Nonlinear Thermal Diffusion and Radiative Stagnation Point Flow of Nanofluid with Viscous Dissipation and Slip Constrains: Keller Box Framework Applications to Micromachines
Abstract
:1. Introduction
2. Mathematical Modeling
3. Keller Box Scheme
4. Newton Method for Linearization
5. Computational Method
6. Results and Discussion
7. Conclusions
- ❖
- The increase in the stretching sheet parameter suggests an increase in the velocity profile;
- ❖
- The increase in the parameter of velocity slip decreased the velocity profile;
- ❖
- The increase in the porosity parameter reduced the velocity profile;
- ❖
- When the Brownian motion parameter increased, the nanoparticle concentration decreased, whereas the temperature increased;
- ❖
- The nanoparticle concentration and temperature both increased with an increase in the thermophoresis parameter;
- ❖
- By increasing the Prandtl number, the temperature profile decreased;
- ❖
- The increase in the Biot number indicated an increase in the temperature profile;
- ❖
- As increased, the concentration decreased;
- ❖
- By increasing the Brownian motion parameter, the Sherwood number increased in contrast to the increase in the thermophoresis parameter;
- ❖
- These results can be further extended for different non-Newtonian fluid models, such as Jeffrey fluid, viscoelastic fluid, couple stress fluid, Maxwell fluid, Oldroyd-B fluid, etc. Moreover, some other features can be discussed for current flow problems, such as entropy generation, heat source, activation energy, bioconvection, etc.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
Stretching rate | Fluid temperature |
Concentration | Surface temperature |
Free stream temperature | Free stream velocity |
Velocity components | Cartesian coordinates |
Electrically conductivity | Magnetic force strength |
Fluid temperature | Fluid concentration |
Brownian diffusion | Radiative flux |
Fluid viscosity | Thermal conductivity |
Slip factor | Magnetic parameter |
Radiation parameter | Slip parameter |
Biot number | Brownian motion parameter |
Porosity parameter | Stretching parameter |
Thermophoresis parameter | Lewis number and |
Local Eckert number | Prandtl number |
References
- Bhatti, M.M.; Bég, O.A.; Abdelsalam, S.I. Computational framework of magnetized MgO-Ni/water-based stagnation nanoflow past an elastic stretching surface: Application in solar energy coatings. Nanomaterials 2022, 12, 1049. [Google Scholar] [CrossRef] [PubMed]
- Sabu, A.S.; Wakif, A.; Areekara, S.; Mathew, A.; Shah, N.A. Significance of nanoparticles’ shape and thermo-hydrodynamic slip constraints on MHD alumina-water nanoliquid flows over a rotating heated disk: The passive control approach. Int. Commun. Heat Mass Transf. 2021, 129, 105711. [Google Scholar] [CrossRef]
- Song, Y.-Q.; Hamid, A.; Sun, T.-C.; Khan, M.I.; Qayyum, S.; Kumar, R.N.; Prasannakumara, B.C.; Khan, S.U.; Chinram, R. Unsteady mixed convection flow of magneto-Williamson nanofluid due to stretched cylinder with significant non-uniform heat source/sink features. Alexandria Eng. J. 2022, 61, 195–206. [Google Scholar] [CrossRef]
- Jie, Z.; Khan, M.I.; Al-Khaled, K.; El-Zahar, E.R.; Acharya, N.; Raza, A.; Khan, S.U.; Xia, W.-F.; Tao, N.-X. Thermal transport model for Brinkman type nanofluid containing carbon nanotubes with sinusoidal oscillations conditions: A fractional derivative concept. Waves Random Complex Media 2022, 32, 1–20. [Google Scholar] [CrossRef]
- Wang, F.; Ahmad, S.; Al Mdallal, Q.; Alammari, M.; Khan, M.N.; Rehman, A. Natural bio-convective flow of Maxwell nanofluid over an exponentially stretching surface with slip effect and convective boundary condition. Sci. Rep. 2022, 12, 2220. [Google Scholar] [CrossRef]
- Choi, S.U.S. Nanofluids: A new field of scientific research and innovative applications. Heat Transf. Eng. 2008, 29, 429–431. [Google Scholar] [CrossRef]
- Rasheed, H.U.; Islam, S.; Zeeshan; Khan, J.; Abbas, T.; Mohmand, M.I. Numerical solution of chemically reactive and thermally radiative MHD Prandtl nanofluid over a curved surface with convective boundary conditions. Z. Angew. Math. Mech. 2021, e202100125. [Google Scholar] [CrossRef]
- Zeeshan. Second law and entropy generation analysis of magnetized viscous fluid flow over a permeable expandable sheet with nonlinear thermal radiation: Brownian and thermophoresis effect. Adv. Mech. Eng. 2022, 14, 1–9. [Google Scholar] [CrossRef]
- Rasheed, H.U.; Al-Zubaidi, A.; Islam, S.; Saleem, S.; Khan, Z.; Khan, W. Effects of Joule heating and viscous dissipation on magnetohydrodynamic boundary layer flow of jeffrey nanofluid over a vertically stretching cylinder. Coatings 2021, 11, 353. [Google Scholar] [CrossRef]
- Zeeshan; Rasheed, H.U.; Khan, W.; Khan, I.; Alshammari, N.; Hamadneh, N. Numerical computation of 3D Brownian motion of thin film nanofluid flow of convective heat transfer over a stretchable rotating surface. Sci. Rep. 2022, 12, 2708. [Google Scholar] [CrossRef]
- Zeeshan; Khan, I.; Weera, W.; Mohamed, A. Heat transfer analysis of Cu and Al2O3 dispersed in ethylene glycol as a base fluid over a stretchable permeable sheet of MHD thin-film flow. Sci. Rep. 2022, 12, 8878. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Xu, G.; Shi, Y.; Li, J.; Zhang, Y. The characteristics of dynamic and non-uniform thermal radiation experienced by pedestrians in a street canyon. Build. Environ. 2022, 222, 109361. [Google Scholar] [CrossRef]
- Ramesh, G.; Madhukesh, J.; Shah, N.A.; Yook, S.-J. Flow of hybrid CNTs past a rotating sphere subjected to thermal radiation and thermophoretic particle deposition. Alexandria Eng. J. 2022, in press. [CrossRef]
- Famakinwa, O.A.; Koriko, O.K.; Adegbie, K.S. Effects of viscous dissipation and thermal radiation on time dependent incompressible squeezing flow of CuO-Al2O3water hybrid nanofluid between two parallel plates with variable viscosity. J. Comput. Math. Data Sci. 2022, 5, 100062. [Google Scholar] [CrossRef]
- Ketchate, C.G.N.; Kapen, P.T.; Fokwa, D.; Tchuen, G. Stability analysis of mixed convection in a porous horizontal channel filled with a Newtonian Al2O3/Water nanofluid in presence of magnetic field and thermal radiation. Chin. J. Phys. 2022, 79, 514–530. [Google Scholar] [CrossRef]
- Abbasi, A.; Farooq, W.; Tag-ElDin, E.S.M.; Khan, S.U.; Khan, M.I.; Guedri, K.; Elattar, S.; Waqas, M.; Galal, A.M. Heat transport exploration for hybrid nanoparticle (Cu, Fe3O4)-based blood flow via tapered complex wavy curved channel with slip features. Micromachines 2022, 13, 1415. [Google Scholar] [CrossRef]
- Waqas, H.; Oreijah, M.; Guedri, K.; Khan, S.U.; Yang, S.; Yasmin, S.; Khan, M.I.; Bafakeeh, O.T.; Tag-ElDin, E.S.M.; Galal, A.M. Gyrotactic motile microorganisms impact on pseudoplastic nanofluid flow over a moving Riga surface with exponential heat flux. Crystals 2022, 12, 1308. [Google Scholar] [CrossRef]
- Shahid, M.; Javed, H.M.A.; Ahmad, M.I.; Qureshi, A.A.; Khan, M.I.; Alnuwaiser, M.A.; Ahmed, A.; Khan, M.A.; Tag-ElDin, E.S.M.; Shahid, A.; et al. A brief assessment on recent developments in efficient electrocatalytic Nitrogen reduction with 2D non-metallic nanomaterials. Nanomaterials 2022, 12, 3413. [Google Scholar] [CrossRef]
- Manzoor, N.; Qasim, I.; Khan, M.I.; Ahmed, M.W.; Guedri, K.; Bafakeeh, O.T.; Tag-Eldin, E.S.M.; Galal, A.M. Antibacterial applications of low pressure plasma on degradation of multidrug resistant V. Cholera. Appl. Sci. 2022, 12, 9737. [Google Scholar] [CrossRef]
- Mamatha, S.U.; Devi, R.L.V.R.; Ahammad, N.A.; Shah, N.A.; Rao, B.M.; Raju, C.S.K.; Khan, M.I.; Guedri, K. Multi-linear regression of triple diffusive convectively heated boundary layer flow with suction and injection: Lie group transformations. Int. J. Mod. Phys. B 2022, in press. [Google Scholar] [CrossRef]
- Kiranakumar, H.V.; Thejas, R.; Naveen, C.S.; Khan, M.I.; Prasanna, G.D.; Reddy, S.; Oreijah, M.; Guedri, K.; Bafakeeh, O.T.; Jameel, M. A review on electrical and gas-sensing properties of reduced graphene oxide-metal oxide nanocomposites. Biomass Convers. Biorefinery 2022, in press. [CrossRef]
0.1 | 0.2 | 0.3 | 0.4 | ||
0.1 | 0 1 | 0.07543 0.3597 | 0.07418 0.3584 | 0.07271 0.3570 | 0.07095 0.3556 |
0.2 | 0 1 | 0.06623 0.3486 | 0.06365 0.3469 | 0.06042 0.3452 | 0.05623 0.3434 |
0.3 | 0 1 | 0.05249 0.3362 | 0.04712 0.3341 | 0.04013 0.3319 | 0.03023 0.3296 |
0.4 | 0 1 | 0.03307 0.3225 | 0.02328 0.3200 | 0.01018 0.3173 | −0.006327 0.3145 |
0.1 | 0.2 | 0.3 | 0.4 | ||
0.1 | 0 1 | 2.43 2.37 | 2.535 2.396 | 2.65 2.424 | 2.783 2.456 |
0.2 | 0 1 | 2.417 2.364 | 2.5 2.384 | 2.597 2.406 | 2.714 2.429 |
0.3 | 0 1 | 2.418 2.363 | 2.504 2.381 | 2.609 2.401 | 2.737 2.422 |
0.4 | 0 1 | 2.424 2.362 | 2.518 2.380 | 2.630 2.399 | 2.756 2.419 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bafakeeh, O.T.; Ahmad, B.; Noor, S.; Abbas, T.; Khan, S.U.; Khan, M.I.; Elattar, S.; Eldin, S.M.; Oreijah, M.; Guedri, K. Nonlinear Thermal Diffusion and Radiative Stagnation Point Flow of Nanofluid with Viscous Dissipation and Slip Constrains: Keller Box Framework Applications to Micromachines. Micromachines 2022, 13, 1839. https://doi.org/10.3390/mi13111839
Bafakeeh OT, Ahmad B, Noor S, Abbas T, Khan SU, Khan MI, Elattar S, Eldin SM, Oreijah M, Guedri K. Nonlinear Thermal Diffusion and Radiative Stagnation Point Flow of Nanofluid with Viscous Dissipation and Slip Constrains: Keller Box Framework Applications to Micromachines. Micromachines. 2022; 13(11):1839. https://doi.org/10.3390/mi13111839
Chicago/Turabian StyleBafakeeh, Omar T., Bilal Ahmad, Skeena Noor, Tasawar Abbas, Sami Ullah Khan, Muhammad Ijaz Khan, Samia Elattar, Sayed M. Eldin, Mowffaq Oreijah, and Kamel Guedri. 2022. "Nonlinear Thermal Diffusion and Radiative Stagnation Point Flow of Nanofluid with Viscous Dissipation and Slip Constrains: Keller Box Framework Applications to Micromachines" Micromachines 13, no. 11: 1839. https://doi.org/10.3390/mi13111839
APA StyleBafakeeh, O. T., Ahmad, B., Noor, S., Abbas, T., Khan, S. U., Khan, M. I., Elattar, S., Eldin, S. M., Oreijah, M., & Guedri, K. (2022). Nonlinear Thermal Diffusion and Radiative Stagnation Point Flow of Nanofluid with Viscous Dissipation and Slip Constrains: Keller Box Framework Applications to Micromachines. Micromachines, 13(11), 1839. https://doi.org/10.3390/mi13111839