RGB-D Visual SLAM Based on Yolov4-Tiny in Indoor Dynamic Environment
Abstract
:1. Introduction
2. Related Work
2.1. Dynamic SLAM Based on Geometric Method
2.2. SLAM Based on Deep Learning or Semantic Information
3. System Overview
3.1. Algorithm Framework
3.2. Yolov4-Tiny
3.3. Backbone Network Structure of Yolov4-Tiny
3.4. Dynamic Feature Point Elimination Strategy
3.4.1. Dynamic Feature Point Elimination Based on Object Detection
3.4.2. Epipolar Geometry Constraints
3.4.3. LK Optical Flow Constraint
4. Results
4.1. Experimental Data Sets
4.2. Analysis of the Experimental Results
4.3. Discussion and Outlook
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
SLAM | Simultaneous Localization and Mapping |
LK | Lucas–Kanade |
References
- Wen, S.; Li, P.; Zhao, Y.; Zhang, H.; Wang, Z. Semantic visual SLAM in dynamic environment. Auton. Robot. 2021, 45, 493–504. [Google Scholar] [CrossRef]
- Ji, T.; Wang, C.; Xie, L. Towards Real-time Semantic RGB-D SLAM in Dynamic Environments. arXiv 2021, arXiv:2104.01316. [Google Scholar]
- Saputra, M.R.U.; Markham, A.; Trigoni, N. Visual SLAM and structure from motion in dynamic environments: A survey. ACM Comput. Surv. 2018, 51, 1–36. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, M.; Meng, Q.H. Improving RGB-D SLAM in Dynamic Environments: A Motion Removal Approach. Robot. Auton. Syst. 2017, 89, 110–122. [Google Scholar] [CrossRef]
- Wang, R.; Wan, W.; Wang, Y.; Di, K. A New RGB-D SLAM Method with Moving Object Detection for Dynamic Indoor Scenes. Remote Sens. 2019, 11, 1143. [Google Scholar] [CrossRef] [Green Version]
- Lin, S.; Huang, S. Moving object detection from a moving stereo camera via depth information and visual odometry. In Proceedings of the 2018 IEEE International Conference on Applied System Invention (ICASI), Chiba, Japan, 13–17 April 2018; pp. 437–440. [Google Scholar] [CrossRef]
- Yu, C.; Liu, Z.; Liu, X.; Xie, F.; Yang, Y.; Wei, Q.; Fei, Q. DS-SLAM: A Semantic Visual SLAM towards Dynamic Environments. In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October 2018; pp. 1168–1174. [Google Scholar]
- Bescós, B.; Fácil, J.; Civera, J.; Neira, J. DynSLAM: Tracking, Mapping and Inpainting in Dynamic Scenes. IEEE Robot. Autom. Lett. 2018, 3, 4076–4083. [Google Scholar] [CrossRef] [Green Version]
- Ai, Y.; Rui, T.; Lu, M.; Fu, L.; Liu, S.; Wang, S. DDL-SLAM: A Robust RGB-D SLAM in Dynamic Environments Combined with Deep Learning. IEEE Access 2020, 8, 162335–162342. [Google Scholar] [CrossRef]
- Fan, Y.; Zhang, Q.; Liu, S.; Tang, Y.; Jing, X.; Yao, J.; Han, H. Semantic SLAM with More Accurate Point Cloud Map in Dynamic Environments. IEEE Access 2020, 8, 112237–112252. [Google Scholar] [CrossRef]
- Han, S.; Xi, Z. Dynamic Scene Semantics SLAM Based on Semantic Segmentation. IEEE Access 2020, 8, 43563–43570. [Google Scholar] [CrossRef]
- Zhang, L.; Wei, L.; Shen, P.; Wei, W.; Zhu, G.; Song, J. Semantic SLAM Based on Object Detection and Improved Octomap. IEEE Access 2018, 6, 75545–75559. [Google Scholar] [CrossRef]
- Li, P.; Zhang, G.; Zhou, J.; Yao, R.; Zhang, X. Study on Slam Algorithm Based on Object Detection in Dynamic Scene. In Proceedings of the 2019 International Conference on Advanced Mechatronic Systems (ICAMechS), Kusatsu, Japan, 26–28 August 2019; pp. 363–367. [Google Scholar]
- Wang, L.; Zhou, K.; Chu, A.; Wang, G.; Wang, L. An Improved Light-weight Traffic Sign Recognition Algorithm Based on YOLOv4-Tiny. IEEE Access 2021, 8, 124963–124971. [Google Scholar] [CrossRef]
- Bochkovskiy, A.; Wang, C.Y.; Liao, H. YOLOv4: Optimal Speed and Accuracy of Object Detection. arXiv 2020, arXiv:2004.10934. [Google Scholar]
- Huang, N.; Chen, J.; Miao, Y. Optimization for RGB-D SLAM Based on Plane Geometrical Constraint. In Proceedings of the 2019 IEEE International Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct), Beijing, China, 10–18 October 2019. [Google Scholar]
- Hu, L.; Xu, W.; Huang, K.; Kneip, L. Deep-SLAM++: Object-level RGBD SLAM based on class-specific deep shape priors. arXiv 2019, arXiv:1907.09691. [Google Scholar]
- Jin, G.; Zhong, X.; Fang, S.; Deng, X.; Li, J. Keyframe-Based Dynamic Elimination SLAM System Using YOLO Detection. In International Conference on Intelligent Robotics and Applications; Springer: Cham, Switzerland, 2019; pp. 697–705. [Google Scholar]
- Wang, Z.; Jiansheng, L.I.; Wang, A.; Cheng, X.; University, I.E. A Method of SLAM Based on LK Optical Flow Suitable for Dynamic Scene. J. Geomat. Sci. Technol. 2018, 35, 187–190. [Google Scholar]
- Zhang, T.; Zhang, H.; Li, Y.; Nakamura, Y.; Zhang, L. FlowFusion: Dynamic Dense RGB-D SLAM Based on Optical Flow. In Proceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 31 May–31 August 2020. [Google Scholar]
- Tang, C.; Zhao, X.; Chen, J.; Chen, L.; Zhou, Y. Fast stereo visual odometry based on LK optical flow and ORB-SLAM2. Multimed. Syst. 2020, 1–10. [Google Scholar] [CrossRef]
- Wang, E.; Zhou, Y.; Zhang, Q. Improved Visual Odometry Based on SSD Algorithm in Dynamic Environment. In Proceedings of the 2020 39th Chinese Control Conference (CCC), Shenyang, China, 27–29 July 2020; pp. 7475–7480. [Google Scholar]
- Kang, R.; Shi, J.; Li, X.; Liu, Y.; Liu, X. DF-SLAM: A Deep-Learning Enhanced Visual SLAM System based on Deep Local Features. arXiv 2019, arXiv:1901.07223. [Google Scholar]
- Xiao, L.; Wang, J.; Qiu, X.; Rong, Z.; Zou, X. Dynamic-SLAM: Semantic monocular visual localization and mapping based on deep learning in dynamic environment. Robot. Auton. Syst. 2019, 117, 1–16. [Google Scholar] [CrossRef]
- Shi, J.; Zha, F.; Guo, W.; Wang, P.; Li, M. Dynamic Visual SLAM Based on Semantic Information and Multi-View Geometry. In Proceedings of the 2020 5th International Conference on Automation, Control and Robotics Engineering (CACRE), Dailan, China, 19–20 September 2020; pp. 671–679. [Google Scholar]
- Liu, Y.; Miura, J. RDMO-SLAM: Real-Time Visual SLAM for Dynamic Environments Using Semantic Label Prediction With Optical Flow. IEEE Access 2021, 106981–106997. [Google Scholar] [CrossRef]
- Li, G.; Yu, L.; Fei, S. A Binocular MSCKF-Based Visual Inertial Odometry System Using LK Optical Flow. J. Intell. Robot. Syst. 2020, 100, 1179–1194. [Google Scholar] [CrossRef]
- Liong, G.B.; See, J.; Wong, L.K. Shallow Optical Flow Three-Stream CNN for Macro- and Micro-Expression Spotting from Long Videos. arXiv 2021, arXiv:2106.06489. [Google Scholar]
- Gang, Z.; Tang, S.; Li, J. Face landmark point tracking using LK pyramid optical flow. In Tenth International Conference on Machine Vision (ICMV 2017); International Society for Optics and Photonics: Bellingham, WA, USA, 2018; Volume 10696, p. 106962B. [Google Scholar]
- Li, P.; Hao, X.; Wang, J.; Gu, Y.; Wang, G. UAV Obstacle Detection Algorithm Based on Improved ORB Sparse Optical Flow. In Proceedings of the 2019 IEEE 4th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), Chengdu, China, 20–22 December 2020; pp. 562–569. [Google Scholar]
- Croon, G.; Wagter, C.D.; Seidl, T. Enhancing optical-flow-based control by learning visual appearance cues for flying robots. Nat. Mach. Intell. 2021, 3, 33–41. [Google Scholar] [CrossRef]
- Zhang, T.; Nakamura, Y. Humanoid Robot RGB-D SLAM in the Dynamic Human Environment. Int. J. Hum. Robot. 2020, 17, 2050009. [Google Scholar] [CrossRef]
- Soares, J.; Gattass, M.; Meggiolaro, M.A. Visual SLAM in Human Populated Environments: Exploring the Trade-off between Accuracy and Speed of YOLO and Mask R-CNN. In Proceedings of the 19th International Conference on Advanced Robotics (ICAR 2019), Belo Horizonte, Brazil, 2–6 December 2019; pp. 135–140. [Google Scholar]
- Li, Q.; Sun, F.; Liu, H. RMVD: Robust Monocular VSLAM for Moving Robot in Dynamic Environment. In International Conference on Cognitive Systems and Signal Processing; Springer: Singapore, 2019; pp. 454–464. [Google Scholar]
- Campos, C.; Elvira, R.; Rodríguez, J.; Montiel, J.; Tardós, J. ORB-SLAM3: An Accurate Open-Source Library for Visual, Visual-Inertial and Multi-Map SLAM. In IEEE Transactions on Robotics; IEEE: Piscataway, NJ, USA, 2021; Volume 37, pp. 1874–1890. [Google Scholar]
Sequences | ORB-SLAM2 | Ours | Improvements | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | Median | RMSE | STD | Mean | Median | RMSE | STD | Mean | Median | RMSE | STD | |
Walking_static | 0.0966 | 0.0877 | 0.1136 | 0.0598 | 0.0061 | 0.0050 | 0.0074 | 0.0042 | 93.68% | 94.29% | 93.48% | 92.97% |
Walking_xyz | 0.5478 | 0.6111 | 0.6015 | 0.2485 | 0.0142 | 0.0130 | 0.0160 | 0.0074 | 97.40% | 97.87% | 97.33% | 97.02% |
Walking_rpy | 0.6026 | 0.5556 | 0.7010 | 0.3581 | 0.0453 | 0.0368 | 0.0561 | 0.0331 | 92.48% | 93.37% | 91.99% | 90.75% |
Walking_half | 0.4272 | 0.3964 | 0.4863 | 0.2290 | 0.0413 | 0.0369 | 0.0458 | 0.0197 | 90.33% | 90.69% | 90.58% | 91.39% |
Sitting_half | 0.0167 | 0.0147 | 0.0190 | 0.0092 | 0.0251 | 0.0263 | 0.0279 | 0.0123 | 33.46% | 44.10% | 31.89% | 25.20% |
Sitting_static | 0.0074 | 0.0064 | 0.0085 | 0.0041 | 0.0065 | 0.0058 | 0.0074 | 0.0035 | 12.16% | 9.37% | 12.94% | 14.63% |
Algorithm | Time |
---|---|
Dyna-SLAM | 900 |
Ds-SLAM | 200 |
Ours | 21.49 |
Sequences | ORB-SLAM3 | Dyna-SLAM | Ds-SLAM | DVO-SLAM | OFD-SLAM | Ours |
---|---|---|---|---|---|---|
Walking_static | 0.0203 | 0.0090 | 0.0081 | -- | -- | 0.0074 |
Walking_xyz | 0.2341 | 0.0150 | 0.0247 | 0.5966 | 0.1899 | 0.0160 |
Walking_rpy | 0.1552 | 0.0400 | 0.4442 | 0.7304 | 0.1533 | 0.0561 |
Walking_half | 0.4372 | 0.0250 | 0.0303 | 0.5287 | 0.1612 | 0.0458 |
Sitting_static | 0.0089 | 0.0065 | 0.0064 | 0.0505 | 0.0134 | 0.0074 |
Sitting_half | 0.0335 | 0.0191 | 0.0148 | -- | 0.0257 | 0.0279 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, Z.; Wu, H.; Sun, Y.; Li, C. RGB-D Visual SLAM Based on Yolov4-Tiny in Indoor Dynamic Environment. Micromachines 2022, 13, 230. https://doi.org/10.3390/mi13020230
Chang Z, Wu H, Sun Y, Li C. RGB-D Visual SLAM Based on Yolov4-Tiny in Indoor Dynamic Environment. Micromachines. 2022; 13(2):230. https://doi.org/10.3390/mi13020230
Chicago/Turabian StyleChang, Zhanyuan, Honglin Wu, Yunlong Sun, and Chuanjiang Li. 2022. "RGB-D Visual SLAM Based on Yolov4-Tiny in Indoor Dynamic Environment" Micromachines 13, no. 2: 230. https://doi.org/10.3390/mi13020230
APA StyleChang, Z., Wu, H., Sun, Y., & Li, C. (2022). RGB-D Visual SLAM Based on Yolov4-Tiny in Indoor Dynamic Environment. Micromachines, 13(2), 230. https://doi.org/10.3390/mi13020230