Using Chiplet Encapsulation Technology to Achieve Processing-in-Memory Functions
Abstract
:1. Introduction
2. Present Situation of Processing-in-Memory Technology
3. Chiplet-Based Processing-in-Memory Architecture
3.1. Chiplet on 2.5D Package
3.2. Chiplet on 3D Package
3.3. Chiplet on Fan-Out Packaging
3.4. Summary
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, J.; Wang, X.; Eckert, C.; Subramaniyan, A.; Das, R.; Blaauw, D.; Sylvester, D. A 28-nm Compute SRAM With Bit-Serial Logic/Arithmetic Operations for Programmable In-Memory Vector Computing. IEEE J. Solid-State Circuits 2020, 55, 76–86. [Google Scholar] [CrossRef]
- Farmahini-Farahani, A.; Ahn, J.H.; Morrow, K.; Kim, N.S. NDA: Near-DRAM acceleration architecture leveraging commodity DRAM devices and standard memory modules. In Proceedings of the 2015 IEEE 21st International Symposium on High Performance Computer Architecture (HPCA), Burlingame, CA, USA, 7–11 February 2015; pp. 283–295. [Google Scholar]
- Tian, W.; Li, Z.; Cheng, C.; Li, W.; Chen, Z.; Xin, F.J.M. Hydrogen Storage Performance of γ-Graphdiyne Doped Li Based on First Principles for Micro/Nano. Micromachines 2022, 13, 547. [Google Scholar] [CrossRef] [PubMed]
- Ahn, J.; Hong, S.; Yoo, S.; Mutlu, O.; Choi, K. A scalable processing-in-memory accelerator for parallel graph processing. In Proceedings of the 42nd Annual International Symposium on Computer Architecture, Portland, OR, USA, 13–17 June 2015; pp. 105–117. [Google Scholar]
- Zhang, D.; Jayasena, N.; Lyashevsky, A.; Greathouse, J.L.; Xu, L.; Ignatowski, M. TOP-PIM: Throughput-oriented programmable processing in memory. In Proceedings of the 23rd International Symposium on High-Performance Parallel and Distributed Computing, Vancouver, BC, Canada, 23–27 June 2014; pp. 85–98. [Google Scholar]
- Ahn, J.; Yoo, S.; Mutlu, O.; Choi, K. PIM-enabled instructions: A low-overhead, locality-aware processing-in-memory architecture. In Proceedings of the 2015 ACM/IEEE 42nd Annual International Symposium on Computer Architecture (ISCA), Portland, OR, USA, 13–17 June 2015; pp. 336–348. [Google Scholar]
- Song, L.; Qian, X.; Li, H.; Chen, Y. PipeLayer: A Pipelined ReRAM-Based Accelerator for Deep Learning. In Proceedings of the 2017 IEEE International Symposium on High Performance Computer Architecture (HPCA), Austin, TX, USA, 4–8 February 2017; pp. 541–552. [Google Scholar]
- Chi, P.; Li, S.; Xu, C.; Zhang, T.; Zhao, J.; Liu, Y.; Wang, Y.; Xie, Y. PRIME: A novel processing-in-memory architecture for neural network computation in ReRAM-based main memory. ACM Sigarch Comput. Archit. News 2016, 44, 27–39. [Google Scholar] [CrossRef]
- Shi, J.; Zhao, Y.; He, J.; Li, T.; Zhu, F.; Tian, W.; Liu, X. Deferred Polarization Saturation Boosting Superior Energy-Storage Efficiency and Density Simultaneously under Moderate Electric Field in Relaxor Ferroelectrics. ACS Appl. Energy Mater. 2022, 5, 3436–3446. [Google Scholar] [CrossRef]
- Kautz, W.H. Cellular Logic-in-Memory Arrays. IEEE Trans. Comput. 1969, C–18, 719–727. [Google Scholar] [CrossRef]
- Stone, H.S. A Logic-in-Memory Computer. IEEE Trans. Comput. 1970, C–19, 73–78. [Google Scholar] [CrossRef]
- Evers, M.; Barnes, L.; Clark, M. Next Generation “Zen 3” Core. In Proceedings of the 2021 IEEE Hot Chips 33 Symposium (HCS), Palo Alto, CA, USA, 22–24 August 2021; pp. 1–32. [Google Scholar]
- Nai, L.; Hadidi, R.; Sim, J.; Kim, H.; Kumar, P.; Kim, H. GraphPIM: Enabling Instruction-Level PIM Offloading in Graph Computing Frameworks. In Proceedings of the 2017 IEEE International Symposium on High Performance Computer Architecture (HPCA), Austin, TX, USA, 4–8 February 2017; pp. 457–468. [Google Scholar]
- Gupta, S.; Imani, M.; Kaur, H.; Rosing, T.S. NNPIM: A Processing In-Memory Architecture for Neural Network Acceleration. IEEE Trans. Comput. 2019, 68, 1325–1337. [Google Scholar] [CrossRef]
- Angizi, S.; He, Z.; Rakin, A.S.; Fan, D. CMP-PIM: An energy-efficient comparator-based processing-in-memory neural network accelerator. In Proceedings of the 55th Annual Design Automation Conference, San Francisco, CA, USA, 24–29 June 2018; p. 105. [Google Scholar]
- Khwa, W.S.; Chen, J.J.; Li, J.F.; Si, X.; Yang, E.Y.; Sun, X.; Liu, R.; Chen, P.Y.; Li, Q.; Yu, S.; et al. A 65nm 4Kb algorithm-dependent computing-in-memory SRAM unit-macro with 2. 3ns and 55.8TOPS/W fully parallel product-sum operation for binary DNN edge processors. In Proceedings of the 2018 IEEE International Solid—State Circuits Conference—(ISSCC), San Francisco, CA, USA, 11–15 February 2018; pp. 496–498. [Google Scholar]
- Jeloka, S.; Akesh, N.B.; Sylvester, D.; Blaauw, D. A 28 nm Configurable Memory (TCAM/BCAM/SRAM) Using Push-Rule 6T Bit Cell Enabling Logic-in-Memory. IEEE J. Solid-State Circuits 2016, 51, 1009–1021. [Google Scholar] [CrossRef]
- Kim, J.H.; Lee, J.; Lee, J.; Yoo, H.J.; Kim, J.Y. Z-PIM: An Energy-Efficient Sparsity Aware Processing-In-Memory Architecture with Fully-Variable Weight Precision. In Proceedings of the 2020 IEEE Symposium on VLSI Circuits, Honolulu, HI, USA, 16–19 June 2020; pp. 1–2. [Google Scholar]
- Seshadri, V.; Lee, D.; Mullins, T.; Hassan, H.; Boroumand, A.; Kim, J.; Kozuch, M.A.; Mutlu, O.; Gibbons, P.B.; Mowry, T.C. Ambit: In-Memory Accelerator for Bulk Bitwise Operations Using Commodity DRAM Technology. In Proceedings of the 2017 50th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), Boston, MA, USA, 14–17 October 2017; pp. 273–287. [Google Scholar]
- Li, S.; Niu, D.; Malladi, K.T.; Zheng, H.; Brennan, B.; Xie, Y. DRISA: A DRAM-based Reconfigurable In-Situ Accelerator. In Proceedings of the 2017 50th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), Boston, MA, USA, 14–17 October 2017; pp. 288–301. [Google Scholar]
- Angizi, S.; Fan, D. ReDRAM: A Reconfigurable Processing-in-DRAM Platform for Accelerating Bulk Bit-Wise Operations. In Proceedings of the 2019 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), Westminster, CO, USA, 4–7 November 2019; pp. 1–8. [Google Scholar]
- Su, F.; Chen, W.H.; Xia, L.; Lo, C.P.; Tang, T.; Wang, Z.; Hsu, K.H.; Cheng, M.; Li, J.Y.; Xie, Y.; et al. A 462GOPs/J RRAM-based nonvolatile intelligent processor for energy harvesting IoE system featuring nonvolatile logics and processing-in-memory. In Proceedings of the 2017 Symposium on VLSI Technology, Kyoto, Japan, 5–8 June 2017; pp. T260–T261. [Google Scholar]
- Angizi, S.; Sun, J.; Zhang, W.; Fan, D. AlignS: A Processing-In-Memory Accelerator for DNA Short Read Alignment Leveraging SOT-MRAM. In Proceedings of the 2019 56th ACM/IEEE Design Automation Conference (DAC), Las Vegas, NV, USA, 2–6 June 2019; pp. 1–6. [Google Scholar]
- Dai, G.; Huang, T.; Chi, Y.; Zhao, J.; Sun, G.; Liu, Y.; Wang, Y.; Xie, Y.; Yang, H. GraphH: A Processing-in-Memory Architecture for Large-Scale Graph Processing. IEEE Trans. Comput. -Aided Des. Integr. Circuits Syst. 2019, 38, 640–653. [Google Scholar] [CrossRef]
- First Zen Architecture Based Commercial Processor. Available online: www.rsisinternational.org/conference/4ICMRP2017/papers/105–108.pdf (accessed on 26 June 2022).
- Mattioli, M. Rome to Milan, AMD Continues Its Tour of Italy. IEEE Micro 2021, 41, 78–83. [Google Scholar] [CrossRef]
- Nurvitadhi, E.; Kwon, D.; Jafari, A.; Boutros, A.; Sim, J.; Tomson, P.; Sumbul, H.; Chen, G.; Knag, P.; Kumar, R.; et al. Why Compete When You Can Work Together: FPGA-ASIC Integration for Persistent RNNs. In Proceedings of the 2019 IEEE 27th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM), San Diego, CA, USA, 28 April–1 May 2019; pp. 199–207. [Google Scholar]
- Vijayaraghavan, T.; Eckert, Y.; Loh, G.H.; Schulte, M.J.; Ignatowski, M.; Beckmann, B.M.; Brantley, W.C.; Greathouse, J.L.; Huang, W.; Karunanithi, A.; et al. Design and Analysis of an APU for Exascale Computing. In Proceedings of the 2017 IEEE International Symposium on High Performance Computer Architecture (HPCA), Austin, TX, USA, 4–8 February 2017; pp. 85–96. [Google Scholar]
- Arunkumar, A.; Bolotin, E.; Cho, B.; Milic, U.; Ebrahimi, E.; Villa, O.; Jaleel, A.; Wu, C.-J.; Nellans, D. MCM-GPU: Multi-Chip-Module GPUs for Continued Performance Scalability. ACM SIGARCH Comput. Archit. News 2017, 45, 320–332. [Google Scholar] [CrossRef]
- Shao, Y.S.; Clemons, J.; Venkatesan, R.; Zimmer, B.; Fojtik, M.; Jiang, N.; Keller, B.; Klinefelter, A.; Pinckney, N.; Raina, P.; et al. Simba: Scaling Deep-Learning Inference with Multi-Chip-Module-Based Architecture. In Proceedings of the 52nd Annual IEEE/ACM International Symposium on Microarchitecture, Columbus, OH, USA, 12–16 October 2019; pp. 14–27. [Google Scholar]
- Hou, S.Y.; Chen, W.C.; Hu, C.; Chiu, C.; Ting, K.C.; Lin, T.S.; Wei, W.H.; Chiou, W.C.; Lin, V.J.C.; Chang, V.C.Y.; et al. Wafer-Level Integration of an Advanced Logic-Memory System Through the Second-Generation CoWoS Technology. IEEE Trans. Electron Devices 2017, 64, 4071–4077. [Google Scholar] [CrossRef]
- Liao, W.S.; Chen, H.N.; Yen, K.K.; Yeh, E.H.; Kuo, F.W.; Yeh, T.J.; Kuo, F.; Jou, C.P.; Liu, S.; Hsueh, F.L.; et al. 3D IC heterogeneous integration of GPS RF receiver, baseband, and DRAM on CoWoS with system BIST solution. In Proceedings of the 2013 Symposium on VLSI Circuits, Kyoto, Japan, 12–14 June 2013; pp. C18–C19. [Google Scholar]
- Yu, D. TSMC Packaging Technologies for Chiplets and 3D. In Proceedings of the 2021 IEEE Hot Chips 33 Symposium (HCS), Palo Alto, CA, USA, 22–24 August 2021; pp. 47–56. [Google Scholar]
- Foley, D.; Danskin, J. Ultra-Performance Pascal GPU and NVLink Interconnect. IEEE Micro 2017, 37, 7–17. [Google Scholar] [CrossRef]
- Virtex UltraScale+ HBM FPGA. Available online: https://www.xilinx.com/products/silicon-devices/fpga/virtex-ultrascale-plus-hbm.html (accessed on 26 June 2022).
- Huang, P.K.; Lu, C.Y.; Wei, W.H.; Chiu, C.; Ting, K.C.; Hu, C.; Tsai, C.H.; Hou, S.Y.; Chiou, W.C.; Wang, C.T.; et al. Wafer Level System Integration of the Fifth Generation CoWoS®-S with High Performance Si Interposer at 2500 mm2. In Proceedings of the 2021 IEEE 71st Electronic Components and Technology Conference (ECTC), San Diego, CA, USA, 1 June–4 July 2021; pp. 101–104. [Google Scholar]
- Mahajan, R.; Sane, S. Microelectronic Package Containing Silicon Patches for High Density Interconnects, and Method of Manufacturing Same. U.S. Patent No. 8, 064, 224, 22 November 2011. [Google Scholar]
- Braunisch, H.; Aleksov, A.; Lotz, S.; Swan, J. High-speed performance of Silicon Bridge die-to-die interconnects. In Proceedings of the 2011 IEEE 20th Conference on Electrical Performance of Electronic Packaging and Systems, San Jose, CA, USA, 23–26 October 2011; pp. 95–98. [Google Scholar]
- Mahajan, R.; Qian, Z.; Viswanath, R.S.; Srinivasan, S.; Aygün, K.; Jen, W.; Sharan, S.; Dhall, A. Embedded Multidie Interconnect Bridge—A Localized, High-Density Multichip Packaging Interconnect. IEEE Trans. Compon. Packag. Manuf. Technol. 2019, 9, 1952–1962. [Google Scholar] [CrossRef]
- Ganusov, I.K.; Iyer, M.A.; Cheng, N.; Meisler, A. Agilex™ generation of intel® fpgas. In Proceedings of the 2020 IEEE Hot Chips 32 Symposium (HCS), Palo Alto, CA, USA, 16–18 August 2020; pp. 1–26. [Google Scholar]
- Macri, J. AMD’s next generation GPU and high bandwidth memory architecture: FURY. In Proceedings of the 2015 IEEE Hot Chips 27 Symposium (HCS), Cupertino, CA, USA, 22–25 August 2015; pp. 1–26. [Google Scholar]
- Wu, D.; Tian, W.; Wang, C.; Huo, R.; Wang, Y.J.M. Research of Wafer Level Bonding Process Based on Cu–Sn Eutectic. Micromachines 2020, 11, 789. [Google Scholar] [CrossRef] [PubMed]
- Kgil, T.; D’Souza, S.; Saidi, A.; Binkert, N.; Dreslinski, R.; Mudge, T.; Reinhardt, S.; Flautner, K. PicoServer: Using 3D stacking technology to enable a compact energy efficient chip multiprocessor. In Proceedings of the 12th International Conference on Architectural Support for Programming Languages and Operating Systems, San Jose, CA, USA, 21–25 October 2006; pp. 117–128. [Google Scholar]
- Lim, S.K. 3D-MAPS: 3D massively parallel processor with stacked memory. In Design for High Performance, Low Power, and Reliable 3D Integrated Circuits; Springer: Berlin/Heidelberg, Germany, 2013; pp. 537–560. [Google Scholar]
- Niu, D.; Li, S.; Wang, Y.; Han, W.; Zhang, Z.; Guan, Y.; Guan, T.; Sun, F.; Xue, F.; Duan, L.; et al. 184QPS/W 64Mb/mm2 3D Logic-to-DRAM Hybrid Bonding with Process-Near-Memory Engine for Recommendation System. In Proceedings of the 2022 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA, 20–26 February 2022; pp. 1–3. [Google Scholar]
- Khushu, S.; Gomes, W. Lakefield: Hybrid cores in 3D Package. In Proceedings of the Hot Chips Symposium, Cupertino, CA, USA, 18–20 August 2019; pp. 1–20. [Google Scholar]
- Prasad, C.; Chugh, S.; Greve, H.; Ho, I.c.; Kabir, E.; Lin, C.; Maksud, M.; Novak, S.R.; Orr, B.; Park, K.W.; et al. Silicon Reliability Characterization of Intel’s Foveros 3D Integration Technology for Logic-on-Logic Die Stacking. In Proceedings of the 2020 IEEE International Reliability Physics Symposium (IRPS), Dallas, TX, USA, 28 April–30 May 2020; pp. 1–5. [Google Scholar]
- Ingerly, D.B.; Amin, S.; Aryasomayajula, L.; Balankutty, A.; Borst, D.; Chandra, A.; Cheemalapati, K.; Cook, C.S.; Criss, R.; Enamul, K.; et al. Foveros: 3D Integration and the use of Face-to-Face Chip Stacking for Logic Devices. In Proceedings of the 2019 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 7–11 December 2019; pp. 19.16.11–19.16.14. [Google Scholar]
- Auth, C.; Allen, C.; Blattner, A.; Bergstrom, D.; Brazier, M.; Bost, M.; Buehler, M.; Chikarmane, V.; Ghani, T.; Glassman, T.; et al. A 22nm high performance and low-power CMOS technology featuring fully-depleted tri-gate transistors, self-aligned contacts and high density MIM capacitors. In Proceedings of the 2012 Symposium on VLSI Technology (VLSIT), Honolulu, HI, USA, 12–14 June 2012; pp. 131–132. [Google Scholar]
- Lee, H.; Mahajan, R.; Sheikh, F.; Nagisetty, R.; Deo, M. Multi-die Integration Using Advanced Packaging Technologies. In Proceedings of the 2020 IEEE Custom Integrated Circuits Conference (CICC), Boston, MA, USA, 22–25 March 2020; pp. 1–7. [Google Scholar]
- Cherian, A.T.; Zhou, K.; Grubisic, D.; Meng, X.; Mellor-Crummey, J. Measurement and Analysis of GPU-Accelerated OpenCL Computations on Intel GPUs. In Proceedings of the 2021 IEEE/ACM International Workshop on Programming and Performance Visualization Tools (ProTools), St. Louis, MO, USA, 14 November 2021; pp. 26–35. [Google Scholar]
- Elsherbini, A.A.; Liff, S.M.; Swan, J.M. Heterogeneous Integration Using Omni-Directional Interconnect Packaging. In Proceedings of the 2019 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 7–11 December 2019; pp. 19.14.11–19.14.14. [Google Scholar]
- Chang, K.T.; Huang, C.; Kuo, H.; Jhong, M.; Hsieh, T.; Hung, M.; Wang, C. Ultra High Density IO Fan-Out Design Optimization with Signal Integrity and Power Integrity. In Proceedings of the 2019 IEEE 69th Electronic Components and Technology Conference (ECTC), Las Vegas, NV, USA, 28–31 May 2019; pp. 41–46. [Google Scholar]
- Chong, C.T.; Guan, L.T.; Ho, D.; Choong, C.S.; Faxing, C.; Bhattacharya, S. High Density Interconnection for Heterogeneous Integration on FOWLP Platform. In Proceedings of the 2018 IEEE 20th Electronics Packaging Technology Conference (EPTC), Singapore, 4–7 December 2018; pp. 186–190. [Google Scholar]
- Tseng, C.F.; Liu, C.S.; Wu, C.H.; Yu, D. InFO (Wafer Level Integrated Fan-Out) Technology. In Proceedings of the 2016 IEEE 66th Electronic Components and Technology Conference (ECTC), Las Vegas, NV, USA, 31 May–3 June 2016; pp. 1–6. [Google Scholar]
- Yu, D. A new integration technology platform: Integrated fan-out wafer-level-packaging for mobile applications. In Proceedings of the 2015 Symposium on VLSI Technology (VLSI Technology), Kyoto, Japan, 16–19 June 2015; pp. T46–T47. [Google Scholar]
- Su, A.J.; Ku, T.; Tsai, C.H.; Yee, K.C.; Yu, D. 3D-MiM (MUST-in-MUST) Technology for Advanced System Integration. In Proceedings of the 2019 IEEE 69th Electronic Components and Technology Conference (ECTC), Las Vegas, NV, USA, 28–31 May 2019; pp. 1–6. [Google Scholar]
- Chen, M.F.; Chen, F.C.; Chiou, W.C.; Yu, D.C.H. System on Integrated Chips (SoIC(TM) for 3D Heterogeneous Integration. In Proceedings of the 2019 IEEE 69th Electronic Components and Technology Conference (ECTC), Las Vegas, NV, USA, 28–31 May 2019; pp. 594–599. [Google Scholar]
- Hu, C.C.; Chen, M.F.; Chiou, W.C.; Yu, D.C.H. 3D Multi-chip Integration with System on Integrated Chips (SoIC™). In Proceedings of the 2019 Symposium on VLSI Technology, Kyoto, Japan, 9–14 June 2019; pp. T20–T21. [Google Scholar]
- Cheng, Y.K.; Lee, F.; Chen, M.F.; Yuan, J.; Huang, T.C.; Chen, K.J.; Wang, C.T.; Chen, C.L.; Tsai, C.H.; Yu, D. Next-Generation Design and Technology Co-optimization (DTCO) of System on Integrated Chip (SoIC) for Mobile and HPC Applications. In Proceedings of the 2020 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 12–18 December 2020; pp. 41.43.41–41.43.44. [Google Scholar]
- Lu, W.; Huang, P.T.; Chen, H.M.; Hwang, W. An Energy-Efficient 3D Cross-Ring Accelerator With 3D-SRAM Cubes for Hybrid Deep Neural Networks. IEEE J. Emerg. Sel. Top. Circuits Syst. 2021, 11, 776–788. [Google Scholar] [CrossRef]
TSMC | Intel | TSMC | CEA-Leti | Intel | Intel | |
---|---|---|---|---|---|---|
Product Name | CoWoS | EMIB | InFO | INTACT | Foveros | Co-EMIB |
Integrated type | 2.5D | 2.5D | 3D | 3D | 3D | 3D |
Interposer type | Passive | Passive | - | Active | Active | Active |
Interconnect pitch (µm) | 40 | 55 | - | 20 | 36 | 36 |
PIM Application | NVIDIA GP100 | Agilex FPGA | Apple A10 processor | - | Lakefield processor | Ponte Vecchio GPU |
Bandwidth | 717 GB/s | 896 GB/s | - | 527 GB/s | - | 2 Tb/s |
Power | 235 W | - | - | ~30 W | 7 W | 600 W |
Frequency (GHz) | 1.4 | 1.5 | - | 1.15 | ~1 | 1.37 |
Latency | - | ~60 ps | - | 0.6 ns/mm | - | - |
Yield | High | High | High | High | High | High |
Reusability | High | High | High | High | High | High |
Application | HPC Edge Computing | Data Center Networking Edge Computing | Mobile IoT | HPC AI Edge Computing | Mobile PC | Date Center Machine Learning HPC |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, W.; Li, B.; Li, Z.; Cui, H.; Shi, J.; Wang, Y.; Zhao, J. Using Chiplet Encapsulation Technology to Achieve Processing-in-Memory Functions. Micromachines 2022, 13, 1790. https://doi.org/10.3390/mi13101790
Tian W, Li B, Li Z, Cui H, Shi J, Wang Y, Zhao J. Using Chiplet Encapsulation Technology to Achieve Processing-in-Memory Functions. Micromachines. 2022; 13(10):1790. https://doi.org/10.3390/mi13101790
Chicago/Turabian StyleTian, Wenchao, Bin Li, Zhao Li, Hao Cui, Jing Shi, Yongkun Wang, and Jingrong Zhao. 2022. "Using Chiplet Encapsulation Technology to Achieve Processing-in-Memory Functions" Micromachines 13, no. 10: 1790. https://doi.org/10.3390/mi13101790
APA StyleTian, W., Li, B., Li, Z., Cui, H., Shi, J., Wang, Y., & Zhao, J. (2022). Using Chiplet Encapsulation Technology to Achieve Processing-in-Memory Functions. Micromachines, 13(10), 1790. https://doi.org/10.3390/mi13101790