Drug Delivery Systems and Flavonoids: Current Knowledge in Melanoma Treatment and Future Perspectives
Abstract
:1. Introduction
2. Melanoma Skin Cancer
3. Flavonoids
4. Nano-Based Delivery Systems of Flavonoids for Melanoma Treatment
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Domingues, B.; Lopes, J.; Soares, P.; Populo, H. Melanoma Treatment in Review. Immunotargets 2018, 7, 35–49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garbe, C.; Amaral, T.; Peris, K.; Hauschild, A.; Arenberger, P.; Bastholt, L.; Bataille, V.; del Marmol, V.; Dréno, B.; Fargnoli, M.C.; et al. European Consensus-Based Interdisciplinary Guideline for Melanoma. Part 1: Diagnostics–Update 2019. Eur. J. Cancer 2020, 126, 141–158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Madamsetty, V.S.; Paul, M.K.; Mukherjee, A.; Mukherjee, S. Functionalization of Nanomaterials and Their Application in Melanoma Cancer Theranostics. ACS Biomater. Sci. Eng. 2020, 6, 167–181. [Google Scholar] [CrossRef]
- Khan, H.; Ullah, H.; Martorell, M.; Valdes, S.E.; Belwal, T.; Tejada, S.; Sureda, A.; Kamal, M.A. Flavonoids Nanoparticles in Cancer: Treatment, Prevention and Clinical Prospects. Semin Cancer Biol. 2021, 69, 200–211. [Google Scholar] [CrossRef]
- Kazmi, I.; Al-Abbasi, F.A.; Nadeem, M.S.; Altayb, H.N.; Alshehri, S.; Imam, S.S. Formulation, Optimization and Evaluation of Luteolin-Loaded Topical Nanoparticulate Delivery System for the Skin Cancer. Pharmaceutics 2021, 13, 1749. [Google Scholar] [CrossRef]
- Palliyage, G.H.; Hussein, N.; Mimlitz, M.; Weeder, C.; Alnasser, M.H.A.; Singh, S.; Ekpenyong, A.; Tiwari, A.K.; Chauhan, H. Novel Curcumin-Resveratrol Solid Nanoparticles Synergistically Inhibit Proliferation of Melanoma Cells. Pharm. Res. 2021, 38, 851–871. [Google Scholar] [CrossRef] [PubMed]
- Sak, K. Cytotoxicity of Dietary Flavonoids on Different Human Cancer Types. Pharm. Rev. 2014, 8, 122. [Google Scholar] [CrossRef] [Green Version]
- Bunkar, N.; Shandilya, R.; Bhargava, A.; Samarth, R.M.; Tiwari, R.; Mishra, D.K.; Srivastava, R.K.; Sharma, R.S.; Lohiya, N.K.; Mishra, P.K. Nano-Engineered Flavonoids for Cancer Protection. Front. Biosci. 2019, 24, 1097–1157. [Google Scholar] [CrossRef]
- Pal, H.C.; Sharma, S.; Elmets, C.A.; Athar, M.; Afaq, F. Fisetin Inhibits Growth, Induces G2/M Arrest and Apoptosis of Human Epidermoid Carcinoma A431 Cells: Role of Mitochondrial Membrane Potential Disruption and Consequent Caspases Activation. Exp. Derm. 2013, 22, 470–475. [Google Scholar] [CrossRef] [Green Version]
- Chen, P.; Zhang, J.-Y.; Sha, B.-B.; Ma, Y.-E.; Hu, T.; Ma, Y.-C.; Sun, H.; Shi, J.-X.; Dong, Z.-M.; Li, P. Luteolin Inhibits Cell Proliferation and Induces Cell Apoptosis via Down-Regulation of Mitochondrial Membrane Potential in Esophageal Carcinoma Cells EC1 and KYSE450. Oncotarget 2017, 8, 27471–27480. [Google Scholar] [CrossRef]
- Kim, M.Y. Nitric Oxide Triggers Apoptosis in A375 Human Melanoma Cells Treated with Capsaicin and Resveratrol. Mol. Med. Rep. 2011, 5, 585–591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Das, S.; Das, J.; Samadder, A.; Boujedaini, N.; Khuda-Bukhsh, A.R. Apigenin-Induced Apoptosis in A375 and A549 Cells through Selective Action and Dysfunction of Mitochondria. Exp. Biol. Med. 2012, 237, 1433–1448. [Google Scholar] [CrossRef] [PubMed]
- Kashyap, D.; Tuli, H.S.; Yerer, M.B.; Sharma, A.; Sak, K.; Srivastava, S.; Pandey, A.; Garg, V.K.; Sethi, G.; Bishayee, A. Natural Product-Based Nanoformulations for Cancer Therapy: Opportunities and Challenges. Semin Cancer Biol. 2021, 69, 5–23. [Google Scholar] [CrossRef] [PubMed]
- Kaur, H.; Kesharwani, P. Advanced Nanomedicine Approaches Applied for Treatment of Skin Carcinoma. J. Control. Release 2021, 337, 589–611. [Google Scholar] [CrossRef]
- Bayda, S.; Amadio, E.; Cailotto, S.; Frión-Herrera, Y.; Perosa, A.; Rizzolio, F. Carbon Dots for Cancer Nanomedicine: A Bright Future. Nanoscale Adv. 2021, 3, 5183–5221. [Google Scholar] [CrossRef]
- Wicki, A.; Witzigmann, D.; Balasubramanian, V.; Huwyler, J. Nanomedicine in Cancer Therapy: Challenges, Opportunities, and Clinical Applications. J. Control. Release 2015, 200, 138–157. [Google Scholar] [CrossRef]
- Beiu, C.; Giurcaneanu, C.; Grumezescu, A.M.; Holban, A.M.; Popa, L.G.; Mihai, M.M. Nanosystems for Improved Targeted Therapies in Melanoma. J. Clin. Med. 2020, 9, 318. [Google Scholar] [CrossRef] [Green Version]
- Talib, W.H.; Abuawad, A.; Thiab, S.; Alshweiat, A.; Mahmod, A.I. Flavonoid-Based Nanomedicines to Target Tumor Microenvironment. OpenNano 2022, 8, 100081. [Google Scholar] [CrossRef]
- Liu, R.; Rong, G.; Liu, Y.; Huang, W.; He, D.; Lu, R. Delivery of Apigenin-Loaded Magnetic Fe2O3/Fe3O4@mSiO2 Nanocomposites to A549 Cells and Their Antitumor Mechanism. Mater. Sci. Eng. C 2021, 120, 111719. [Google Scholar] [CrossRef]
- Bollu, V.S.; Barui, A.K.; Mondal, S.K.; Prashar, S.; Fajardo, M.; Briones, D.; Rodríguez-Diéguez, A.; Patra, C.R.; Gómez-Ruiz, S. Curcumin-Loaded Silica-Based Mesoporous Materials: Synthesis, Characterization and Cytotoxic Properties against Cancer Cells. Mater. Sci. Eng. C 2016, 63, 393–410. [Google Scholar] [CrossRef]
- Sapino, S.; Ugazio, E.; Gastaldi, L.; Miletto, I.; Berlier, G.; Zonari, D.; Oliaro-Bosso, S. Mesoporous Silica as Topical Nanocarriers for Quercetin: Characterization and in Vitro Studies. Eur. J. Pharm. Biopharm. 2015, 89, 116–125. [Google Scholar] [CrossRef] [PubMed]
- Heenatigala Palliyage, G.; Singh, S.; Ashby, C.R.; Tiwari, A.K.; Chauhan, H. Pharmaceutical Topical Delivery of Poorly Soluble Polyphenols: Potential Role in Prevention and Treatment of Melanoma. AAPS Pharm. Sci. Tech. 2019, 20, 250. [Google Scholar] [CrossRef] [PubMed]
- Ando, H.; Niki, Y.; Ito, M.; Akiyama, K.; Matsui, M.S.; Yarosh, D.B.; Ichihashi, M. Melanosomes Are Transferred from Melanocytes to Keratinocytes through the Processes of Packaging, Release, Uptake, and Dispersion. J. Investig. Dermatol. 2012, 132, 1222–1229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu-Smith, F.; Meyskens, F.L. Molecular Mechanisms of Flavonoids in Melanin Synthesis and the Potential for the Prevention and Treatment of Melanoma. Mol. Nutr. Food Res. 2016, 60, 1264–1274. [Google Scholar] [CrossRef] [Green Version]
- Slominski, A.T.; Carlson, J.A. Melanoma Resistance: A Bright Future for Academicians and a Challenge for Patient Advocates. Mayo Clin. Proc. 2014, 89, 429–433. [Google Scholar] [CrossRef] [Green Version]
- Dimitriou, F.; Krattinger, R.; Ramelyte, E.; Barysch, M.J.; Micaletto, S.; Dummer, R.; Goldinger, S.M. The World of Melanoma: Epidemiologic, Genetic, and Anatomic Differences of Melanoma Across the Globe. Curr. Oncol. Rep. 2018, 20, 87. [Google Scholar] [CrossRef]
- Winsey, S.L.; Haldar, N.A.; Marsh, H.P.; Bunce, M.; Marshall, S.E.; Harris, A.L.; Wojnarowska, F.; Welsh, K.I. A Variant within the DNA Repair Gene XRCC3 Is Associated with the Development of Melanoma Skin Cancer. Cancer Res. 2000, 60, 5612–5616. [Google Scholar]
- Jin, G.; Cheah, P.; Qu, J.; Liu, L.; Zhao, Y. Applications of Nanomaterials for Theranostics of Melanoma. J. Nanotheranostics 2020, 1, 39–55. [Google Scholar] [CrossRef]
- Sumimoto, H.; Imabayashi, F.; Iwata, T.; Kawakami, Y. The BRAF-MAPK Signaling Pathway Is Essential for Cancer-Immune Evasion in Human Melanoma Cells. J. Exp. Med. 2006, 203, 1651–1656. [Google Scholar] [CrossRef] [Green Version]
- Rigon, R.B.; Oyafuso, M.H.; Fujimura, A.T.; Gonçalez, M.L.; Prado, A.H.D.; Gremião, M.P.D.; Chorilli, M. Nanotechnology-Based Drug Delivery Systems for Melanoma Antitumoral Therapy: A Review. BioMed Res. Int. 2015, 2015, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Soengas, M.S.; Lowe, S.W. Apoptosis and Melanoma Chemoresistance. Oncogene 2003, 22, 3138–3151. [Google Scholar] [CrossRef] [PubMed]
- Liskova, A.; Samec, M.; Koklesova, L.; Brockmueller, A.; Zhai, K.; Abdellatif, B.; Siddiqui, M.; Biringer, K.; Kudela, E.; Pec, M.; et al. Flavonoids as an Effective Sensitizer for Anti-Cancer Therapy: Insights into Multi-Faceted Mechanisms and Applicability towards Individualized Patient Profiles. EPMA J. 2021, 12, 155–176. [Google Scholar] [CrossRef] [PubMed]
- Bukowski, K.; Kciuk, M.; Kontek, R. Mechanisms of Multidrug Resistance in Cancer Chemotherapy. Int. J. Mol. Sci. 2020, 21, 3233. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Shi, R.; Wang, X.; Shen, H.-M. Luteolin, a Flavonoid with Potential for Cancer Prevention and Therapy. Curr. Cancer Drug Targets 2008, 8, 634–646. [Google Scholar] [CrossRef]
- Kopustinskiene, D.M.; Jakstas, V.; Savickas, A.; Bernatoniene, J. Flavonoids as Anticancer Agents. Nutrients 2020, 12, 457. [Google Scholar] [CrossRef] [Green Version]
- Elkholi, I.E. Evaluation of Anti-Cancer Potential of Capsaicin-Loaded Trimethyl Chitosan-Based Nanoparticles in HepG2 Hepatocarcinoma Cells. J. Nanomed. Nanotechnol. 2014, 5, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Bush, J.A.; Cheung, K.J.; Li, G. Curcumin Induces Apoptosis in Human Melanoma Cells through a Fas Receptor/Caspase-8 Pathway Independent of P53. Exp. Cell Res. 2001, 271, 305–314. [Google Scholar] [CrossRef]
- Lee, M.-H.; Huang, Z.; Kim, D.J.; Kim, S.-H.; Kim, M.O.; Lee, S.-Y.; Xie, H.; Park, S.J.; Kim, J.Y.; Kundu, J.K.; et al. Direct Targeting of MEK1/2 and RSK2 by Silybin Induces Cell-Cycle Arrest and Inhibits Melanoma Cell Growth. Cancer Prev. Res. 2013, 6, 455–465. [Google Scholar] [CrossRef] [Green Version]
- Shin, D.-H.; Kim, O.-H.; Jun, H.-S.; Kang, M.-K. Inhibitory Effect of Capsaicin on B16-F10 Melanoma Cell Migration via the Phosphatidylinositol 3-Kinase/Akt/Rac1 Signal Pathway. Exp. Mol. Med. 2008, 40, 486. [Google Scholar] [CrossRef]
- Lee, J.-H.; Jang, J.-Y.; Park, C.; Kim, B.-W.; Choi, Y.-H.; Choi, B.-T. Curcumin Suppresses Alpha-Melanocyte Stimulating Hormone-Stimulated Melanogenesis in B16F10 Cells. Int. J. Mol. Med. 2010, 26, 101–106. [Google Scholar]
- Kikuchi, H.; Yuan, B.; Hu, X.; Okazaki, M. Chemopreventive and Anticancer Activity of Flavonoids and Its Possibility for Clinical Use by Combining with Conventional Chemotherapeutic Agents. Am. J. Cancer Res. 2019, 9, 1517–1535. [Google Scholar] [PubMed]
- Netcharoensirisuk, P.; Abrahamian, C.; Tang, R.; Chen, C.-C.; Rosato, A.S.; Beyers, W.; Chao, Y.-K.; Filippini, A.; di Pietro, S.; Bartel, K.; et al. Flavonoids Increase Melanin Production and Reduce Proliferation, Migration and Invasion of Melanoma Cells by Blocking Endolysosomal/Melanosomal TPC2. Sci. Rep. 2021, 11, 8515. [Google Scholar] [CrossRef] [PubMed]
- Mirzaei, H.; Naseri, G.; Rezaee, R.; Mohammadi, M.; Banikazemi, Z.; Mirzaei, H.R.; Salehi, H.; Peyvandi, M.; Pawelek, J.M.; Sahebkar, A. Curcumin: A New Candidate for Melanoma Therapy? Int. J. Cancer 2016, 139, 1683–1695. [Google Scholar] [CrossRef] [PubMed]
- Kuang, G.; Zhang, Q.; He, S.; Liu, Y. Curcumin-Loaded PEGylated Mesoporous Silica Nanoparticles for Effective Photodynamic Therapy. RSC Adv. 2020, 10, 24624–24630. [Google Scholar] [CrossRef] [PubMed]
- Ahmadi Nasab, N.; Hassani Kumleh, H.; Beygzadeh, M.; Teimourian, S.; Kazemzad, M. Delivery of Curcumin by a PH-Responsive Chitosan Mesoporous Silica Nanoparticles for Cancer Treatment. Artif. Cells Nanomed. Biotechnol. 2018, 46, 75–81. [Google Scholar] [CrossRef] [Green Version]
- Jambhrunkar, S.; Karmakar, S.; Popat, A.; Yu, M.; Yu, C. Mesoporous Silica Nanoparticles Enhance the Cytotoxicity of Curcumin. RSC Adv. 2014, 4, 709–712. [Google Scholar] [CrossRef] [Green Version]
- Sorasitthiyanukarn, F.N.; Muangnoi, C.; Ratnatilaka Na Bhuket, P.; Rojsitthisak, P.; Rojsitthisak, P. Chitosan/Alginate Nanoparticles as a Promising Approach for Oral Delivery of Curcumin Diglutaric Acid for Cancer Treatment. Mater. Sci. Eng. C 2018, 93, 178–190. [Google Scholar] [CrossRef]
- Kong, Z.L.; Kuo, H.P.; Johnson, A.; Wu, L.C.; Chang, K.L.B. Curcumin-Loaded Mesoporous Silica Nanoparticles Markedly Enhanced Cytotoxicity in Hepatocellular Carcinoma Cells. Int. J. Mol. Sci. 2019, 20, 2918. [Google Scholar] [CrossRef] [Green Version]
- Keyvani-Ghamsari, S.; Khorsandi, K.; Gul, A. Curcumin Effect on Cancer Cells’ Multidrug Resistance: An Update. Phytother. Res. 2020, 34, 2534–2556. [Google Scholar] [CrossRef]
- Chatterjee, S.J.; Pandey, S. Chemo-Resistant Melanoma Sensitized by Tamoxifen to Low Dose Curcumin Treatment through Induction of Apoptosis and Autophagy. Cancer Biol. 2011, 11, 216–228. [Google Scholar] [CrossRef] [Green Version]
- Zhao, G.; Han, X.; Zheng, S.; Li, Z.; Sha, Y.; Ni, J.; Sun, Z.; Qiao, S.; Song, Z. Curcumin Induces Autophagy, Inhibits Proliferation and Invasion by Downregulating AKT/MTOR Signaling Pathway in Human Melanoma Cells. Oncol. Rep. 2016, 35, 1065–1074. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dobrzynska, M.; Napierala, M.; Florek, E. Flavonoid Nanoparticles: A Promising Approach for Cancer Therapy. Biomolecules 2020, 10, 1268. [Google Scholar] [CrossRef] [PubMed]
- Thangasamy, T.; Sittadjody, S.; Lanza-Jacoby, S.; Wachsberger, P.R.; Limesand, K.H.; Burd, R. Quercetin Selectively Inhibits Bioreduction and Enhances Apoptosis in Melanoma Cells That Overexpress Tyrosinase. Nutr. Cancer 2007, 59, 258–268. [Google Scholar] [CrossRef] [PubMed]
- Caltagirone, S.; Rossi, C.; Poggi, A.; Ranelletti, F.O.; Natali, P.G.; Brunetti, M.; Aiello, F.B.; Piantelli, M. Flavonoids Apigenin and Quercetin Inhibit Melanoma Growth and Metastatic Potential. Int. J. Cancer 2000, 87, 595–600. [Google Scholar] [CrossRef]
- Wang, T.; Li, X.; Chen, L.; Li, L.; Janaswamy, S. Carriers Based on Zein-Dextran Sulfate Sodium Binary Complex for the Sustained Delivery of Quercetin. Front. Chem. 2020, 8, 662. [Google Scholar] [CrossRef] [PubMed]
- Mishra, S.; Manna, K.; Kayal, U.; Saha, M.; Chatterjee, S.; Chandra, D.; Hara, M.; Datta, S.; Bhaumik, A.; das Saha, K. Folic Acid-Conjugated Magnetic Mesoporous Silica Nanoparticles Loaded with Quercetin: A Theranostic Approach for Cancer Management. RSC Adv. 2020, 10, 23148–23164. [Google Scholar] [CrossRef] [PubMed]
- Ding, J.; Kong, X.; Yao, J.; Wang, J.; Cheng, X.; Tang, B.; He, Z. Core–Shell Mesoporous Silica Nanoparticles Improve HeLa Cell Growth and Proliferation Inhibition by (−)-Epigallocatechin-3-Gallate by Prolonging the Half-Life. J. Mater. Chem. 2012, 22, 19926. [Google Scholar] [CrossRef]
- Du, G.J.; Zhang, Z.; Wen, X.D.; Yu, C.; Calway, T.; Yuan, C.S.; Wang, C.Z. Epigallocatechin Gallate (EGCG) Is the Most Effective Cancer Chemopreventive Polyphenol in Green Tea. Nutrients 2012, 4, 1679–1691. [Google Scholar] [CrossRef]
- Chen, C.-C.; Hsieh, D.-S.; Huang, K.-J.; Chan, Y.-L.; Hong, P.-D.; Yeh, M.-K.; Wu, C.-J. Improving Anticancer Efficacy of (-)-Epigallocatechin-3-Gallate Gold Nanoparticles in Murine B16F10 Melanoma Cells. Drug Des. Devel. Ther. 2014, 8, 459–474. [Google Scholar] [CrossRef] [Green Version]
- Nihal, M.; Ahsan, H.; Siddiqui, I.A.; Mukhtar, H.; Ahmad, N.; Wood, G.S. (-)-Epigallocatechin-3-Gallate (EGCG) Sensitizes Melanoma Cells to Interferon Induced Growth Inhibition in a Mouse Model of Human Melanoma. Cell Cycle 2009, 8, 2057–2063. [Google Scholar] [CrossRef] [Green Version]
- Ravindranath, M.H.; Ramasamy, V.; Moon, S.; Ruiz, C.; Muthugounder, S. Differential Growth Suppression of Human Melanoma Cells by Tea ( Camellia Sinensis ) Epicatechins (ECG, EGC and EGCG). Evid. Based Complement. Altern. Med. 2009, 6, 523–530. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Echeverri-Cuartas, C.E.; Agudelo, N.A.; Gartner, C. Chitosan-PEG-Folate-Fe(III) Complexes as Nanocarriers of Epigallocatechin–3–Gallate. Int. J. Biol. Macromol. 2020, 165, 2909–2919. [Google Scholar] [CrossRef] [PubMed]
- Hu, B.; Ting, Y.; Zeng, X.; Huang, Q. Bioactive Peptides/Chitosan Nanoparticles Enhance Cellular Antioxidant Activity of (−)-Epigallocatechin-3-Gallate. J. Agric. Food Chem. 2013, 61, 875–881. [Google Scholar] [CrossRef] [PubMed]
- Shukla, S.; Gupta, S. Apigenin: A Promising Molecule for Cancer Prevention. Pharm. Res. 2010, 27, 962–978. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sen, R.; Ganguly, S.; Ganguly, S.; Debnath, M.C.; Chakraborty, S.; Mukherjee, B.; Chattopadhyay, D. Apigenin-Loaded PLGA-DMSA Nanoparticles: A Novel Strategy to Treat Melanoma Lung Metastasis. Mol. Pharm. 2021, 18, 1920–1938. [Google Scholar] [CrossRef]
- Das, S.; Das, J.; Samadder, A.; Paul, A.; Khuda-Bukhsh, A.R. Strategic Formulation of Apigenin-Loaded PLGA Nanoparticles for Intracellular Trafficking, DNA Targeting and Improved Therapeutic Effects in Skin Melanoma in Vitro. Toxicol. Lett. 2013, 223, 124–138. [Google Scholar] [CrossRef]
- Jangdey, M.S.; Gupta, A.; Saraf, S.; Saraf, S. Development and Optimization of Apigenin-Loaded Transfersomal System for Skin Cancer Delivery: In Vitro Evaluation. Artif. Cells Nanomed. Biotechnol. 2017, 45, 1452–1462. [Google Scholar] [CrossRef] [Green Version]
- Pal, H.C.; Hunt, K.M.; Diamond, A.; Elmets, C.A.; Afaq, F. Phytochemicals for the Management of Melanoma. Mini Rev. Med. Chem. 2016, 16, 953–979. [Google Scholar] [CrossRef]
- Danciu, C.; Borcan, F.; Bojin, F.; Zupko, I.; Dehelean, C. Effect of the Isoflavone Genistein on Tumor Size, Metastasis Potential and Melanization in a B16 Mouse Model of Murine Melanoma. Nat. Prod. Commun. 2013, 8, 343–346. [Google Scholar] [CrossRef] [Green Version]
- Ji, C.; Yang, Y.; He, L.; Gu, B.; Xia, J.; Sun, W.; Su, Z.; Chen, B.; Bi, Z. Increasing Ceramides Sensitizes Genistein-Induced Melanoma Cell Apoptosis and Growth Inhibition. Biochem. Biophys. Res. Commun. 2012, 421, 462–467. [Google Scholar] [CrossRef]
- Cai, L.; Yu, R.; Hao, X.; Ding, X. Folate Receptor-Targeted Bioflavonoid Genistein-Loaded Chitosan Nanoparticles for Enhanced Anticancer Effect in Cervical Cancers. Nanoscale Res. Lett. 2017, 12, 509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chanphai, P.; Tajmir-Riahi, H.A. Probing the Binding of Resveratrol, Genistein and Curcumin with Chitosan Nanoparticles. J. Mol. Liq. 2017, 243, 108–114. [Google Scholar] [CrossRef]
- Pool, H.; Campos-Vega, R.; Herrera-Hernández, M.G.; García-Solis, P.; García-Gasca, T.; Sánchez, I.C.; Luna-Bárcenas, G.; Vergara-Castañeda, H. Development of Genistein-PEGylated Silica Hybrid Nanomaterials with Enhanced Antioxidant and Antiproliferative Properties on HT29 Human Colon Cancer Cells. Am. J. Transl. Res. 2018, 10, 2306–2323. [Google Scholar] [PubMed]
- Rahmani, F.; Karimi, E.; Oskoueian, E. Synthesis and Characterisation of Chitosan-Encapsulated Genistein: Its Anti-Proliferative and Anti-Angiogenic Activities. J. Microencapsul. 2020, 37, 305–313. [Google Scholar] [CrossRef] [PubMed]
- Tawornchat, P.; Pattarakankul, T.; Palaga, T.; Intasanta, V.; Wanichwecharungruang, S. Polymerized Luteolin Nanoparticles: Synthesis, Structure Elucidation, and Anti-Inflammatory Activity. ACS Omega 2021, 6, 2846–2855. [Google Scholar] [CrossRef] [PubMed]
- Qing, W.; Wang, Y.; Li, H.; Ma, F.; Zhu, J.; Liu, X. Preparation and Characterization of Copolymer Micelles for the Solubilization and In Vitro Release of Luteolin and Luteoloside. AAPS Pharm. Sci. Tech. 2017, 18, 2095–2101. [Google Scholar] [CrossRef]
- Shinde, P.; Agraval, H.; Singh, A.; Yadav, U.C.S.; Kumar, U. Synthesis of Luteolin Loaded Zein Nanoparticles for Targeted Cancer Therapy Improving Bioavailability and Efficacy. J. Drug Deliv. Sci. Technol. 2019, 52, 369–378. [Google Scholar] [CrossRef]
- Liu, Y.; Zhao, L.; Shen, G.; Chang, R.; Zhang, Y.; Yan, X. Coordination Self-Assembly of Natural Flavonoids into Robust Nanoparticles for Enhanced in Vitro Chemo and Photothermal Cancer Therapy. Colloids Surf. A Phys. Eng. Asp. 2020, 598, 124805. [Google Scholar] [CrossRef]
- di Costanzo, A.; Angelico, R. Formulation Strategies for Enhancing the Bioavailability of Silymarin: The State of the Art. Molecules 2019, 24, 2155. [Google Scholar] [CrossRef] [Green Version]
- Zare, M.; Sarkati, M.N. Chitosan-functionalized Fe3O4 Nanoparticles as an Excellent Biocompatible Nanocarrier for Silymarin Delivery. Polym. Adv. Technol. 2021, 32, 4094–4100. [Google Scholar] [CrossRef]
- Singh, R.P.; Agarwal, R. Flavonoid Antioxidant Silymarin and Skin Cancer. Antioxid Redox Signal. 2002, 4, 655–663. [Google Scholar] [CrossRef] [PubMed]
- Adhikari, M.; Kaushik, N.; Ghimire, B.; Adhikari, B.; Baboota, S.; Al-Khedhairy, A.A.; Wahab, R.; Lee, S.-J.; Kaushik, N.K.; Choi, E.H. Cold Atmospheric Plasma and Silymarin Nanoemulsion Synergistically Inhibits Human Melanoma Tumorigenesis via Targeting HGF/c-MET Downstream Pathway. Cell Commun. Signal. 2019, 17, 52. [Google Scholar] [CrossRef] [PubMed]
- Mombeini, M.; Saki, G.; Khorsandi, L.; Bavarsad, N. Effects of Silymarin-Loaded Nanoparticles on HT-29 Human Colon Cancer Cells. Medicina 2018, 54, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nasr, S.S.; Nasra, M.M.A.; Hazzah, H.A.; Abdallah, O.Y. Mesoporous Silica Nanoparticles, a Safe Option for Silymarin Delivery: Preparation, Characterization, and in Vivo Evaluation. Drug Deliv. Transl. Res. 2019, 9, 968–979. [Google Scholar] [CrossRef]
- Narmani, A.; Rezvani, M.; Farhood, B.; Darkhor, P.; Mohammadnejad, J.; Amini, B.; Refahi, S.; Abdi Goushbolagh, N. Folic Acid Functionalized Nanoparticles as Pharmaceutical Carriers in Drug Delivery Systems. Drug Dev. Res. 2019, 80, 404–424. [Google Scholar] [CrossRef]
- Barui, S.; Saha, S.; Yakati, V.; Chaudhuri, A. Systemic Codelivery of a Homoserine Derived Ceramide Analogue and Curcumin to Tumor Vasculature Inhibits Mouse Tumor Growth. Mol. Pharm. 2016, 13, 404–419. [Google Scholar] [CrossRef]
- Jose, A.; Labala, S.; Ninave, K.M.; Gade, S.K.; Venuganti, V.V.K. Effective Skin Cancer Treatment by Topical Co-Delivery of Curcumin and STAT3 SiRNA Using Cationic Liposomes. AAPS Pharm. Sci. Tech. 2018, 19, 166–175. [Google Scholar] [CrossRef]
- Wang, B.; Liu, X.; Teng, Y.; Yu, T.; Chen, J.; Hu, Y.; Liu, N.; Zhang, L.; Shen, Y. Improving Anti-Melanoma Effect of Curcumin by Biodegradable Nanoparticles. Oncotarget 2017, 8, 108624–108642. [Google Scholar] [CrossRef] [Green Version]
- Stolarczyk, E.U.; Stolarczyk, K.; Łaszcz, M.; Kubiszewski, M.; Maruszak, W.; Olejarz, W.; Bryk, D. Synthesis and Characterization of Genistein Conjugated with Gold Nanoparticles and the Study of Their Cytotoxic Properties. Eur. J. Pharm. Sci. 2017, 96, 176–185. [Google Scholar] [CrossRef]
- Loch-Neckel, G.; Santos-Bubniak, L.; Mazzarino, L.; Jacques, A.V.; Moccelin, B.; Santos-Silva, M.C.; Lemos-Senna, E. Orally Administered Chitosan-Coated Polycaprolactone Nanoparticles Containing Curcumin Attenuate Metastatic Melanoma in the Lungs. J. Pharm. Sci. 2015, 104, 3524–3534. [Google Scholar] [CrossRef]
- Tavakoli, F.; Jahanban-Esfahlan, R.; Seidi, K.; Jabbari, M.; Behzadi, R.; Pilehvar-Soltanahmadi, Y.; Zarghami, N. Effects of Nano-Encapsulated Curcumin-Chrysin on Telomerase, MMPs and TIMPs Expression in Mouse B16F10 Melanoma Tumour Model. Artif. Cells Nanomed. Biotechnol. 2018, 46, 75–86. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Wu, Q.; Zhang, Z.; Yuan, L.; Liu, X.; Zhou, L. Preparation of Curcumin-Loaded Liposomes and Evaluation of Their Skin Permeation and Pharmacodynamics. Molecules 2012, 17, 5972–5987. [Google Scholar] [CrossRef] [PubMed]
- Kumari, P.; Swami, M.O.; Nadipalli, S.K.; Myneni, S.; Ghosh, B.; Biswas, S. Curcumin Delivery by Poly (Lactide)-Based Co-Polymeric Micelles: An in Vitro Anticancer Study. Pharm. Res. 2016, 33, 826–841. [Google Scholar] [CrossRef] [PubMed]
- Ramalingam, P.; Ko, Y.T. Enhanced Oral Delivery of Curcumin from N-Trimethyl Chitosan Surface-Modified Solid Lipid Nanoparticles: Pharmacokinetic and Brain Distribution Evaluations. Pharm. Res. 2015, 32, 389–402. [Google Scholar] [CrossRef]
- Singh, S.P.; Alvi, S.B.; Pemmaraju, D.B.; Singh, A.D.; Manda, S.V.; Srivastava, R.; Rengan, A.K. NIR Triggered Liposome Gold Nanoparticles Entrapping Curcumin as in Situ Adjuvant for Photothermal Treatment of Skin Cancer. Int. J. Biol. Macromol. 2018, 110, 375–382. [Google Scholar] [CrossRef] [PubMed]
- Rahimi-Moghaddam, F.; Azarpira, N.; Sattarahmady, N. Evaluation of a Nanocomposite of PEG-Curcumin-Gold Nanoparticles as a near-Infrared Photothermal Agent: An in Vitro and Animal Model Investigation. Lasers Med. Sci. 2018, 33, 1769–1779. [Google Scholar] [CrossRef]
- Siddiqui, I.A.; Bharali, D.J.; Nihal, M.; Adhami, V.M.; Khan, N.; Chamcheu, J.C.; Khan, M.I.; Shabana, S.; Mousa, S.A.; Mukhtar, H. Excellent Anti-Proliferative and pro-Apoptotic Effects of (−)-Epigallocatechin-3-Gallate Encapsulated in Chitosan Nanoparticles on Human Melanoma Cell Growth Both in Vitro and in Vivo. Nanomedicine 2014, 10, 1619–1626. [Google Scholar] [CrossRef]
- Singh, P.; Singh, M.; Kanoujia, J.; Arya, M.; Saraf, S.K.; Saraf, S.A. Process Optimization and Photostability of Silymarin Nanostructured Lipid Carriers: Effect on UV-Irradiated Rat Skin and SK-MEL 2 Cell Line. Drug Deliv. Transl. Res. 2016, 6, 597–609. [Google Scholar] [CrossRef]
- González-Rodríguez, M.; Rabasco, A. Charged Liposomes as Carriers to Enhance the Permeation through the Skin. Expert Opin. Drug Deliv. 2011, 8, 857–871. [Google Scholar] [CrossRef]
- Yuan, Z.; Chen, L.; Fan, L.; Tang, M.; Yang, G.; Yang, H.; Du, X.; Wang, G.; Yao, W.; Zhao, Q.; et al. Liposomal Quercetin Efficiently Suppresses Growth of Solid Tumors in Murine Models. Clin. Cancer Res. 2006, 12, 3193–3199. [Google Scholar] [CrossRef] [Green Version]
- Wu, G.; Li, J.; Yue, J.; Zhang, S.; Yunusi, K. Liposome Encapsulated Luteolin Showed Enhanced Antitumor Efficacy to Colorectal Carcinoma. Mol. Med. Rep. 2017, 17, 2456–2464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caddeo, C.; Nacher, A.; Vassallo, A.; Armentano, M.F.; Pons, R.; Fernàndez-Busquets, X.; Carbone, C.; Valenti, D.; Fadda, A.M.; Manconi, M. Effect of Quercetin and Resveratrol Co-Incorporated in Liposomes against Inflammatory/Oxidative Response Associated with Skin Cancer. Int. J. Pharm. 2016, 513, 153–163. [Google Scholar] [CrossRef] [PubMed]
- Duan, Y.; Dhar, A.; Patel, C.; Khimani, M.; Neogi, S.; Sharma, P.; Siva Kumar, N.; Vekariya, R.L. A Brief Review on Solid Lipid Nanoparticles: Part and Parcel of Contemporary Drug Delivery Systems. RSC Adv. 2020, 10, 26777–26791. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Dong, Y.; Wang, F.; Zhang, Y. Nanoformulations to Enhance the Bioavailability and Physiological Functions of Polyphenols. Molecules 2020, 25, 4613. [Google Scholar] [CrossRef] [PubMed]
- Narayan, S. Challenges and Future Opportunities of Nanomedicine in Cancer Therapy. In Nanomedicine for Cancer Diagnosis and Therapy; Springer: Singapore, 2021; pp. 221–249. [Google Scholar]
- Pawar, A.; Singh, S.; Rajalakshmi, S.; Shaikh, K.; Bothiraja, C. Development of Fisetin-Loaded Folate Functionalized Pluronic Micelles for Breast Cancer Targeting. Artif. Cells Nanomed. Biotechnol. 2018, 46, 347–361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martau, G.A.; Mihai, M.; Vodnar, D.C. The Use of Chitosan, Alginate, and Pectin in the Biomedical and Food Sector-Biocompatibility, Bioadhesiveness, and Biodegradability. Polymers 2019, 11, 1837. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Musalli, A.H.; Talukdar, P.D.; Roy, P.; Kumar, P.; Wong, T.W. Folate-Induced Nanostructural Changes of Oligochitosan Nanoparticles and Their Fate of Cellular Internalization by Melanoma. Carbohydr. Polym. 2020, 244, 116488. [Google Scholar] [CrossRef]
- Chiche, J.; Brahimi-Horn, M.C.; Pouysségur, J. Tumour Hypoxia Induces a Metabolic Shift Causing Acidosis: A Common Feature in Cancer. J. Cell. Mol. Med. 2010, 14, 771–794. [Google Scholar] [CrossRef] [Green Version]
- Deswal, B.; Kapoor, S.; Roy, A. Targeting Tumor Microenvironment Through Nanotheranostics. In Nanomedicine for Cancer Diagnosis and Therapy; Springer: Singapore, 2021; pp. 133–159. [Google Scholar]
- Zielińska, A.; Pereira, I.; Antunes, S.; Veiga, F.J.; Santos, A.C.; Nowak, I.; Silva, A.M.; Souto, E.B. Mesoporous Silica Nanoparticles as Drug Delivery Systems against Melanoma. In Design of Nanostructures for Theranostics Applications; Elsevier: Amsterdam, The Netherlands, 2018; pp. 437–466. ISBN 9780128136690. [Google Scholar]
- Marinheiro, D.; Ferreira, B.; Oskoei, P.; Oliveira, H.; Daniel-da-Silva, A. Encapsulation and Enhanced Release of Resveratrol from Mesoporous Silica Nanoparticles for Melanoma Therapy. Materials 2021, 14, 1382. [Google Scholar] [CrossRef]
- Ding, J.; Yao, J.; Xue, J.; Li, R.; Bao, B.; Jiang, L.; Zhu, J.; He, Z. Tumor-Homing Cell-Penetrating Peptide Linked to Colloidal Silica Encapsulated (-)-Epigallocatechin-3-Gallate as Drug Delivery System for Breast Cancer Therapy in Vivo. ACS Appl. Mater. Interfaces 2015, 7, 18145–18155. [Google Scholar] [CrossRef]
- Huang, Y.; Zhao, X.; Zu, Y.; Wang, L.; Deng, Y.; Wu, M.; Wang, H. Enhanced Solubility and Bioavailability of Apigenin via Preparation of Solid Dispersions of Mesoporous Silica Nanoparticles. Iran. J. Pharm. Res. 2019, 18, 168–182. [Google Scholar] [PubMed]
- Huang, X.; Teng, X.; Chen, D.; Tang, F.; He, J. The Effect of the Shape of Mesoporous Silica Nanoparticles on Cellular Uptake and Cell Function. Biomaterials 2010, 31, 438–448. [Google Scholar] [CrossRef] [PubMed]
- Cassano, R.; Cuconato, M.; Calviello, G.; Serini, S.; Trombino, S. Recent Advances in Nanotechnology for the Treatment of Melanoma. Molecules 2021, 26, 785. [Google Scholar] [CrossRef] [PubMed]
- Roy, A.; Basuthakur, P.; Patra, C.R. Therapeutic Applications of Noble Metal (Au, Ag, Pt)-Based Nanomedicines for Melanoma. In Nanomedicine for Cancer Diagnosis and Therapy; Springer: Singapore, 2021; pp. 161–202. [Google Scholar]
- Lopes, J.; Coelho, J.M.P.; Vieira, P.M.C.; Viana, A.S.; Gaspar, M.M.; Reis, C. Preliminary Assays towards Melanoma Cells Using Phototherapy with Gold-Based Nanomaterials. Nanomaterials 2020, 10, 1536. [Google Scholar] [CrossRef] [PubMed]
- Păduraru, D.N.; Ion, D.; Niculescu, A.-G.; Mușat, F.; Andronic, O.; Grumezescu, A.M.; Bolocan, A. Recent Developments in Metallic Nanomaterials for Cancer Therapy, Diagnosing and Imaging Applications. Pharmaceutics 2022, 14, 435. [Google Scholar] [CrossRef]
- Bastos, V.; Brown, D.; Johnston, H.; Daniel-da-Silva, A.L.; Duarte, I.F.; Santos, C.; Oliveira, H. Inflammatory Responses of a Human Keratinocyte Cell Line to 10 Nm Citrate- and PEG-Coated Silver Nanoparticles. J. Nanoparticle Res. 2016, 18, 205. [Google Scholar] [CrossRef]
- Bastos, V.; Ferreira de Oliveira, J.M.P.; Brown, D.; Jonhston, H.; Malheiro, E.; Daniel-da-Silva, A.L.; Duarte, I.F.; Santos, C.; Oliveira, H. The Influence of Citrate or PEG Coating on Silver Nanoparticle Toxicity to a Human Keratinocyte Cell Line. Toxicol. Lett. 2016, 249, 29–41. [Google Scholar] [CrossRef]
- Netchareonsirisuk, P.; Puthong, S.; Dubas, S.; Palaga, T.; Komolpis, K. Effect of Capping Agents on the Cytotoxicity of Silver Nanoparticles in Human Normal and Cancer Skin Cell Lines. J. Nanoparticle Res. 2016, 18, 322. [Google Scholar] [CrossRef]
- Domingues, C.; Santos, A.; Alvarez-Lorenzo, C.; Concheiro, A.; Jarak, I.; Veiga, F.; Barbosa, I.; Dourado, M.; Figueiras, A. Where Is Nano Today and Where Is It Headed? A Review of Nanomedicine and the Dilemma of Nanotoxicology. ACS Nano 2022, 16, 9994–10041. [Google Scholar] [CrossRef]
- Chou, Y.-P.; Lin, Y.-K.; Chen, C.-H.; Fang, J.-Y. Recent Advances in Polymeric Nanosystems for Treating Cutaneous Melanoma and Its Metastasis. Curr. Pharm. Des. 2018, 23, 5301–5314. [Google Scholar] [CrossRef]
- Khan, N.H.; Mir, M.; Qian, L.; Baloch, M.; Ali Khan, M.F.; Rehman, A.; Ngowi, E.E.; Wu, D.-D.; Ji, X.-Y. Skin Cancer Biology and Barriers to Treatment: Recent Applications of Polymeric Micro/Nanostructures. J. Adv. Res. 2022, 36, 223–247. [Google Scholar] [CrossRef] [PubMed]
- Arriagada, F.; Nonell, S.; Morales, J. Silica-Based Nanosystems for Therapeutic Applications in the Skin. Nanomedicine 2019, 14, 2243–2267. [Google Scholar] [CrossRef] [PubMed]
Nanosystem | Biological Model | Key Studies | Concluding Remark | Ref. |
---|---|---|---|---|
Curcumin | ||||
Mesoporous silica nanoparticles (MSNs) | SCC-25 cells | Encapsulate curcumin in the nanopores of MSNs and compare the cytotoxic effects of free curcumin | Curcumin loaded inside MSNs showed enhanced solubility, sustained release profile and improved cell cytotoxicity compared to the pure drug. | [46] |
MSNs | B16-F10 cells | Synthesize and characterize two mesoporous silica materials (MSU-2 and MCM-41) for the delivery of curcumin | The silica-based mesoporous materials are biocompatible. Curcumin loaded in silica-based materials showed more inhibition of cell proliferation than free curcumin. | [20] |
Polymeric nanoparticles | A375 cells | Investigate the antitumor properties of silica-encapsulated curcumin nanoparticles (SCNP) and chitosan with silica co-encapsulated curcumin nanoparticles (CSCNP) | CSCNP showed higher cytotoxicity in treated tumor cells. Nanoencapsulation of curcumin with silica and chitosan increased curcumin stability and enhanced its cytotoxic activity. | [48] |
Polymeric nanoparticles (chitosan) | B16-F10 cells C57BL6 mouse model | Prepare chitosan-coated polycaprolactone (PCL) nanoparticles containing curcumin and evaluate the antimetastatic activity both in vitro and in vivo | Encapsulated curcumin significantly reduced in vivo tumor formation and significantly decreased the development of metastases by regulating apoptotic pathways. In vitro assay showed that both free and loaded curcumin decreased the survival and the ability of melanoma cells to generate colonies. | [90] |
Polymeric nanoparticles (PLGA-PEG) | B16-F10 cells C57BL6 mouse model | Characterize and investigate the effects of curcumin and chrysin loaded into NPs on the expression levels of crucial genes with role in tumor progression and metastasis | The antimetastatic and antiproliferative effects of both polyphenols on melanoma cells in vivo and in vitro were improved when encapsulated in the PLGA-PEG polymeric NPs. | [91] |
Liposomes | B16-F10 cells C57BL6J mouse model | Assess the inhibitory effect of curcumin loaded in modified liposomes in the tumor growth of a syngeneic mouse tumor model | This nanocomplex inhibited PI3K–Akt signaling pathways, causing the decrease in tumor growth. | [86] |
B16-BL6 cells | Investigate the in vitro skin permeation and in vivo antineoplastic effect of curcumin using different types of liposomes (soybean phospholipid liposomes (C-SPC-L), hydrogenated soybean phospholipids liposomes (C-HSPC-L) and egg yolk phospholipids liposomes (C-EPC-L)) | C-SPC-L liposome showed to be the best liposomal formulation to inhibit the growth of B16-BL6 melanoma cells and is a promising transdermal carrier for curcumin in cancer treatment. | [92] | |
B16-F10 cells C57BL6 mouse model | Evaluate the co-delivery of curcumin and anti-STAT3 siRNA using magnetic cationic liposomes | Liposomes were prepared with Fe3O4 and a mixture of N-didodecyl-glutamate chloride (TMAG) and dioleoyl phosphatidylethanolamine (DOPE) and loaded with curcumin. The positive charge on the liposome surface and the external magnetic field caused tumor progression inhibition. | [87] | |
Micelles | B16 and A375 cells C57 mouse model | Formulate curcumin-loaded MPEG-PLA (curcumin/MPEG-PLA) micelles in order to improve curcumin solubility and investigated its antitumor effect on melanoma in vitro and in vivo | Curcumin-loaded micelles induced higher percentage of apoptosis in both melanoma cell lines, while in tumor tissue, this nanocarrier inhibited neovascularization. | [88] |
B16-F10 cells | Formulate copolymeric micelles, methoxy-poly(ethylene glycol)-poly(D,L-lactide) (mPEG-PLA), to encapsulate curcumin, to improve its dispersibility and chemical stability and enhance its bioavailability | The Cur-mPEG-PLA nanosystem inhibited melanoma cell growth and was efficiently taken up by the cancer cells. | [93] | |
Solid lipid nanoparticle | B16-F10 cells | Use of chitosan to coat and stabilize solid lipid nanoparticles (SLNs) and then load the SLNs with curcumin | The modified SLNs with chitosan had significantly greater antitumor efficacy compared to free curcumin. | [94] |
Au NPs | B16-F10 cells | Evaluate the combination of curcumin with NIR sensitive liposome gold nanoparticles (Au-Lipos Cur NPs) as an effective in situ adjuvant therapy for melanoma treatment | Due to the gold coating, the NPs absorbed NIR light (780 nm), and this light energy was converted to heat. The generated heat destabilized the liposomal core, enhancing the release of encapsulated curcumin. Cytotoxicity was also observed in the Au-Lipos Cur NPs-treated group after laser irradiation. | [95] |
B16-F10 cells C57/inbred mouse model | Synthesize, characterize and apply polyethylene glycol-curcumin-gold nanoparticles (PEG-Cur-Au NPs) for photothermal therapy | Induced tumors in the mice revealed a reduction in tumor volume upon photothermal therapy by PEG-Cur-Au NPs. | [96] | |
Curcumin + Resveratrol | ||||
Solid lipid nanoparticle | B16-F10 and SK-MEL-28 cells | Develop a solid lipid nanoparticle for topical delivery to enhance the skin penetration and anticancer efficacy of curcumin and resveratrol | Curcumin and resveratrol solution was found to be more toxic than either drug solution alone. | [6] |
Quercetin | ||||
MSNs | JR8 cells | Evaluate the potential of aminopropyl-functionalized mesoporous silica nanoparticles (NH2-MSNs) as topical carrier system for quercetin delivery | MSNs showed absence of toxicity and good biocompatibility. The complex with NH2-MSNs was more effective than quercetin alone, causing inhibition of cell proliferation. | [21] |
Epigallocatechin-3-gallate | ||||
Polymeric nanoparticles (Chitosan) | Mel 928 cells Athymic (nu/nu) nude mouse model | Assess the antitumor efficacy of the formulated nano-EGCG in subcutaneously implanted tumor xenograft in athymic nude mice | Nano-EGCG showed better efficacy in comparison to free EGCG. Cells treated with nano-EGCG showed marked induction of apoptosis and cell cycle inhibition. Nano-EGCG also inhibited proliferation and induced apoptosis in tumors of the in vivo study. | [97] |
Au NPs | B16-F10 cells C57BL6 mouse model | Investigate in vitro and in vivo the anticancer efficacy of EGCG-Au NPs on melanoma cells | Au NPs improved EGCG anticancer efficacy in melanoma cells, shown by increased cytotoxicity and apoptosis and inhibition of tumor growth. | [59] |
Apigenin | ||||
Polymeric nanoparticles (PLGA) | A375 cells | Evaluate the antiproliferative potential of apigenin loaded in PLGA nanoparticles (NAp) | NAp suppressed cell proliferation in a dose-dependent manner and induced apoptosis. | [66] |
B16-F10 cells C57BL6 mouse model | Develop a drug delivery system conjugating DMSA and apigenin-loaded in a PLGA nanosystem and evaluate its therapeutic potential to treat melanoma lung metastasis | Nanoformulation improved apigenin bioavailability with enhanced antitumor and antimetastatic efficacy. | [65] | |
Genistein | ||||
Au NPs | HTB-140 cells | Develop a conjugate of gold nanoparticles and genistein (Au NPs-GE) | The treatment of the conjugate AuNPs-GE was more toxic than free genistein, suggesting that this nanocarrier could enhance the anticancer effect of genistein. | [89] |
Luteolin | ||||
Nanovesicles | B16-F1 cells | Prepare, characterize and optimize luteolin-loaded nanovesicles (LT-NVs) to be used as a potential delivery system in the treatment of melanoma | Optimized LT-NVs showed enhanced growth inhibitory effects in comparison to pure luteolin. | [5] |
Silymarin | ||||
Lipid nanocarrier | SK-MEL-2 cells | Formulate a nanostructured lipid carrier (NLC) system to increase the therapeutic value, anticancer action and reduced toxicity of silymarin | Silymarin-NLC proved to possess anticancer activity in a dose-dependent manner and the capacity to induce apoptosis. | [98] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cunha, C.; Daniel-da-Silva, A.L.; Oliveira, H. Drug Delivery Systems and Flavonoids: Current Knowledge in Melanoma Treatment and Future Perspectives. Micromachines 2022, 13, 1838. https://doi.org/10.3390/mi13111838
Cunha C, Daniel-da-Silva AL, Oliveira H. Drug Delivery Systems and Flavonoids: Current Knowledge in Melanoma Treatment and Future Perspectives. Micromachines. 2022; 13(11):1838. https://doi.org/10.3390/mi13111838
Chicago/Turabian StyleCunha, Catarina, Ana L. Daniel-da-Silva, and Helena Oliveira. 2022. "Drug Delivery Systems and Flavonoids: Current Knowledge in Melanoma Treatment and Future Perspectives" Micromachines 13, no. 11: 1838. https://doi.org/10.3390/mi13111838
APA StyleCunha, C., Daniel-da-Silva, A. L., & Oliveira, H. (2022). Drug Delivery Systems and Flavonoids: Current Knowledge in Melanoma Treatment and Future Perspectives. Micromachines, 13(11), 1838. https://doi.org/10.3390/mi13111838