [Google Scholar] [CrossRef]
- Kirsch, P.D.; Quevedo-Lopez, M.; Krishnan, S.; Song, S.-C.; Choi, R.; Majhi, P.; Senzaki, Y.; Bersuker, G.; Lee, B.H. Atomic layer deposited HfO2 and HfSiO to enable CMOS gate dielectric scaling, mobility, and VTH stability. ECS Trans. 2006, 1, 15. [Google Scholar] [CrossRef]
- Roy, K.; Mukhopadhyay, S.; Mahmoodi-Meimand, H. Leakage current mechanisms and leakage reduction techniques in deep-submicrometer CMOS circuits. Proc. IEEE 2003, 91, 305–327. [Google Scholar] [CrossRef] [Green Version]
- Bousari, N.B.; Anvarifard, M.K.; Haji-Nasiri, S. Improving the electrical characteristics of nanoscale triple-gate junctionless FinFET using gate oxide engineering. AEU Int. J. Electron. Commun. 2019, 108, 226–234. [Google Scholar] [CrossRef]
- Bae, S.H.; Song, S.C.; Choi, K.; Bersuker, G.; Brown, G.A.; Kwong, D.L.; Lee, B.H. Thickness optimization of the TiN metal gate with polysilicon-capping layer on Hf-based high-k dielectric. Microelectron. Eng. 2006, 83, 460–462. [Google Scholar] [CrossRef]
- Chen, C.L.; King, Y.C. TiN metal gate electrode thickness effect on BTI and dielectric breakdown in HfSiON-based MOSFETs. IEEE Trans. Electron Devices 2011, 58, 3736–3742. [Google Scholar] [CrossRef]
- Kadoshima, M.; Matsuki, T.; Miyazaki, S.; Shiraishi, K.; Chikyo, T.; Yamada, K.; Aoyama, T.; Nara, Y.; Ohji, Y. Effective-work-function control by varying the TiN thickness in Poly-Si/TiN gate electrodes for scaled high-k CMOSFETs. IEEE Electron Device Lett. 2009, 30, 466–468. [Google Scholar] [CrossRef]
- Lee, S.H.; Choi, R.; Choi, C. Effects of composition and thickness of TiN metal gate on the equivalent oxide thickness and flat-band voltage in metal oxide semiconductor devices. Microelectron. Eng. 2013, 109, 160–162. [Google Scholar] [CrossRef]
- Rotondaro, A.; Visokay, M.; Chambers, J.; Shanware, A.; Khamankar, R.; Bu, H.; Laaksonen, R.; Tsung, L.; Douglas, M.; Kuan, R.; et al. Advanced CMOS transistors with a novel HfSiON gate dielectric. In Proceedings of the 2002 Symposium on VLSI Technology. Digest of Technical Papers (IEEE) (Cat. No. 01CH37303), Honolulu, HI, USA, 11–13 June 2002; pp. 148–149. [Google Scholar]
- Khan, Z.N.; Ahmed, S.; Ali, M. Effect of thermal budget on the electrical characterization of atomic layer deposited HfSiO/TiN gate stack MOSCAP structure. PLoS ONE 2016, 11, e0161736. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.T.; Nam, J.; Jin, M.; Bae, K.; Park, J.; Hwang, L.; Kim, J.; Kim, H.; Park, J. Frequency dependent TDDB behaviors and its reliability qualification in 32nm high-k/metal gate CMOSFETs. In Proceedings of the 2011 International Reliability Physics Symposium, Monterey, CA, USA, 10–14 April 2011; pp. 2A. 3.1–2A. 3.5. [Google Scholar]
- Nigam, T.; Parameshwaran, B.; Krause, G. Accurate product lifetime predictions based on device-level measurements. In Proceedings of the 2009 IEEE International Reliability Physics Symposium, Montreal, QC, Canada, 26–30 April 2009; pp. 634–639. [Google Scholar]
- Li, X.; Qin, J.; Bernstein, J.B. Compact modeling of MOSFET wearout mechanisms for circuit-reliability simulation. IEEE Trans. Device Mater. Reliab. 2008, 8, 98–121. [Google Scholar] [CrossRef]
- Park, M.-C.; Yang, G.-Y.; Yang, J.-S.; Lee, K.-H.; Park, Y.-K. New perspective on lifetime prediction approach for BTI and HCI stressed device and its impact on circuit lifetime. In Proceedings of the 2014 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), Yokohama, Japan, 9–11 September 2014; pp. 337–340. [Google Scholar]
Parameters | NFETs | PFETs |
---|---|---|
Gate length | 28 nm | 28 nm |
Gate width (normalized) | 1x | 1.4x |
Gate length(large-scale) | ≥1 um | ≥1 um |
Gate width (large-scale) | ≥1 um | ≥1 um |
Tox | ≤2 nm | ≤2 nm |
Device Parameters | NFETs | PFETs |
---|---|---|
Normalized Ion | 0.824 | 1.16 |
Normalized Ioff | 0.145 | 1.18 |
Normalized Ion/Ioff | 5.68 | 0.98 |
Test Type | Criteria |
---|---|
HCI | Δids = 10%, 125 °C, AC 10 years |
BTI | 125 °C, AC 10 years |
TDDB | 125 °C, AC 10 years |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, J.; Jang, W.; Shin, C. Gate-Stack Engineering to Improve the Performance of 28 nm Low-Power High-K/Metal-Gate Device. Micromachines 2021, 12, 886. https://doi.org/10.3390/mi12080886
Park J, Jang W, Shin C. Gate-Stack Engineering to Improve the Performance of 28 nm Low-Power High-K/Metal-Gate Device. Micromachines. 2021; 12(8):886. https://doi.org/10.3390/mi12080886
Chicago/Turabian StylePark, Jeewon, Wansu Jang, and Changhwan Shin. 2021. "Gate-Stack Engineering to Improve the Performance of 28 nm Low-Power High-K/Metal-Gate Device" Micromachines 12, no. 8: 886. https://doi.org/10.3390/mi12080886
APA StylePark, J., Jang, W., & Shin, C. (2021). Gate-Stack Engineering to Improve the Performance of 28 nm Low-Power High-K/Metal-Gate Device. Micromachines, 12(8), 886. https://doi.org/10.3390/mi12080886