Fibroblast Derived Skin Wound Healing Modeling on Chip under the Influence of Micro-Capillary Shear Stress
Abstract
:1. Introduction
2. Methodology
2.1. Designing of Device and Numerical Model
2.2. Fabrication of Chip
2.3. Preparation of PDMS Mold
2.4. Isolation of Silk Fibroin
2.5. Fabrication of Transparent Silk Film
2.6. Physio-Chemical Characterization of the Nanofibers
2.7. Primary Cells and Cell Maintenance
2.8. MTT Study
2.9. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Van Ravenzwaay, B.; Leibold, E. A comparison between in vitro rat and human and in vivo rat skin absorption studies. Hum. Exp. Toxicol. 2004, 23, 421–430. [Google Scholar] [CrossRef] [PubMed]
- Wufuer, M.; Lee, G.; Hur, W.; Jeon, B.; Kim, B.J.; Choi, T.H.; Lee, S. Skin-on-a-chip model simulating inflammation, edema and drug-based treatment. Sci. Rep. 2016, 6, 37471. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kimura, H.; Sakai, Y.; Fujii, T. Organ/body-on-a-chip based on microfluidic technology for drug discovery. Drug Metab. Pharmacokinet. 2018, 33, 43–48. [Google Scholar] [CrossRef] [PubMed]
- Bainbridge, P. Wound healing and the role of fibroblasts. J. Wound Care 2013, 22, 407–411. [Google Scholar] [PubMed]
- Shen, F.; Li, X.; Li, P.C. Study of flow behaviors on single-cell manipulation and shear stress reduction in microfluidic chips using computational fluid dynamics simulations. Biomicrofluidics 2014, 8, 014109. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Xu, L.; Wang, E.; Huang, S. The potential landscape of genetic circuits imposes the arrow of time in stem cell differentiation. Biophys. J. 2010, 99, 29–39. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.; Kwon, S. Mechanical load increase–induced changes in cytoskeletal structure and cellular barrier function in human cerebral endothelial cells. Biotechnol. Bioeng. 2018, 115, 2624–2631. [Google Scholar] [CrossRef]
- Ohashi, K.; Fujiwara, S.; Mizuno, K. Roles of the cytoskeleton, cell adhesion and rho signalling in mechanosensing and mechanotransduction. J. Biochem. 2017, 161, 245–254. [Google Scholar] [CrossRef] [Green Version]
- Phang, S.J.; Arumugam, B.; Kuppusamy, U.R.; Fauzi, M.B.; Looi, M.L. A review of diabetic wound models—Novel insights into diabetic foot ulcer. J. Tissue Eng. Regen. Med. 2021, 15, 1051–1068. [Google Scholar] [CrossRef]
- Lukács, B.; Bajza, Á.; Kocsis, D.; Csorba, A.; Antal, I.; Iván, K.; Erdő, F. Skin-on-a-chip device for ex vivo monitoring of transdermal delivery of drugs—design, fabrication, and testing. Pharmaceutics 2019, 11, 445. [Google Scholar] [CrossRef] [Green Version]
- Grambow, E.; Sorg, H.; Sorg, C.G.; Strüder, D. Experimental Models to Study Skin Wound Healing with a Focus on Angiogenesis. Med. Sci. 2021, 9, 55. [Google Scholar] [CrossRef] [PubMed]
- Alexander, F.A.; Eggert, S.; Wiest, J. Skin-on-a-chip: Transepithelial electrical resistance and extracellular acidification measurements through an automated air-liquid interface. Genes 2018, 9, 114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riahi, R.; Yang, Y.; Zhang, D.D.; Wong, P.K. Advances in wound-healing assays for probing collective cell migration. J. Lab. Autom. 2012, 17, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Tefft, J.B.; Chen, C.S.; Eyckmans, J. Reconstituting the dynamics of endothelial cells and fibroblasts in wound closure. APL Bioeng. 2021, 5, 016102. [Google Scholar] [CrossRef] [PubMed]
- Kaarj, K.; Yoon, J.Y. Methods of delivering mechanical stimuli to organ-on-a-chip. Micromachines 2019, 10, 700. [Google Scholar] [CrossRef] [Green Version]
- Ho, P.; Westerwalbesloh, C.; Kaganovitch, E.; Grünberger, A.; Neubauer, P.; Kohlheyer, D.; Lieres, E.V. Reproduction of large-scale bioreactor conditions on microfluidic chips. Microorganisms 2019, 7, 105. [Google Scholar] [CrossRef] [Green Version]
- Jarvas, G.; Szigeti, M.; Hajba, L.; Furjes, P.; Guttman, A. Computational fluid dynamics-based design of a microfabricated cell capture device. J. Chromatogr. Sci. 2015, 53, 411–416. [Google Scholar] [CrossRef] [Green Version]
- Buchwald, P. FEM-based oxygen consumption and cell viability models for avascular pancreatic islets. Theor. Biol. Med. Model. 2009, 6, 5. [Google Scholar] [CrossRef] [Green Version]
- Gupta, S.; Alrabaiah, H.; Christophe, M.; Rahimi-Gorji, M.; Nadeem, S.; Bit, A. Evaluation of silk-based bioink during pre and post 3D bioprinting: A review. J. Biomed. Mater. Res. Part B Appl. Biomater. 2021, 109, 279–293. [Google Scholar] [CrossRef]
- Gupta, S.; Dutta, P.; Acharya, V.; Prasad, P.; Roy, A.; Bit, A. Accelerating skin barrier repair using novel bioactive magnesium-doped nanofibers of non-mulberry silk fibroin during wound healing. J. Bioact. Compat. Polym. 2021, 37. [Google Scholar] [CrossRef]
- Gupta, S.; Bissoyi, A.; Bit, A. A review on 3D printable techniques for tissue engineering. BioNanoScience 2018, 8, 868–883. [Google Scholar] [CrossRef]
- Gupta, S.; Bit, A. Rapid prototyping for polymeric gels. In Polymeric Gels; Woodhead Publishing: London, UK, 2018; pp. 397–439. [Google Scholar]
- Shi, Z.D.; Tarbell, J.M. Fluid flow mechanotransduction in vascular smooth muscle cells and fibroblasts. Ann. Biomed. Eng. 2011, 39, 1608–1619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Parameters | Description (Design 1) | Description (Design 2) |
---|---|---|
Wound-healing assay | Direct manipulation using trypsin | Physical exclusion using a PDMS mold |
Device design | 3 inlet, 1.50 mm radius of the inlet, 0.2 mm height, width, 3 outlet, 0.2 mm channel thickness | 1 inlet, 0.2 mm height, 0.2 mm width, 1.5 mm radius of the inlet, 1 outlet |
Impact of design on wound size creation | Nondeterministic shape of wound created | Deterministic and reproducible wound created |
Pressure (Pascal) | Velocity (ms−1) | WSS (Pascal) | ||||
---|---|---|---|---|---|---|
Amount | Maximum | Minimum | Maximum | Minimum | Maximum | Minimum |
5 μL/min | 283.661 | 0 | 0.01286 | 0.00833 | 0.0913 | 0 |
10 μL/min | 830.21 | 0 | 0.0382 | 0.025 | 0.0182 | 0 |
20 μL/min | 1362.722 | 0 | 0.06363 | 0.0417 | 0.0351 | 0 |
Trypsin Flow Rate | Time | Remarks |
---|---|---|
5 µL/min | 4 min | No interface created between trypsin and media |
10 µL/min | 4 min | No interface created between trypsin and media |
15 µL/min | 4 min | Proper cleavage of cells with clear interface trypsin cells and media |
20 µL/min | 4 min | Cells were damaged and unstable trypsin flow was observed |
Design 1 (Wound Area (in mm)) | Design 2 (Healed Area (in mm)) | ||||||
---|---|---|---|---|---|---|---|
5 µL/min | 10 µL/min | 20 µL/min | 5 µL/min | 10 µL/min | 20 µL/min | ||
0 h | 619,042.843 | 536,347.072 | 881,491.515 | 0 h | 516,127.637 | 512,156.844 | 515,587.264 |
12 h | 529,054.573 | 283,111.059 | 705,521.213 | 12 h | 421,749.287 | 262,697.214 | 242,967.842 |
24 h | 407,404.345 | 161,375.886 | 523,519.110 | 24 h | 74,976.281 | 22,441.196 | 103,555.969 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gupta, S.; Patel, L.; Mitra, K.; Bit, A. Fibroblast Derived Skin Wound Healing Modeling on Chip under the Influence of Micro-Capillary Shear Stress. Micromachines 2022, 13, 305. https://doi.org/10.3390/mi13020305
Gupta S, Patel L, Mitra K, Bit A. Fibroblast Derived Skin Wound Healing Modeling on Chip under the Influence of Micro-Capillary Shear Stress. Micromachines. 2022; 13(2):305. https://doi.org/10.3390/mi13020305
Chicago/Turabian StyleGupta, Sharda, Lavish Patel, Kunal Mitra, and Arindam Bit. 2022. "Fibroblast Derived Skin Wound Healing Modeling on Chip under the Influence of Micro-Capillary Shear Stress" Micromachines 13, no. 2: 305. https://doi.org/10.3390/mi13020305
APA StyleGupta, S., Patel, L., Mitra, K., & Bit, A. (2022). Fibroblast Derived Skin Wound Healing Modeling on Chip under the Influence of Micro-Capillary Shear Stress. Micromachines, 13(2), 305. https://doi.org/10.3390/mi13020305