Novel Bi-UWB on-Chip Antenna for Wireless NoC
Abstract
:1. Introduction
2. Wireless-Based NoC Topology
2.1. Hybrid Topology
2.2. Pure Wireless Topology
3. Wireless Channel
Communication Model
4. On-Chip Antenna
4.1. Antenna Structure
4.2. Antenna Design Steps
4.3. Antenna Characterization
5. Assignment of Frequencies
- Rule 2: (dB) ≥ ( of max() or more than −20 dB (giving and ).
- Rule 3: One or more bands are allocated to the , where Rule 1 is respected.
- Rule 4: Each Bik is subdivided into one or more channels Chikp, where p represents the indexes of the appropriate channels, referring to Bik.
Algorithm 1 Frequencies’ assignment algorithm per Aij (Input parmeters: n, m) (here n = 16 and m = 6) (Output: Alloc([1..(n ∗ (n − 1) ∗ m)]) (here Alloc([1..1440]) |
|
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
bi-WB | Bi-Wide-Band |
FBR | fractional frequency band ratio |
FBW | frequency band width (in percentage) |
FDMA | Frequency-Division Multiple Access |
FH-TDMA | Frequency Hopping TDMA |
FS | Frequency-Selective Surface |
IP | Intellectual Propriety |
MPSoC | Multi-Processor SoC |
NoC | Network on Chip |
Qos | Quality of service |
RFIC | Radio-Frequency Integrated Circuit |
SoC | System on Chip |
SOI | Silicon as innsulator |
TDMA | Time-Division Multiple Access |
UWB | Ultra-Wide-Band |
WNoC | Wireless NoC |
Appendix A. Antenna Disposition Study
Appendix A.1. Antenna Disposition Weights
[, , , ] | Quality Weight |
---|---|
00 | 100 |
01 | 30 |
02 | 60 |
03 | 60 |
10 | 2 |
11 | 1 |
12 | 3 |
13 | 3 |
20 | 40 |
21 | 10 |
22 | 30 |
23 | 30 |
30 | 40 |
31 | 10 |
32 | 30 |
33 | 30 |
Appendix A.2. Antenna Disposition Cases
Horizontal | Horizontal | Vertical | Vertical | |
---|---|---|---|---|
[, , , ] | 0: → | 1: ← | 2: ↑ | 3: ↓ |
00 | 32 | 23 | 01 | 10 |
01 | 33 | 22 | 00 | 11 |
02 | 30 | 21 | 02 | 13 |
03 | 31 | 20 | 03 | 12 |
10 | 22 | 33 | 11 | 10 |
11 | 23 | 32 | 10 | 01 |
12 | 20 | 31 | 12 | 03 |
13 | 21 | 30 | 13 | 02 |
20 | 21 | 03 | 31 | 20 |
21 | 13 | 02 | 30 | 21 |
22 | 10 | 01 | 32 | 23 |
23 | 31 | 00 | 33 | 22 |
30 | 02 | 13 | 21 | 30 |
31 | 03 | 12 | 20 | 31 |
32 | 00 | 11 | 22 | 33 |
33 | 01 | 10 | 23 | 32 |
Appendix A.3. Investigation of Cases
References
- Karim, R.; Iftikhar, A.; Ijaz, B.; Ben Mabrouk, I. The Potentials, Challenges, and Future Directions of On-Chip-Antennas for Emerging Wireless Applications—A Comprehensive Survey. IEEE Access 2019, 7, 173897–173934. [Google Scholar] [CrossRef]
- Balti, M.; Abderrazzak, J. Performance survey of classic and Optic network on chip. IET Circuits-Devices-Syst. 2021, 15, 393–402. [Google Scholar] [CrossRef]
- Gutierrez, F. Design of a Wideband Antenna for Wireless Network-On-Chip in Multimedia Applications. J. Low Power Electron. Appl. 2017, 7, 6. [Google Scholar] [CrossRef] [Green Version]
- Devanathana, M.; Ranganathanb, V.; Sivakumarc, P. Congestion-aware wireless network-on-chip for high-speed communication. Autom. J. Control. Meas. Electron. Comput. Commun. 2020, 61, 92–98. [Google Scholar] [CrossRef] [Green Version]
- Abbosh, A.M.; Bialkowski, M.E. Design of Ultrawideband Planar Monopole Antennas of Circular and Elliptical Shape. IEEE Trans. Antennas Propag. 2008, 56, 17–23. [Google Scholar] [CrossRef]
- Angelopoulos, E.S.; Anastopoulos, A.Z.; Kaklamani, D.I.; Alexandridis, A.A.; Lazarakis, F.; Dangakis, K. Circular and Elliptical CPW-Fed Slot and Microstrip-Fed Antennas for Ultrawideband Applications. IEEE Antennas Wirel. Propag. Lett. 2006, 5, 294–297. [Google Scholar] [CrossRef]
- Al-Gburi, A.J.A.; Ibrahim, I.M.; Zakaria, Z.; Abdulhameed, M.K.; Saeidi, T. Enhancing Gain for UWB Antennas Using FSS: A Systematic Review. Mathematics 2021, 9, 3301. [Google Scholar] [CrossRef]
- Kumar, O.P.; Kumar, P.; Ali, T. A Compact Dual-Band Notched UWB Antenna for Wireless Applications. Micromachines 2022, 13, 12. [Google Scholar] [CrossRef] [PubMed]
- Karkar, A.; Mak, T.; Tong, K.F.; Yakovlev, A. A Survey of Emerging Interconnects for On-Chip Efficient Multicast and Broadcast in Many-Cores. IEEE Circuits Syst. Mag. 2016, 16, 58–72. [Google Scholar] [CrossRef] [Green Version]
- Marculescu, R.; Ogras, U.Y. Outstanding research problems in NoC design: System, micro-architecture, and circuit perspectives. IEEE Trans.-Comput.-Aided Des. Integr. Circuits Syst. 2009, 28, 3–21. [Google Scholar] [CrossRef]
- Rusli, M.S.; Lit, A.; Marsono, M.N.; Palesi, M. Adaptive Packet Relocator inWireless Network-on-Chip (WiNoC). In Modeling, Design and Simulation of Systems; Springer: Singapore, 2017; Volume 752, pp. 719–735. [Google Scholar] [CrossRef]
- Mineo, A.; Palesi, M.; Ascia, G.; Catania, V. An adaptive transmitting power technique for energy efficient mm-wave wireless NoCs. In Proceedings of the 2014 Design, Automation Test in Europe Conference Exhibition (DATE), Dresden, Germany, 24–28 March 2014; pp. 1–6. [Google Scholar] [CrossRef]
- Rusli, M.S.; Mineo, A.; Palesi, M.; Ascia, G.; Catania, V.; Marsono, M. A closed loop control based power manager for winoc architectures. In Proceedings of the MES ’14: International Workshop on Manycore Embedded Systems, Minneapolis, MN, USA, 15 June 2014; pp. 60–63. [Google Scholar] [CrossRef]
- Lit, A.; Rusli, M.; Marsono, M. Comparative performance evaluation of routing algorithm and topology size for wireless network-on-chip. Bull. Electr. Eng. Inform. 2019, 8, 1239–1250. [Google Scholar] [CrossRef]
- Zhao, D.; Wang, Y.; Li, J.; Kikkawa, T. Design of multi-channel wireless NoC to improve on-chip communication capacity. In Proceedings of the NOCS ’11: Fifth ACM/IEEE International Symposium on Networks-on-Chip, Pittsburgh, PA, USA, 1–4 May 2011; pp. 177–184. [Google Scholar] [CrossRef]
- Ortiz Sosa, J.; Sentieys, O.; Roland, C. Adaptive Transceiver for Wireless NoC to Enhance Multicast/Unicast Communication Scenarios. In Proceedings of the 2019 IEEE Computer Society Annual Symposium on VLSI (ISVLSI), Miami, FL, USA, 15–17 July 2019; pp. 592–597. [Google Scholar] [CrossRef] [Green Version]
- Deb, S.; Chang, K.; Ganguly, A.; Yu, X.; Teuscher, C.; Pande, P.; Heo, D.; Belzer, B. Design of an efficient NoC architecture using millimeter-wave wireless links. In Proceedings of the International Symposium on Quality Electronic Design, ISQED, Santa Clara, CA, USA, 19–21 March 2012; pp. 165–172. [Google Scholar] [CrossRef]
- Wang, Q.; Ouyang, Y.; Lu, Y.; Liang, H.; Zhu, D. Neural Network-based Online Fault Diagnosis in Wireless-NoC Systems. J. Electron. Test. 2021, 37, 545–559. [Google Scholar] [CrossRef]
- Mondal, H.K.; Kaushik, S.; Gade, S.H.; Deb, S. Energy-Efficient Transceiver for Wireless NoC. In Proceedings of the 2017 30th International Conference on VLSI Design and 2017 16th International Conference on Embedded Systems (VLSID), Hyderabad, India, 7–11 January 2017; pp. 87–92. [Google Scholar] [CrossRef]
- Xia, H.; Bertoni, H.; Maciel, L.; Lindsay-Stewart, A.; Rowe, R. Radio propagation characteristics for line-of-sight microcellular and personal communications. IEEE Trans. Antennas Propag. 1993, 41, 1439–1447. [Google Scholar] [CrossRef] [Green Version]
- Feuerstein, M.; Blackard, K.; Rappaport, T.; Seidel, S.; Xia, H. Path loss, delay spread, and outage models as functions of antenna height for microcellular system design. IEEE Trans. Veh. Technol. 1994, 43, 487–498. [Google Scholar] [CrossRef] [Green Version]
- Sommer, C.; Joerer, S.; Dressler, F. On the applicability of Two-Ray path loss models for vehicular network simulation. In Proceedings of the 2012 IEEE Vehicular Networking Conference (VNC), Seoul, Korea, 14–16 November 2012; pp. 64–69. [Google Scholar] [CrossRef]
- Karedal, J.; Czink, N.; Paier, A.; Tufvesson, F.; Molisch, A.F. Path Loss Modeling for Vehicle-to-Vehicle Communications. IEEE Trans. Veh. Technol. 2011, 60, 323–328. [Google Scholar] [CrossRef] [Green Version]
- Kunisch, J.; Pamp, J. Wideband Car-to-Car Radio Channel Measurements and Model at 5.9 GHz. In Proceedings of the 2008 IEEE 68th Vehicular Technology Conference, Calgary, AB, Canada, 21–24 September 2008; pp. 1–5. [Google Scholar] [CrossRef]
- Zöchmann, E.; Lerch, M.; Caban, S.; Mecklenbräuker, C.; Mecklenbrauker, C.; Rupp, M. Directional evaluation of receive power, Rician K-factor and RMS delay spread obtained from power measurements of 60 GHz indoor channels. In Proceedings of the 2016 IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications (APWC), Cairns, QLD, Australia, 19–23 September 2016; pp. 246–249. [Google Scholar] [CrossRef]
- Friis, H. A Note on a Simple Transmission Formula. Proc. IRE 1946, 34, 254–256. [Google Scholar] [CrossRef]
- Narde, R.S.; Mansoor, N.; Ganguly, A.; Venkataraman, J. On-chip antennas for inter-chip wireless interconnections: Challenges and opportunities. In Proceedings of the 12th European Conference on Antennas and Propagation (EuCAP 2018), London, UK, 9–13 April 2018; pp. 1–5. [Google Scholar] [CrossRef]
- Gade, S.H.; Ram, S.S.; Deb, S. Millimeter wave wireless interconnects in deep submicron chips: Challenges and opportunities. Integration 2019, 64, 127–136. [Google Scholar] [CrossRef]
- Gaha, H.; Balti, M. Design of on-chip fractal antenna for wireless NoC. In Proceedings of the International Conference on Electrical, Computer and Energy Technologies (ICECET), Cape Town, South Africa, 9–10 December 2021. [Google Scholar]
- Saponara, S.; Neri, B. System-level analysis for integrated power amplifier design in mmWave consumer wireless communications. In Lecture Notes in Electrical Engineering; Springer: New York, NY, USA, 2019; Volume 409, pp. 167–174. [Google Scholar]
- Saponara, S.; Neri, B. mm-wave integrated wireless transceivers: Enabling technology for high bandwidth connections in IoT. In Proceedings of the 2015 IEEE 2nd World Forum on Internet of Things (WF-IoT), Milan, Italy, 14–16 December 2015; pp. 149–153. [Google Scholar] [CrossRef]
- Xi, T.; Huang, S.; Guo, S.; Gui, P.; Zhang, J.; Choi, W.; Huang, D.; Kenneth, K.O.; Fan, Y. A new compact high-efficiency mmWave power amplifier in 65 nm CMOS process. In Proceedings of the 2015 IEEE MTT-S International Microwave Symposium, Phoenix, AZ, USA, 17–22 May 2015; pp. 1–4. [Google Scholar] [CrossRef]
- Neve, C.R. Small- and Large-Signal Characterization of Trap-Rich HR-Si/HR-SOI Wafers for SoC Applications. Ph.D. Thesis, Universite Catholique De Louvain-Ecole Polytechnique de Louvain-ICTEAM, Wavre, Belgium, 10 January 2012; pp. 231–238. [Google Scholar]
- Laha, S.; Sidhu, S.K. Feasibility of Full Duplex Communication for Wireless Network on Chips with OOK Modulation. In Proceedings of the IEEE 21st Annual Wireless and Microwave Technology Conference (WAMICON), Sand Key, FL, USA, 28–29 April 2021; pp. 1–5. [Google Scholar] [CrossRef]
- Jalili, H.; Momeni, O. 17.10 A 318-to-370GHz Standing-Wave 2D Phased Array in 0.13 µm BiCMOS. In Proceedings of the 2017 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA, 5–9 February 2017; pp. 310–311. [Google Scholar] [CrossRef]
- Calò, G.; Alam, B.; Bellanca, G.; Fuschini, F.; Barbiroli, M.; Tralli, V.; Bassi, P.; Stomeo, T.; Bozzetti, M.; Kaplan, A.E.; et al. Dielectric and Plasmonic Vivaldi Antennas for On-Chip Wireless Communication. In Proceedings of the 2019 21st International Conference on Transparent Optical Networks (ICTON), Angers, France, 9–13 July 2019; pp. 1–4. [Google Scholar] [CrossRef]
- Al-Eryani, J.; Knapp, H.; Kammerer, J.; Aufinger, K.; Li, H.; Maurer, L. Fully Integrated Single-Chip 305–375-GHz Transceiver With On-Chip Antennas in SiGe BiCMOS. IEEE Trans. Terahertz Sci. Technol. 2018, 8, 329–339. [Google Scholar] [CrossRef]
- Masri, I.E.; Le Gouguec, T.; Martin, P.M.; Allanic, R.; Quendo, C. Integrated dipole antennas and propagation channel on silicon in Ka band for WiNoC applications. In Proceedings of the 2018 IEEE 22nd Workshop on Signal and Power Integrity (SPI), Brest, France, 22–25 May 2018; pp. 1–4. [Google Scholar] [CrossRef]
- Pano, V.; Tekin, I.; Yilmaz, I.; Liu, Y.; Dandekar, K.R.; Taskin, B. TSV Antennas for Multi-Band Wireless Communication. IEEE J. Emerg. Sel. Top. Circuits Syst. 2020, 10, 100–113. [Google Scholar] [CrossRef]
Markers | Frequency (GHz) | (dB) |
---|---|---|
mi | Fi | S11 |
m1 | 63.26 | −10.469 |
m2 | 76.25 | −23.136 |
m3 | 78.32 | −10.2016 |
m4 | 101.2 | −10.469 |
m5 | 103.6 | −21.630 |
m6 | 116.1 | −47.364 |
m7 | 140.0 | −42.129 |
m8 | 157.0 | −9.839 |
F GHz | (V) | (dB) | (dB) | (W) | (W) | |||
---|---|---|---|---|---|---|---|---|
77 | 0.264 | 162.000 | 245.000 | 5.860 | −3.240 | 3.018 | 0.002 | 0.123 |
106 | 0.168 | 141.000 | 62.000 | 4.683 | −7.186 | 1.606 | 0.002 | 0.065 |
113 | 0.179 | 141.000 | 58.000 | 5.921 | −6.679 | 1.369 | 0.002 | 0.055 |
123 | 0.149 | 129.000 | 269.000 | 2.869 | −8.172 | 1.291 | 0.002 | 0.079 |
141 | 0.198 | 176.000 | 39.000 | 4.883 | −5.795 | 2.11 | 0.002 | 0.086 |
Reference | Size (mm2) | Bw (GHz) | Gain (dB) | Frequency (GHz) | Antenna Type |
---|---|---|---|---|---|
[34] | 0.023 | 51–66 | −26.8 | 60 | not reported |
[35] | 1.2 | 318–370 | Not reported | 344 | patch |
[36] | 10.54 | 55–65 | −10.6 | 60 | Vivaldi |
[37] | 2.85 | 305–375 | 1.85 | 340 | differential rectangular patch antenna |
[38] | Not reported | 26–40 | 1.69 | 60 | dipole |
[39] | 1.6 | 63.5–68.5 | −1.4 | not reported | TSVA |
This | 0.824 | B1(63 to 78) | −3.24 | 77 | patch |
work | B2(110 to 157) | −5.795 | 140 |
Band_1 (63.26–78.32) GHZ | Band_2 (101.2–157.0) GHz | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sub-Channels N° | ||||||||||||||||||
N° | Ai,j | 1 | 2 | 3 | .. | 76 | .. | 306 | 307 | 618 | .. | 690 | .. | 1359 | 1360 | .. | .. | 1440 |
1 | A1,2 | |||||||||||||||||
2 | A1,3 | |||||||||||||||||
.. | .. | .. | .. | .. | .. | .. | .. | .. | .. | .. | .. | .. | .. | .. | .. | .. | .. | .. |
76 | A6,1 | 66.9 | 116.5 | 120 | 152.9 | 153 | ||||||||||||
.. | .. | .. | .. | .. | .. | .. | .. | .. | .. | .. | .. | .. | .. | .. | .. | .. | .. | .. |
240 | A16,15 |
Subch N° | f1 (Hz) | f2 (Hz) | f3 (Hz) | f4 (Hz) | f5 (Hz) |
---|---|---|---|---|---|
76 | 66 950624975 | 66 953085391 | 66 975229141 | 66 997372891 | 66 999833308 |
618 | 116 501541461 | 116 504001877 | 116 526145627 | 116 548289377 | 116 550749794 |
669 | 119 011166444 | 119 013626860 | 119 035770610 | 119 057914360 | 119 060374777 |
690 | 120 044541437 | 120 047001853 | 120 069145603 | 120 091289353 | 120 093749770 |
1359 | 152 964916214 | 152 967376630 | 152 989520380 | 153 011664130 | 153 014124547 |
1360 | 153 014124547 | 153 016584963 | 153 038728713 | 153 060872463 | 153 063332880 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gaha, H.I.; Balti, M. Novel Bi-UWB on-Chip Antenna for Wireless NoC. Micromachines 2022, 13, 231. https://doi.org/10.3390/mi13020231
Gaha HI, Balti M. Novel Bi-UWB on-Chip Antenna for Wireless NoC. Micromachines. 2022; 13(2):231. https://doi.org/10.3390/mi13020231
Chicago/Turabian StyleGaha, Hafedh Ibrahim, and Moez Balti. 2022. "Novel Bi-UWB on-Chip Antenna for Wireless NoC" Micromachines 13, no. 2: 231. https://doi.org/10.3390/mi13020231
APA StyleGaha, H. I., & Balti, M. (2022). Novel Bi-UWB on-Chip Antenna for Wireless NoC. Micromachines, 13(2), 231. https://doi.org/10.3390/mi13020231