Replenishment of the Gas in a Hydrophobically-Structured Surface by Mass Transfer at the Liquid-Gas Interface for Improving the Stability of Entrapped Gas
Abstract
:1. Introduction
2. Materials and Methods
2.1. Theoretical Evaporation Rate
2.2. Preparation of the Hydrophobic Structured Surface
2.3. Experimental Methods
2.4. Numerical Simulation
3. Results and Discussion
Observation of Gases
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lee, C.; Choi, C.H. Structured surfaces for a giant liquid slip. Phys. Rew. Lett. 2008, 101, 064501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, C.; Kim, C.J. Maximizing the giant liquid slip on superhydrophobic microstructures by nanostructuring their sidewalls. Langmuir 2009, 25, 12812–12818. [Google Scholar] [CrossRef] [PubMed]
- Choi, C.-H.; Ulmanella, U.; Kim, J. Effective slip and friction reduction in nanograted superhydrophobic microchannels. Phys. Fluids 2006, 18, 087105. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Z.; Li, J.; Peng, H.; Liu, D. Nature-inspired structures applied in heat transfer enhancement and drag reduction. Micromachines 2021, 12, 656. [Google Scholar] [CrossRef]
- Qin, L.; Hafezi, M.; Yang, H.; Dong, G.; Zhang, Y. Constructing a dual-function surface by microcasting and nanospraying for efficient drag reduction and potential antifouling capabilities. Micromachines 2019, 10, 490. [Google Scholar] [CrossRef] [Green Version]
- Yao, J.; Teo, C.J. Effect of the liquid–gas interface curvature for a superhydrophobic surface with longitudinal grooves in turbulent flows. Phys. Fluids 2021, 33, 075116. [Google Scholar] [CrossRef]
- Rajappan, A.; Golovin, K.; Tobelmann, B.; Pillutla, V.; Abhijeet; Tuteja, A.; McKinley, G.H. Influence of textural statistics on drag reduction by scalable, randomly rough superhydrophobic surfaces in turbulent flow. Phys. Fluids 2019, 31, 042107. [Google Scholar] [CrossRef] [Green Version]
- Moaven, K.; Rad, M.; Taeibi-Rahni, M. Experimental investigation of viscous drag reduction of superhydrophobic nano-coating in laminar and turbulent flows. Exp. Therm. Fluid Sci. 2013, 51, 239–243. [Google Scholar] [CrossRef]
- McHale, G.; Flynn, M.R.; Newton, M.I. Plastron induced drag reduction and increased slip on a superhydrophobic sphere. Soft Matter. 2011, 7, 10100–10107. [Google Scholar] [CrossRef]
- Govardhan, R.N.; Srinivas, G.S.; Asthana, A.; Bobji, M.S. Time dependence of effective slip on textured hydrophobic surfaces. Phys. Fluids 2009, 21, 052001. [Google Scholar] [CrossRef]
- Sakai, M.; Nakajima, A.; Fujishima, A. Removing an Air Layer from a Superhydrophobic Surface in Flowing Water. Chem. Lett. 2010, 39, 482–484. [Google Scholar] [CrossRef]
- Poetes, R.; Holtzmann, K.; Franze, K.; Steiner, U. Metastable underwater superhydrophobicity. Phys. Rev. Lett. 2010, 105, 166104. [Google Scholar] [CrossRef] [PubMed]
- Forsberg, P.; Nikolajeff, F.; Karlsson, M. Cassie–Wenzel and Wenzel–Cassie transitions on immersed superhydrophobic surfaces under hydrostatic pressure. Soft Matter. 2011, 7, 104–109. [Google Scholar] [CrossRef]
- Xu, M.; Grabowski, A.; Yu, N.; Kerezyte, G.; Lee, J.W.; Pfeifer, B.R. Superhydrophobic drag reduction for turbulent flows in open water. Phys. Rev. Appl. 2020, 13, 034056. [Google Scholar] [CrossRef]
- Samaha, M.A.; Tafreshi, H.V.; Gad-el-Hak, M. Influence of flow on longevity of superhydrophobic coatings. Langmuir 2012, 28, 9759–9766. [Google Scholar] [CrossRef]
- Xue, Y.; Chu, S.; Lv, P.; Duan, H. Importance of hierarchical structures in wetting stability on submersed superhydrophobic surfaces. Langmuir 2012, 28, 9440–9450. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.; Yang, Z.; Cao, B.; Zhang, Z.; Zhu, K.; Wu, B.; Chai, G. Wetting and dewetting transitions on submerged superhydrophobic surfaces with hierarchical structures. Langmuir 2017, 33, 407–416. [Google Scholar] [CrossRef]
- Aljallis, E.; Sarshar, M.A.; Datla, R.; Sikka, V.; Jones, A.; Choi, C.H. Experimental study of skin friction drag reduction on superhydrophobic flat plates in high Reynolds number boundary layer flow. Phys. Fluids 2013, 25, 025103. [Google Scholar] [CrossRef]
- Jacob, B.; Olivieri, A.; Miozzi, M.; Campana, E.F.; Piva, R. Drag reduction by microbubbles in a turbulent boundary layer. Phys. Fluids 2010, 22, 115104. [Google Scholar] [CrossRef]
- Vakarelski, I.U.; Marston, J.O.; Chan, D.Y.C.; Thoroddsen, S.T. Drag Reduction by Leidenfrost Vapor Layers. Phys. Rev. Lett. 2011, 106, 214501. [Google Scholar] [CrossRef]
- Ceccio, S.L. Friction drag reduction of external flows with bubble and gas injection. Annu. Rev. Fluid Mech. 2010, 42, 183–203. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.; Kim, C.J. Underwater Restoration and Retention of Gases on Superhydrophobic Surfaces for Drag Reduction. Phys. Rev. Lett. 2011, 106, 014502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Epstein, P.S.; Plesset, M.S. On the Stability of Gas Bubbles in Liquid-Gas Solutions. J. Chem. Phys. 1950, 18, 1505–1509. [Google Scholar] [CrossRef] [Green Version]
- Eames, I.W.; Marr, N.J.; Sabir, H. The evaporation coefficient of water: A review. Int. J. Heat Mass Transf. 1997, 40, 2963–2973. [Google Scholar] [CrossRef]
- Delchar, T.A. Vacuum Physics and Techniques; Chapter 1; Chapman and Hall: London, UK, 1993. [Google Scholar]
- Hrubes, J.D. High-speed imaging of supercavitating underwater projectiles. Exp. Fluids 2001, 30, 57–64. [Google Scholar] [CrossRef]
- Wang, B.; Wang, J.; Dou, Z.; Chen, D. Investigation of retention of gases in transverse hydrophobic microgrooved surfaces for drag reduction. Ocean Eng. 2014, 79, 58–63. [Google Scholar] [CrossRef]
- Brassard, J.D.; Sarkar, D.K.; Perron, J. Fluorine based superhydrophobic coatings. Appl. Sci. 2012, 2, 453–464. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.D.; Chen, D.R. Criteria for Entrapped Gas under a Drop on an Ultrahydrophobic Surface. Langmuir 2008, 24, 10174–10180. [Google Scholar] [CrossRef]
- Larmour, I.A.; Bell, S.E.J.; Saunders, G.C. Remarkably simple fabrication of superhydrophobic surfaces using electroless galvanic deposition. Angew. Chem. 2007, 119, 1740–1742. [Google Scholar] [CrossRef]
- Sakai, M.; Yanagisawa, T.; Nakajima, A.; Kameshima, Y.; Okada, K. Effect of Surface Structure on the Sustainability of an Air Layer on Superhydrophobic Coatings in a Water−Ethanol Mixture. Langmuir 2009, 25, 13–16. [Google Scholar] [CrossRef]
- Wang, B.; Wang, J.; Chen, D. Continual Automatic Generation of Gases on Hydrophobic Transverse Microrooved Surface. Chem. Lett. 2014, 43, 646–648. [Google Scholar] [CrossRef]
- Otsu, N. An automatic threshold selection method based on discriminate and least squares criteria. Denshi. Tsushin Gakkai Ronbunshi 1979, 63, 349–356. [Google Scholar]
- Sun, W.Y.; Kim, C.J. The role of dissolved gas in longevity of cassie states for immersed superhydrophobic surfaces. In Micro Electro Mechanical Systems (MEMS); IEEE: Taipei, Taiwan, 2013; pp. 397–400. [Google Scholar]
Surface Properties | Images | Contact Angle |
---|---|---|
smooth surface | 65° | |
smooth surface with FAS film | 115 ± 2° | |
microgrooved surface with FAS-17 film | 130° |
No. | Air Content (kPa) | State on HTM | Gas Coverage (%) | Gas Generation Rate (%) |
---|---|---|---|---|
1 | 60 (Undersaturation) | 60.68 ± 3.39 | 92.48 ± 3.04 | |
2 | 101 (Saturation) | 57.12 ± 3.33 | 102.48 ± 6.39 | |
3 | 200 (Supersaturation) | 63.44 ± 4.75 | 95.78 ± 1.90 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, B.; Wang, C.; Weng, D.; Lazarus, M.; Yan, D.; Liu, X. Replenishment of the Gas in a Hydrophobically-Structured Surface by Mass Transfer at the Liquid-Gas Interface for Improving the Stability of Entrapped Gas. Micromachines 2022, 13, 1893. https://doi.org/10.3390/mi13111893
Wang B, Wang C, Weng D, Lazarus M, Yan D, Liu X. Replenishment of the Gas in a Hydrophobically-Structured Surface by Mass Transfer at the Liquid-Gas Interface for Improving the Stability of Entrapped Gas. Micromachines. 2022; 13(11):1893. https://doi.org/10.3390/mi13111893
Chicago/Turabian StyleWang, Bao, Caihua Wang, Ding Weng, Marisa Lazarus, Dayun Yan, and Xiaoyan Liu. 2022. "Replenishment of the Gas in a Hydrophobically-Structured Surface by Mass Transfer at the Liquid-Gas Interface for Improving the Stability of Entrapped Gas" Micromachines 13, no. 11: 1893. https://doi.org/10.3390/mi13111893
APA StyleWang, B., Wang, C., Weng, D., Lazarus, M., Yan, D., & Liu, X. (2022). Replenishment of the Gas in a Hydrophobically-Structured Surface by Mass Transfer at the Liquid-Gas Interface for Improving the Stability of Entrapped Gas. Micromachines, 13(11), 1893. https://doi.org/10.3390/mi13111893